
Metoda sdružených gradientů
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Poznámka
A-skalární součin, A-norma (energetická norma)

Standardní euklidovský skalární součin vektorů

〈x, y〉 = yT x =
n
∑

i=1

yi xi .

A ∈ Rn×n je symetrická, pozitivně definitní, definujme

〈x, y〉A ≡ yT Ax, ‖x‖A ≡ 〈x, x〉1/2
A .

Z normality a z pozitivní definitnosti plyne

‖x‖2
A = ‖A1/2x‖2.
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Problém Ax = b

a minimalizace funkcionálu

A ∈ Rn×n je symetrická, pozitivně definitní.

Data A, b, definujme kvadratický funkcionál

F(y) ≡ 1

2
yT Ay − yT b , F : Rn 7−→ R .

Platí
∇F(y) = Ay − b.

F(y) nabývá minima v bodě ∇F(y) = 0, tj. Ay − b = 0.

Ax = b ⇔ F(x) nabývá v x minima.
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Problém Ax = b

a minimalizace funkcionálu

Nechť y je aproximace řešení x, platí

F(y) =
1

2
yT Ay − yT b

=
1

2
(x − y)T A(x − y) − 1

2
xT Ax

=
1

2
‖x − y‖2

A − 1

2
‖x‖2

A .

Minimalizace funkcionálu F(y) přes nějaký podprostor ⇔
minimalizace ‖x − y‖A přes ten samý podprostor.

Přirozené měřit vzdálenost aproximace řešení y od x pomocí
energetické normy ‖x − y‖A.
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Problém Ax = b

a minimalizace funkcionálu - shrnutí

Problém:
Ax = b ,

kde A ∈ Rn×n je symetrická, pozitivně definitní.

Ax = b ⇔ F(y) nabývá v x minima.

F(y) a A-norma chyby,

F(y) =
1

2
‖x − y‖2

A − 1

2
‖x‖2

A .

Jak efektivně konstruovat aproximace řešení?
Strategie na hledání minima F(y).
Blížím se k minimu ⇒ blížím se i k řešení Ax = b.
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Hledání minima v daném směru

Dána aproximace minima xk. Nová aproximace

xk+1 = xk + γk pk

kde pk je zvolený směrový vektor a γk vhodný koeficient.

Určení γk: lokální minimalizace F(xk + γpk), ukážeme (cv.)

γk =
pT

k rk

pT
k Apk

,

kde rk ≡ b − Axk je reziduum.

Reziduum lze psát pomocí chyby

rk = b − Axk = A(x − xk) ≡ Ae(k).

Pro reziduum platí (cv.)

rk+1 = rk − γk A pk , rk+1 ⊥ pk ⇔ e(k+1) ⊥A pk .
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Hledání minima v daném podprostoru

Start v aproximaci x0. V každém kroku

xk+1 = xk + γkpk.

Rozepsáním

xk+1 = x0 + γ0p0 + · · · + γkpk .

Pro chyby e(k+1) ≡ x − xk+1 platí

e(k+1) = e(0) − (γ0p0 + · · · + γkpk) .

γk umíme volit. Jak volit směrové vektory? Chceme, aby

‖e(k+1)‖A =

∥

∥

∥

∥

∥

∥

e(0) −
k
∑

j=1

γjpj

∥

∥

∥

∥

∥

∥

A

byla co nejmenší.
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Kdy je ‖e(k+1)‖A minimální?

e(k+1) = e(0) −
k
∑

j=1

γjpj .

‖e(k+1)‖A bude minimální, odečteme-li od e(0) její projekci do

Sk+1 = span{p0, . . . , pk} ,

ortogonalitu měříme energetickým skalárním součinem.
Požadujeme, aby platilo

〈e(k+1), pj〉A = 0 , j = 0, . . . , k .

Vektory ortogonální v 〈·, ·〉A se nazývají sdružené.

Cíl: metoda, pro kterou bude chyba v každém kroku
sdružená ke všem předchozím směrovým vektorům.
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Směrové vektory stačí volit sdružené

Zajímá nás, jak docílit splnění podmínky

〈e(k+1), pj〉A = 0 , j = 0, . . . , k .

Víme, že 〈e(1), p0〉A = 0. V následujícím kroku platí

e(2) = e(1) − γ1p1 ,

díky volbě γ1 je 〈e(2), p1〉A = 0. Chceme 〈e(2), p0〉A = 0, tj.

0 = 〈e(2), p0〉A = 〈e(1), p0〉A − γ1〈p1, p0〉A = γ1〈p1, p0〉A .

Postačující podmínka: 〈p1, p0〉A = 0.

Indukce: Podmínky 〈e(k+1), pj〉A = 0 lze docílit, volíme-li

〈pi, pj〉A = 0 ∀ i 6= j.
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Konkrétní volba směrových vektorů

Krok k: máme A-ortogonální vektory p0, . . . , pk, aproximace
x0, . . . , xk a rezidua r0, . . . , rk, umíme sestrojit xk+1 a rk+1.
Jak rozšiřovat prostor směrových vektorů, jak volit pk+1?

K rozšíření použijeme reziduový vektor rk+1. Volme

pk+1 = rk+1 −
k
∑

j=0

ck,j pj ,

koeficienty ck,i určíme tak, aby 〈pk+1, pj〉A = 0, tj.

ck,j =
〈rk+1, pj〉A

〈pj , pj〉A
, j = 0, . . . , k .
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Shrnují
Tím je formálně definována metoda sdružených gradientů

Dáno A, b, x0

r0 = b − Ax0, p0 = r0

Pro k = 0, . . .

γk =
pT

k rk

pT
k Apk

xk+1 = xk + γk pk

rk+1 = rk − γk A pk

ck,j =
〈rk+1, pj〉A

〈pj , pj〉A
, j = 0, . . . , k

pk+1 = rk+1 −
k
∑

j=0

ck,j pj

Kdy skončí? Nalezne řešení? Lze zapsat efektivněji?
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Metoda sdružených gradientů nalezne řešení
nejvýše po n krocích

Věta

Metoda sdružených gradientů nalezne řešení nejvýše po n krocích.
�

k-tý Krylovův podprostor generovaný maticí A a vektorem v,

Kk(A, v) ≡ span{v, Av, A2v, . . . , Ak−1v} .

Lemma o rovnosti podprostou

Po k krocích sdružených gradientů (s rj 6= 0 v každém kroku) platí

span{p0, . . . , pk} = span{r0, . . . , rk} = Kk+1(A, r0).

�
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Ortogonalita reziduí

e(j) ⊥A span{p0, . . . , pj−1} ⇒

e(j) ⊥A Kj(A, r0) ⇔ rj ⊥ Kj(A, r0) ,

neboť Ae(j) = rj.

Jelikož Kj(A, r0) = span{r0, . . . , rj−1}, platí

rj ⊥ span{r0, . . . , rj−1} .

Metoda sdružených gradientů postupně počítá

A-ortogonální bázi Kj+1(A, r0) (směrové vektory pk),

ortogonální bázi Kj+1(A, r0) (reziduové vektory rk).
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Formálně definovaná CG
Lze zapsat efektivněji?

Dáno A, b, x0

r0 = b − Ax0, p0 = r0

Pro k = 0, . . .

γk =
pT

k rk

pT
k Apk

xk+1 = xk + γk pk

rk+1 = rk − γk A pk

ck,j =
〈rk+1, pj〉A

〈pj , pj〉A
, j = 0, . . . , k

pk+1 = rk+1 −
k
∑

j=0

ck,j pj
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Efektivní implementace

pk+1 = rk+1 −
k
∑

j=0

ck,j pj

Lemma o nulovosti ck,j koeficientů

Pro j = 0, . . . , k − 1 jsou koeficienty ck,j nulové.
�

Označme δk+1 ≡ −ck,k, potom

pk+1 = rk+1 + δk+1pk.

Platí �

γk =
〈rk, rk〉

〈pk, Apk〉 , δk+1 =
〈rk+1, rk+1〉

〈rk, rk〉 .
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Metoda sdružených gradientů

input A, b, x0

r0 := b − Ax0

p0 := r0

for k = 0, 1, 2, . . . do
γk :=

r∗

k
rk

p∗

k
A pk

xk+1 := xk + γkpk

rk+1 := rk − γkA pk

δk+1 :=
r∗

k+1
rk+1

r∗

k
rk

pk+1 := rk+1 + δk+1pk

end for
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Konvergence metody sdružených gradientů
Chyba zapsaná pomocí polynomu

Jak rychle se aproximace x1, x2, . . . přibližují k řešení x?

Kk(A, r0) je generován vektory r0, Ar0, . . . , Ak−1r0 →

v ∈ Kk(A, r0) ⇒ v = q(A)r0 ,

kde q je polynom stupně nejvýše k − 1.

Potom
xk = x0 + q(A)r0 ,

deg q ≤ k − 1, a chybu e(k) ≡ x − xk lze psát jako

e(k) = (x − x0) − (xk − x0)

= e(0) − Aq(A)e(0)

= p(A)e(0) ,

kde p(z) ≡ 1 − z q(z), deg q ≤ k, p(0) = 1.
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Konvergence metody sdružených gradientů
Použití spektrálního rozkladu

Minimalizační vlastnost metody

‖x − xk‖A = min
y∈x0+Kk(A,r0)

‖x − y‖A ,

‖e(k)‖A = min
p∈πk

‖p(A)e(0)‖A ,

kde πk je množina všech polynomů, deg p ≤ k, p(0) = 1.

Uvažujme spektrální rozklad A = QΛQT , a definujme vektor

ω = [ω1, . . . , ωn]T ≡ QT r0 .

Potom �

‖p(A)e(0)‖2
A =

n
∑

j=1

|ωj|2
λj

p(λj)
2 .
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Konvergence metody sdružených gradientů
Dva rozhodující faktory

Dosazením

‖e(k)‖A = min
p∈πk





n
∑

j=1

|ωj|2
λj

p(λj)
2





1/2

.

Konvergence CG závisí na dvou faktorech,

na velikosti projekcí |ωj | vektoru r0 do báze vlastních vektorů,

na rozložení vlastních čísel matice A.

Jak odhadnout veličinu na pravé straně? Z nerovnosti

‖p(A)e(0)‖A = ‖p(A)A1/2e(0)‖ ≤ ‖p(A)‖‖e(0)‖A

plyne
‖e(k)‖A

‖e(0)‖A
≤ min

p∈πk

‖p(A)‖ .
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Konvergence metody sdružených gradientů
Odhad (omezení) pravé strany

‖e(k)‖A

‖e(0)‖A
≤ min

p∈πk

‖p(A)‖ .

Využijeme-li spektrálního rozkladu matice A, dostaneme

‖p(A)‖ = ‖p(QΛQT )‖ = ‖Qp(Λ)QT ‖
= ‖p(Λ)‖ = max

i=1,...,n
|p(λi)| .

a proto
‖e(k)‖A

‖e(0)‖A
≤ min

p∈πk

max
i=1,...,n

|p(λi)| .

Odhad platí ∀ b, dostali jsme min-max aproximační problém
na diskrétní množině bodů (na spektru matice A).
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Konvergence metody sdružených gradientů
Hrubší omezení (méně informativní odhad)

Uvažujme místo diskrétní množiny bodů interval obsahující
všechna vlastní čísla,

min
p∈πk

max
i=1,...,n

|p(λi)| ≤ min
p∈πk

max
λ∈[λ1,λn]

|p(λ)| .

Řešení problému na intervalu → známo, pomocí vhodně
posunutých a škálovaných Čebyševových polynomů, platí

‖e(k)‖A

‖e(0)‖A
≤ 2

(
√

κ(A) − 1
√

κ(A) + 1

)k

,

kde κ(A) = ‖A‖‖A−1‖ = λn/λ1.

Důsledek: Je-li κ(A) malé, CG konverguje rychle.
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Konvergence metody sdružených gradientů
Špatná podmíněnost matice A nemusí implikovat pomalou konvergenci.
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Konvergence závisí na rozložení vlastních čísel.

λj = λ1 +
j − 1

n − 1
(λn − λ1)ρn−j, j = 2, 3, . . . , n − 1.
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Předpodmínění

Kdy je konvergence CG rychlá?

Malé číslo podmíněnosti.

Vhodné rozložení vlastních čísel.

Vektor pravé strany má málo nenulových komponent.

Smysl předpodmínění: modifikace soustavy za účelem
zrychlení konvergence.

Jak modifikovat soustavu Ax = b? Modifikovaná matice
soustavy by opět měla být symetrická a pozitivně definitní.
Nechť C je libovolná regulární matice.

Ax = b ⇒ (C−1AC−T )(CT x) = C−1b .

Máme systém Âx̂ = b̂ se symetrickou pozitivně definitní Â.
Mezi řešeními platí vztah x = C−T x̂.

27



Předpodmínění
Transformace vektorů

CG na Âx̂ = b̂ → získáme aproximace řešení x̂. Potom jsou

xk ≡ C−T x̂k

aproximace původního řešení x.

Navíc platí

‖x̂ − x̂k‖2
Â

= (x̂ − x̂k)T Â(x̂ − x̂k)

= (CT x − CT xk)T C−1AC−T (CT x − CT xk)

= ‖x − xk‖2
A.

Pokud x̂k aproximuje dobře x̂, pak xk dobře aproximuje x.

Zajímají nás vektory vztahující se k původní soustavě
Ax = b, položme pk ≡ C−T p̂k, rk ≡ C r̂k, zk ≡ C−T C−1rk.
Přepišme CG aplikované na Âx̂ = b̂ do nové podoby (cvičení),
ve kterém využijeme právě zavedených vektorů.
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Algoritmus PCG
Předpodmíněná metoda sdružených gradientů

input A, b, x0, C
r0 := b − Ax0

z0 := C−T C−1r0

p0 := z0

for k = 1, 2, . . . do

γ̂k−1 :=
zT

k−1
rk−1

pT
k−1

Apk−1

xk := xk−1 + γ̂k−1pk−1

rk := rk−1 − γ̂k−1Apk−1

zk := C−T C−1rk

δ̂k :=
zT

k
rk

zT
k−1

rk−1

pk := zk + δ̂kpk−1

end for
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Poznámky k předpodmínění

Snadnou manipulací dostaneme

rk = C r̂k = b − Axk .

Nepočítáme inverze matic C a CT ! Platí

zk = C−T C−1rk ⇔ CCT zk = rk ,

řešeníme soustavy lineárních algebraických rovnic

Cy = rk a CT zk = y .
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Předpodmínění
Volba matice C

Požadavky

1 Rychlá konvergence CG aplikované na Âx̂ = b̂, ideálně
Â = C−1AC−T ≈ I.

2 Soustavy Cy = rk a CT zk = y musí být rychle řešitelné,
řádově v O(n) operacích.

3 A řídká ⇒ C musí být řídká (jinak vzrostou paměťové i
výpočetní nároky).

Předpodmínění → v jistém smyslu jde o kombinaci přímých
metod (řešíme soustavy s C a CT ) a iteračních metod (CG).

Soustavy s C a CT je možné řešit i iteračně (dostáváme
tzv. metody s vnější a vnitřní iterací).
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Neúplný Choleského rozklad
Jedna z možností, jak volit matici C

Choleského rozklad A = LLT .

A řídká, L nemusí být řídká, výpočet L často neekonomický.

Idea: aproximovat L dolní trojúhelníkovou C, která je
blízká L a zachovává předepsanou řídkost a

A ≈ CCT ,

použijeme ji k předpodmínění metody sdružených gradientů.

Jeden způsob: položit ci,j = 0 vždy, když je ai,j = 0
(definujeme nenulovou strukturu matice C) → označení
IC(0), v Matlabu CT získáme příkazem cholinc(A,’0’).
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Neúplný Choleského rozklad IC(0)

input A
C := tril(A)
for k = 1 : n do

ck,k :=
√

ck,k

for i = k + 1 : n do
if ci,k 6= 0 then

ci,k :=
ci,k

ck,k

end if
for j = k + 1 : i do

if ci,j 6= 0 then
ci,j := ci,j − ci,k cT

j,k

end if
end for

end for
end for
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Další varianty neúplného Choleského rozkladu

Dovolíme větší zaplnění matice C. Dva základní principy.

Zobecnění IC(0). Nenulovou strukturu C rozkladu IC(1)
určíme z nenulové struktury matice, jež vznikne (formálním)
vynásobením faktorů rozkladu IC(0). Obecně IC(k).

Můžeme vzít v úvahu velikosti prvků matice C, položíme
malé prvky ve spočtené části faktoru rovny nule, velikost
malých prvků vyhodnotíme pomocí zadané tolerance droptol.
Matlabovským příkazem cholinc(A,droptol) získáme matici
CT s prvky ci,j jejichž velikosti jsou zdola omezeny podle

|ci,j | ≥ droptol · ‖aj‖
cii

,

kde aj označuje j-tý sloupec matice A.

34



Volba počáteční aproximace řešení

Vhodná počáteční aproximace řešení může urychlit nalezení
dobré aproximace řešení xk.

Pozor na vnesení irelevantní informace vzhledem k řešení.
Při nevhodné volbě x0 totiž může dojít k tomu, že

‖x − x0‖A ≫ ‖x‖A .

Nutné škálovat nenulovou počáteční aproximaci tak, aby

‖x − αx0‖A ≤ ‖x‖A ,

Platí (cvičení), že pro

α =
bT x0

xT
0 Ax0

je ‖x − αx0‖A minimální.

Není-li k dispozici vhodná počáteční aproximace, volíme
standardně x0 = 0.
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Zastavovací kritéria

Přirozenou konvergenční charakteristikou je

‖x − xk‖A

‖x‖A
,

není obecně možné vyjádřit (neznáme přesné řešení x).
Existují techniky jak tuto veličinu odhadovat.

Normovaná relativní zpětná chyba

β(xk) =
‖rk‖

‖b‖ + ‖A‖‖xk‖ .

udává velikosti nejmenších možných změn vstupních dat A
a b takových, že xk je přesným řešením

(A + ∆A)xk = b + ∆b .

Velikost změn měříme pomocí podílu norem ‖∆A‖
‖A‖ a ‖∆b‖

‖b‖ .
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Zastavovací kritéria

Třetí charakteristika
‖rk‖
‖b‖

reprezentuje relativní velikost změny pravé strany,

Axk = b − rk = b + ∆b .

Výběr zastavovacího kritéria i velikosti tolerance tol by měl
být vždy propojen s řešeným problémem reálného světa.
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Vliv konečné aritmetiky

V CG ortogonalizujeme vznikající rk pouze proti rk−1,
pk A-ortogonalizujeme pouze proti pk−1. Ortogonalita proti
ostatním vektorům plyn ze symetrie A, lze očekávat, že
v aritmetice s konečnou přesností nebude zachována.

Vliv konečné aritmetiky je značný a nemůže být ignorován.

Příklad, vykreslíme ztrátu ortogonality mezi r0, . . . , rk−1

měřenou pomocí
‖I − V T

k Vk‖F ,

Vk → sloupce tvoří normované reziduové vektory rj/||rj‖.
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Vlivem konečné aritmetiky
Zpoždění konvergence, ztráta ortogonality, hladina limitní přesnosti
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Analýza chování CG v konečné aritmetice
Předmětem mnoha prací

Paige 1972 – ztráta ortogonality v Lanczosově metodě.

Greenbaum a Strakoš – na výpočty FP CG aplikované na
systém Ax = b lze hledět jako na výpočty přesné CG
aplikované na jiný systém Ãx̃ = b̃, kde Ã je symetrická
pozitivně definitní matice.

Ve výše uvedeném smyslu nahrazení původní úlohy Ax = b
větší úlohou Ãx̃ = b̃ zůstávají některé teoretické vlastnosti
CG zachovány i v konečné aritmetice.

Vlivem konečné aritmetiky dochází ke zpoždění
konvergence, případně k jejímu zastavení na hladině
maximálně dosažitelné přesnosti.
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Cvičení

Ukažte, že funkce g(γ) = F(xk + γpk) nabývá minima pro

γ =
pT

k rk

pT
k Apk

.

a že platí
rk+1 ⊥ pk .

8.2 Ukažte, že pro směrové vektory počítané metodou CG platí
pT

j pi > 0. Na základě této vlastnosti dokažte:
1 Euklidovská norma chyby ‖x − xk‖ v metodě CG je

monotónně klesající.
2 Je-li x0 = 0, potom je ‖xk‖ ostře rostoucí.

8.3 Uvažujme CG algoritmus pro řešení systému Âx̂ = b̂.
Definujme xk ≡ C−T x̂k , pk ≡ C−T p̂k, rk ≡ C r̂k a
zk ≡ C−T C−1rk. Ukažte, že pomocí nově definovaných
vektorů lze algoritmus přepsat do podoby algoritmu PCG.
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Cvičení

8.5 Uvažujme soustavu Ax = b se symetrickou pozitivně definitní
maticí a počáteční aproximaci x0. Ukažte, že ‖x − αx0‖A je
minimální pro

α =
bT x0

xT
0 Ax0

Ukažte, že A-norma chyby je monotónně klesající a že platí

‖x − xk‖2
A = γk ‖rk‖2 + ‖x − xk+1‖2

A.

Ukažte, že pro celé kladné číslo d platí,

‖x − xk‖2
A =

k+d−1
∑

j=k

γj ‖rj‖2 + ‖x − xk+d‖2
A.
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