Metoda sdruzenych gradientf



Poznamka

A-skalarni soucin, A-norma (energetickd norma)

o Standardni euklidovsky skalarni soucin vektorii
n
i=1
o A € R"™" je symetricka, pozitivné definitni, definujme

(@, y)a =y Az, |zla= (@) 2.

o Z normality a z pozitivni definitnosti plyne

)% = 1A 2%,



Problém Az = b

a minimalizace funkcionalu

A € R™™ je symetricka, pozitivné definitni.

o Data A, b, definujme kvadraticky funkcional

1
Fly) = inAy—yTb, F:R*"'—R.

o Plati
VF(y) = Ay —b.

F(y) nabyvd minima v bodé VF(y) =0, tj. Ay —b=0.

Ar=b <« F(z) nabyva v z minima.



Problém Az = b

a minimalizace funkcionalu

o Necht y je aproximace reseni x, plati

1
Fly) = 3 y Ay —y'b
= Sy A —y) - " A

1 1
= Slle A~ 5llal}.
o Minimalizace funkcionalu F(y) ptes néjaky podprostor <
minimalizace ||z — y||4 pFes ten samy podprostor.

o Ptirozené mérit vzdalenost aproximace feSeni y od x pomoci
energetické normy ||z — y|| 4.



Problém Az = b

a minimalizace funkciondlu - shrnuti

Problém:
Ax =0,

kde A € R™™ je symetricka, pozitivné definitni.
°
Az =b < F(y) nabyva v z minima.

o F(y) a A-norma chyby,
1 1, 2
F&) = Sl yld -5kl
o Jak efektivné konstruovat aproximace reseni?

Strategie na hledani minima F(y).
BliZim se k minimu = bliZim se i k fedeni Az = b.



Hledani minima v daném sméru
o Daéna aproximace minima x;. Nova aproximace
Tk4+1 = Tk + V& Dk
kde pi je zvoleny smérovy vektor a 7y vhodny koeficient.

o Uréeni i: lokaIni minimalizace F(zj + vpi), ukdzeme (cv.)

Yk = p;‘frk
pLApr’
kde rp = b — Axy je reziduum.

o Reziduum lze psat pomoci chyby
rp=0— Axp = A(x — 1) = Ae®),

o Pro reziduum plati (cv.)

(k+1)

The1 =Tk — Ve Ak, Th+1 LD & e Lapg.



Hledani minima v daném podprostoru

o Start v aproximaci xg. V kazdém kroku

Tli1 = Tk + VEPk-

o Rozepsanim

Tk+1 = To + YoPo + -+ + VkPk -

k+1)

o Pro chyby el =2 — T4 platf

e = e — (qopg + -+ + i) -

o 7, umime volit. Jak volit smérové vektory? Chceme, aby

k
He(kH)HA = ||e@ - Z%’pj
j=1 A

byla co nejmensi.



Kdy je ||e® V]| 4 minimalni?

(k—i—l Z Yp; -

o ||e®® 1| 4 bude minimalni, odeteme-li od e jeji projekci do

Sk:-i—l = Span{p07 s 7pk’} )

ortogonalitu méfime energetickym skalarnim soucinem.
Pozadujeme, aby platilo

<€(k+1)>pj>A:0> jzoaak

o Vektory ortogonalni v (-,-) 4 se nazyvaji sdruzené.

o Cil: metoda, pro kterou bude chyba v kazdém kroku
sdruzena ke vSem predchozim smérovym vektorim.
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Smérové vektory staci volit sdruzené

o Zajima nas, jak docilit splnéni podminky
<€(k+1)7pj>A:0, j=0,...,k.
o Vime, ze () po) 4 = 0. V nasledujicim kroku plati
e® = ¢l — 71P1
diky volb& v je (@), p1)4 = 0. Chceme (e?) pg) 4 = 0, tj.
0= <€(2)ap0>A = <€(1)7PO>A —71(P1,P0) A = Y1{P1,P0) A -

Postacujici podminka: (pi,po)a = 0.

o Indukce: Podminky (e*+1) p:) 4 = 0 Ize docilit, volime-Ii

(pipj)a=0  Vi#j.
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Konkrétni volba smérovych vektor

o Krok k: madme A-ortogonalni vektory pg, ..., pr, aproximace
Zo, ..., T a rezidua ro, ..., T, umime sestrojit Tx4+1 @ rg41-
Jak rozsitovat prostor smérovych vektord, jak volit py11?

o K rozsiteni pouzijeme reziduovy vektor 7, 1. Volme
k
Pk+1 = Tk+1 — Z Ck,j Pj 5
=0

koeficienty ¢y ; uréime tak, aby (pry1,pj)a =0, tj.

P (Tht1,D05) A 0 f
7 (pipji)a e
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Shrnuji

Tim je formélné definovdna metoda sdruzenych gradienti

Déano A, b, xg
ro = b— Axg, po = 1o
Prok=0,...
Tk = p;{rk
pi Apr

Tl = Tk + V& Pk
Thel = Tk — Vi ADg
r .
rj = <k+l>p]>A j=0,.. .k
(pj,pj)a
k

Pk+1 = Tk+1 — Z Ck,j Dj
Jj=0

Kdy skonci? Nalezne feSeni? Lze zapsat efektivnéji?
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Metoda sdruzenych gradient(i nalezne reseni

nejvyse po n krocich
Véta

Metoda sdruzenych gradient(i nalezne feSeni nejvyse po n krocich.

>

k-ty Kryloviiv podprostor generovany matici A a vektorem v,

ICk(A) U) = Span{v, AQ_}’ A2'U, . ’Ak—lv} ]

Lemma o rovnosti podprostou

Po k krocich sdruzenych gradienti (s r; # 0 v kazdém kroku) plati

span{po, ..., pr} = span{rg,...,rx} = Krr1(4,10).
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Ortogonalita reziduf

o e\ 14 span{pg,...,pj_1} =
el 1,4 Ki(A,rg) &  1rj LKj(A 1),

nebot Aell) = T

o Jelikoz Kj(A, 1) = span{rg,..., 1}, plati

r; L span{rg,...,7j_1}.

o Metoda sdruzenych gradientil postupné pocita

o A-ortogonalni bazi ;11 (A, ry) (smérové vektory py),

2 ortogonalni bazi K;;1(A,r) (reziduové vektory 7).
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Formalné definovana CG

Lze zapsat efektivnéji?

Déano A, b, xg
ro =b— Axg, po = 1o
Prok=0,...
Tk = pf?"k
pi Apy,

Tl = Tk + V& Pk

Th41 =Tk — Yk ADg

=
/ (Pj pj)A

k
Pk+1 = Tk4+1 — Z Ck,j Pj
j=0

N (Tk+1>pj>A i—0,..

Lk
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Efektivni implementace
k
Pk+1 = Tk+1 — Z Ck,j Dj
j=0

Lemma o nulovosti ¢ ; koeficient

Pro j =0,...,k —1 jsou koeficienty c;, ; nulové.

o Oznalme 6p41 = —cy i, potom

P41 = Tht1 + Op+1Dk-
o Plati &

<Tk, Tk>
= —, 5 =
b (P, Apr) s

(Tk+1, 7”k+1>

<rk7rk>
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Metoda sdruzenych gradientfi

input A, b, zg

o :=b— Axg

bo :=To

for k=0,1,2,... do

o _TETk
Tk = pEApy
Th41 = Tk + YeDk
Thyl =Tk — VA DL
TE L Th41

Op+1 1= 7’“7:%%
Ph+1 = Tkl + k1D

end for
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Konvergence metody sdruzenych gradienti

Chyba zapsand pomoci polynomu
o Jak rychle se aproximace 1,9, ... priblizuji k reseni 7

o Ki(A,1g) je generovan vektory 1o, Arg, ..., A lrg —
veKp(Arg) = v=q(l)ro,

kde ¢ je polynom stupné nejvyse k — 1.
o Potom
r =m0 + q(A)ro,
degq < k —1, a chybu e®) = 2 — z, Ize psat jako

B = (z— o) — (zk — x0)
= e — 4q(4)e®

= p(A)e?,

kde p(z) =1 — zq(z), degq < k, p(0) = 1.
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Konvergence metody sdruzenych gradienti
Pouziti spektralniho rozkladu

o Minimalizacni vlastnost metody

r—x = min xr —
le—ailla = min eyl
(k) — : (0)
le®a = min [p(4)e®]a,

kde 7 je mnozina vSech polynomi, degp < k, p(0) = 1.
o Uvazujme spektralni rozklad A = QAQ”, a definujme vektor

w=[wi,...,wn]t =QTrg.

Potom &

2
w
Ip(4)e®2 Z’J’
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Konvergence metody sdruzenych gradienti

Dva rozhodujici faktory

o Dosazenim

n ‘ ‘2 1/2
. w;
€]l = min (Z )\Jj p(/\j)Q) ~
j=1

o Konvergence CG zavisi na dvou faktorech,

o na velikosti projekci |w;| vektoru ro do baze vlastnich vektord,

o na rozloZeni vlastnich &isel matice A.

o Jak odhadnout veli¢inu na pravé strané? Z nerovnosti
Ip(A)e® L = p(A)AY2eO | < flp(A)]l1e® .4

plyne
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Konvergence metody sdruzenych gradienti

Odhad (omezeni) pravé strany

Je®a _
< Al .
[, < minlp()]

o Vyuzijeme-li spektralniho rozkladu matice A, dostaneme

A = [p(QAQT = Qp(A)QT]
= Pl = max |p(3)-

a proto

le®™a _
< -
[e0], = min max |p()]

o Odhad plati V b, dostali jsme min-max aproximacni problém
na diskrétni mnoziné bodi (na spektru matice A).
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Konvergence metody sdruzenych gradienti

Hrubsi omezeni (méné informativni odhad)

o Uvazujme misto diskrétni mnoziny bodi interval obsahujici
vSechna vlastni ¢&isla,

i Ai)| < mi M-
P e, OOT S i e O

o Reseni problému na intervalu — znamo, pomoci vhodné
posunutych a Skalovanych CebySevovych polynomii, plati

Je®la _ o (Ve 1Y
[e@a = "\ +1)

kde r(A) = [IA[[[JATH] = An/Ar.

o Dasledek: Je-li k(A) malé, CG konverguje rychle.
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Konvergence metody sdruzenych gradienti

Spatna podminénost matice A nemusi implikovat pomalou konvergenci.

Vliv rozlozeni vlastnich cisel na konvergenci CG

relativni A-norma chyby

0 10 20 30 40 50
pocet iteraci

Konvergence zavisi na rozlozeni vlastnich Cisel.

. |
Aj =A1+iﬁ<kn—xl)pn‘ﬂ, j=2.3,...,n—1

25



v 7

Predpodminéni

o Kdy je konvergence CG rychla?
o Malé &islo podminénosti.
o Vhodné rozlozeni vlastnich Cisel.
o Vektor pravé strany ma mélo nenulovych komponent.

o Smysl predpodminéni: modifikace soustavy za tcelem
zrychleni konvergence.

o Jak modifikovat soustavu Az = b? Modifikovani matice
soustavy by opét méla byt symetrickd a pozitivné definitni.
Necht C je libovolna regularni matice.

Az=b = (C'ACTT)CTz) = C™'b.

Mame systém Az =D se symetrickou pozitivné definitni A.

Mezi feSenimi plati vztah = C~ 1%,
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Predpodminéni
Transformace vektorii

o CG na Az = b — ziskdme aproximace feseni Z. Potom jsou

= C T3y
aproximace puvodniho feSeni .

o Navic plati
= (2 —a)" A — )
= (CTz - CTxp)TetACTT(CT 2 — CTay)

= [lz — @i

Pokud Zj, aproximuje dobte &, pak zj; dobfe aproximuje x.

o Zajimaji nas vektory vztahujn’cn' se k pavodni soustavé
Ax = b, polozme p, = C~ pk, r,=Cfy, 2, =C TC 1y
Prepisme CG aplikované na A& = b do nové podoby (cwcem)
ve kterém vyuZijeme pravé zavedenych vektor(.
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Algoritmus PCG

P¥edpodminéna metoda sdruzenych gradient(

input A, b, xg, C
rog :—= b<—-/4$0
Zo:zzcj_T(j_lro

Po ‘= 20
for k=1,2,... do
T
A o Zk_lrk—l
r)/k_l ’ pZ‘,lApk—l
Tk = Tk—1+ Vk—1Pk—1
Tk = Th—1 — Ye—1A4DPr—1
2, = C~TC 1y,
e ZTT‘
Op 1= —pkk
Zp—1Tk—1

Dk = 2k + OkPr—1
end for



v 7

Poznamky k predpodminéni

o Snadnou manipulaci dostaneme
r, = CfL=0b—Ax.
o Nepocitame inverze matic C' a CT'! Plati
g=CTCcr, < CCTz =1,
fesenime soustavy linedrnich algebraickych rovnic

Cy=r, a Clz =y.
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v 7

Predpodminéni
Volba matice C'

o Pozadavky

@ Rychla konvergence CG aplikované na Az = b, ide4Iné
A=C1AC T~ I
@ Soustavy Cy =1 a CTz, =y musi byt rychle feSitelné,
fadové v O(n) operacich.
@ A ¥idka = C musi byt Fidka (jinak vzrostou pamétové i
vypocetni naroky).
o Predpodminéni — v jistém smyslu jde o kombinaci pfimych
metod (Fe$ime soustavy s C a C7T) a iteraénich metod (CG).
o Soustavy s C' a CT je mozné Fesit i iteraéné (dostavame
tzv. metody s vnéjsi a vnitfni iteraci).
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Nelplny Choleského rozklad

Jedna z moznosti, jak volit matici C

©

Choleského rozklad A = LIT.

©

A tidka, L nemusi byt ridka, vypocet L ¢asto neekonomicky.

©

Idea: aproximovat L dolnfi trojihelnikovou C, ktera je
blizkd L a zachovava predepsanou fidkost a

A~CCT,

pouzijeme ji k predpodminéni metody sdruzenych gradientd.

©

Jeden zplisob: polozit ¢; ; = 0 vzdy, kdyz je a; ; =0
(definujeme nenulovou strukturu matice C') — oznacenf{
IC(0), v Matlabu C7T ziskdme ptikazem cholinc(A,’0’).

32



Nelplny Choleského rozklad 1C(0)

input A
C:=1tril(A)
for k=1:ndo
Ckk = m
fori=k+1:ndo
if ¢, . # 0 then
Cik
Cik = o)
end if
forj=k+1:ido
if Gij # 0 then
Cij =6Cij—Cik C;:k
end if
end for
end for
end for
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Dalsi varianty netplného Choleského rozkladu

o Dovolime vétsi zaplnéni matice C. Dva zakladni principy.

2 Zobecnéni IC(0). Nenulovou strukturu C' rozkladu 1C(1)
uréime z nenulové struktury matice, jez vznikne (formalnim)
vynasobenim faktori rozkladu IC(0). Obecné IC(k).

o Mdizeme vzit v Gvahu velikosti prvk matice C, polozime
malé prvky ve spoctené Casti faktoru rovny nule, velikost
malych prvkid vyhodnotime pomoci zadané tolerance droptol.
Matlabovskym pfikazem cholinc (A,droptol) ziskdme matici
CT s prvky ci,j jejichz velikosti jsou zdola omezeny podle

lci ;| > droptol- lasll 7
Cis

kde a; oznacuje j-ty sloupec matice A.
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Volba pocatecni aproximace reseni

o Vhodna pocatecni aproximace feseni maze urychlit nalezeni
dobré aproximace feseni xy.

o Pozor na vneseni irelevantni informace vzhledem k feSeni.
P¥i nevhodné volbé z( totiz mize dojit k tomu, ze

[z —zolla > [lzfla
o Nutné skalovat nenulovou pocatecni aproximaci tak, aby
[l — axolla < [lzfla,
Plati (cviceni), ze pro
oo D0
— afAxg
je [z — axo|| 4 minimalni.

o Neni-li k dispozici vhodna pocate¢ni aproximace, volime
standardné xy = 0.
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Zastavovaci kritéria
o Ptirozenou konvergencni charakteristikou je

[z — x|l a
[l]|4

)
neni obecné mozné vyjadFit (nezndme presné feseni ).
Existuji techniky jak tuto veli¢inu odhadovat.

o Normovana relativni zpétna chyba

Il
Blay) = ——EL___
) = BT ATzl

udava velikosti nejmensich moznych zmén vstupnich dat A
a b takovych, Ze xj. je presnym FeSenim
(A+ AA)xp =b+ Ab.

Velikost zmén méfime pomoci podilu norem ””AA‘Lh” a %.
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/Zastavovaci kritéria

o Treti charakteristika
[EgAl

]

reprezentuje relativni velikost zmény pravé strany,
Az =b—rp, =b+ Ab.

o Vybér zastavovaciho kritéria i velikosti tolerance tol by mél
byt vzdy propojen s feSenym problémem realného svéta.
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Vliv konecné aritmetiky

o V CG ortogonalizujeme vznikajici r; pouze proti r5_1,
pi A-ortogonalizujeme pouze proti pi_1. Ortogonalita proti
ostatnim vektoriim plyn ze symetrie A, lze ocekavat, ze
v aritmetice s kone¢nou presnosti nebude zachovana.

o Vliv konecné aritmetiky je znacny a nemiize byt ignorovan.

o Priklad, vykreslime ztratu ortogonality mezi rg, ..

-3 Tk—1
mérenou pomoci

1= Vi Vel

Vi, — sloupce tvofi normované reziduové vektory 7;/||7;|.
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Vlivem konecné aritmetiky

Zpozdéni konvergence, ztrata ortogonality, hladina limitni presnosti

10

-5

10

100
pocet iteraci

\\\\\ =%, |
—lixxll,
_\Jr
IRAAE
Vil
AN
150 200
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Analyza chovani CG v konecné aritmetice

Pfedmétem mnoha praci

o Paige 1972 — ztrata ortogonality v Lanczosové metodé.

o Greenbaum a Strako$ — na vypocty FP CG aplikované na
systém Ax = b |ze hledét jako na vypocty presné CG
aplikované na jiny systém Az = b, kde A je symetricka
pozitivné definitni matice.

o Ve vySe uvedeném smyslu nahrazeni plvodni dlohy Az =b
vétsi tlohou AZ = b z(stavaji nékteré teoretické vlastnosti
CG zachovany i v kone¢né aritmetice.

o Vlivem konecné aritmetiky dochazi ke zpozdéni

konvergence, pripadné k jejimu zastaveni na hladiné
maximalné dosazitelné presnosti.



Cviceni
o Ukazte, ze funkce g(y) = F(x + vypk) nabyva minima pro

_ PiTh
pi Apy,

a ze plati
Tht1 L Die -
8.2 Ukazte, ze pro smérové vektory pocitané metodou CG plati
p]Tpi > 0. Na zakladé této vlastnosti dokazte:

@ Euklidovska norma chyby ||z — x| v metodé CG je
monoténné klesajici.
@ Je-li xg =0, potom je ||xy|| ostfe rostouci.

8.3 Uvazujme CG algoritmus pro feseni systému Az =b.
Definujme 2, = C T4y, pp = C Tpp, rp = C 7 a
2, = C~TC~ 11y, UkaZte, Ze pomoci nové definovanych
vektorl Ize algoritmus prepsat do podoby algoritmu PCG.
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Cviéeni

8.5 Uvazujme soustavu Az = b se symetrickou pozitivné definitni
matici a po¢ateéni aproximaci xg. UkaZte, Ze ||z — axo||4 je
minimalni pro

bT.TQ
T
xy Az

o Ukazte, ze A-norma chyby je monoténné klesajici a ze plati

o=

o — zkl% = e Irell? + llz — zppa |5
UkaZte, ze pro celé kladné Cislo d plati,
k+d—1

le =il =D 5 llrsll® + lle — ziral 3
j=k
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