Arnoldiho a Lanczosova metoda



Castecny problém vlastnich Cisel

o Ne vzdy je potfeba (a nékdy to neni ani technicky mozné)
nalézt celé spektrum dané matice (velké fidké matice).

o Uloze, ve které chceme aproximovat pouze malou cast
spektra, budeme fikat ¢astecny problém vlastnich Ccisel.

o Dvé zakladni metody,

Arnoldiho metoda — obecné matice
Lanczosova metoda — hermitovské matice.

o Stadi, kdyz jsme schopni realizovat nasobeni matice
vektorem.



Metody Krylovovych podprostori

o Dana ctvercova regularni A € R™*", startovaci vektor v.

o Velké fidké matice — jedinou operaci, kterou jsme schopni s
A provést, je nasobeni Av, A nemusi byt dana explicitné.

o Vyuziti této operace: budovani posloupnosti podprostort
Ki(A,v) = span{v, Av, A%v, ..., AF "1},

Krylovovy podprostory.

o Problém (FeSeni soustavy ¢i problém vlastnich &isel)
projektujeme na tyto podprostory a tim ziskdme postupné
aproximace reseni.



Metody Krylovovych podprostori

Ptiklad - systém lineérnich rovnic

o Ax = b, hleddme aproximaci g
X € /Ck(A, b).
o Aby z; jednoznacné — nutné predepsat k£ podminek.

o Definujme k-té reziduum vztahem rp = b — Axy,

TR € Kk(A, b) = r,eb+ AKk(A, b).
Pokud [|rg]| = 0 = xj je presné Feseni.

o Logicky pozadavek: ||rg|| co nejmensi v ramci danych omezen{
< ortogonalni projekce b na AK(A,b),

re L AKR(A,b).



Metody Krylovovych podprostori

Systém lineérnich rovnic

o Pokud
dim(Ky(A, b)) = k,

pak je zj urceno jednoznacné.

o b projektujeme do stale vétsiho a vétsiho podprostoru a
norma rezidua se zmensuje.

o Roste-li dimenze KCi(A, b), dostadvame pro k =n
AKL(A,b) =R",
Potom je

mlR" = r,=0 = x,=u=x.



Metody Krylovovych podprostori

Ptiklad - problém vlastnich ¢isel Ay = Ay

o Vlastni vektor a pfislusné vlastni ¢&islo (vlastni par) budeme
aproximovat dvojici (y;, it;) tak, aby

yj € Ki(A,v), Ayj — pyy; L Kr(A,v),

v je dany startovaci vektor.

o Pokud dim Ky (A,v) =k a je-li A diagonalizovatelna, potom
existuje pravé k part (y;, ;t;) spliujici tuto podminku —
ziskame aproximace k vlastnich Cisel a vektord.

o Roste-li dimenze Krylovovych podprostor(i, ziskame pro
k = n vSechny vlastni vektory a vlastni ¢&isla matice A.



Dimenze Krylovovych podprostort

Ki(A,v) = span{v, Av, A%v,..., AF"1v}

o Maximalni dimenzi, jez mohou Krylovovy podprostory
generované matici A a vektorem v dosdhnout, budeme
nazyvat stupném v vzhledem k A,

d(A,v) = min{k; dim (A, v) = dim Ki41(A4,v)}.

o d(A,v) je dimenze nejmensiho Krylovova podprostoru
Kr(A,v) invariantniho vzhledem k nasobeni matici A

x € Kr(Av) = Az € K(A,v).

d(A,v) je omezeno stupném minimalniho polynomu.



Baze Krylovovych prostori

o Abychom mohli s Krylovovymi prostory pracovat —
potiebujeme rozumnou bazi.
Béze v, Av, ..., A*~1v neni vhodna k vypoétim (3patna
podminénost), viz mocninnd metoda.

o Pro efektivni a numericky stabilni praci je nutné umét pocitat
dobfe podminénou bazi (idealné ortogonalni).

o Chceme bazové vektory vy, ..., v, podprostoru Ki(A,v),
které vyhovuji podminkam

vit1 € Kiy1(A,v) \ Ki(A,v), span{vi,...,v;} = K;i(A4,v)

Bez Gjmy na obecnosti |v;|| =1, 1 <i < k.



Arnoldiho algoritmus

Zakladni myslenka
o Necht vy, ..., v splnuji
vit1 € Kit1(A4,0) \ Ki(A,v),
span{vy,...,v;} = Ki(Av), i=1,...,k—1,
a necht k < d(A,v).

o Potom
Avg € Kir1(A,v) \ Kr(A,v).

o ldea projekce,

k

w = Avy — Y h; i, Vg1 = —,
= [Jwl]

kde h; ;, jsou vhodné zvolené koeficienty.

© V1,...,Vk, Ug+1 SPINuUji opét danou podminku.
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Podrobné;ji
o Krok 1:

v
V= 7.
o]

o Krok 2: urdi w tak, aby w 1 v; a normuj

w = Av; — hy vy, hiy = (Avi,v1)

w
ho1 = ||lw Vg = ——
2,1 = [lwl, 2= oy
Avy = hl’lvl + h2711)2.
o Krok k +1:
k
w = Av, — Zhi,kvia hi i = (Avk, vs),
i=1
w
hig1k = |lwl|, Ukl = -
k+1.k

Avy, = hy g1 + hogvo + - - + hy gk + Rt g Vk41-
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Arnoldiho algoritmus

Algebraicka formulace

tj.

Avl
Avs

Avy,

VkE[Ul,...

= hygvr+hoiva,

= hipgvi +hogve+ h3avs,

= higvr + -+ Ak Uk + Agg1 g Vet

AV,

,Uk],

T
Vi Hy + hgg1k Vet €k s
hip hio ... hyg

hoi heo ...  hay
Hy = . .
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Arnoldiho algoritmus
Algorimus poditajici ortogonalni bazi Krylovova prostoru, ktery
jsme pravé odvodili nazveme Arnoldiho algoritmem:.

1: input A, v

2: V1 = ﬁ

3: fork=1,2,... do
4.  w= Av

5: fori=1:%k do
6: h@k = (w, Ui>
7: w=w — hi,k: Vi
8: end for

9 g1k = [[w]

10: Vi+1 = #Lk

11: end for

AV, = ViHg + hgy1k Ukt €f -



Ukonéeni Arnoldiho algoritmu

o K ukonceni Arnoldiho algoritmu dochazi tehdy, je-li
hi+1 k=0, tj. [Jw]| = 0 a plati

k
A’Uk = Z hi,kvi.
i=1
o Jinak feCeno, Avy, € Ki(A,v) a plati
ICk(A7 'U) - Span{vl, ceey Uk}
= span{vi,...,vg, Avg} = Krr1(A,v)
a tudiz je k = d(A,v).

o Arnoldiho algoritmus najde ortogonalni bazi celého
invariantniho prostoru KC4(A,v).
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Arnoldiho algoritmus pocita po sloupcich QR rozklad

o Arnoldi <+ Gram-Schmidt. Lze na Arnoldiho algoritmus
nahlizet jako na QR rozkladu néjaké matice?

o Matici [Avy, ..., Avg| rozsifime o prvni sloupec vy, plati
1 hl,l h172 hl,k

h2,1 h2’2 . h27k

['Ul,A’l}l,...,AUk] = Vk-i—l ) )

hig—1  hig
Pk k

o Arnoldiho algoritmus pocita postupné po sloupcich QR
rozklad matice [v1, Avy,. .., Avg], kterd na pocatku vypocltu
neni zndma. Tato matice vznikd postupné po sloupcich.



Arnoldiho algoritmus

a vlastni ¢isla matice A

o Vektory pocitané Arnoldiho algoritmem spliuji
AVy = Vi Hy, + hyy1 k0k 164
aprok=d(A,v) je hgy1,4 =0,
AVy = VyH,.
o Necht plati Hyy = py, y # 0, potom

AVagy=VaHay =pVay.
N ~~

T T

o Mnozina vlastnich cisel H; je podmnoZinou vlastnich Cisel
A, vlastni vektory A lze spodist z vlastnich vektord Hy.

o A reguldrni = H, regularni.
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Arnoldiho algoritmus

a aproximace vlastnich &isel matice A

o Pro k < d je hy 41 # 0. Vlastni ¢isla a vektory Hj, poskytuji
pouze aproximace vlastnich cCisel A. Pfendsobenim vztahu y
(vlastni vektor H},) dostavame

AViy = ViHpy+ hi1 kves1ely

= WViy + his1kUkr1eL Y.
o Jinak feceno, vektor x = Viy splnuje
Az — px = hyi1 gvks1ery
tj. reziduum Az — px je nasobkem vy, 1,

| Az — pz|| = hir1k et yl-
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Arnoldiho metoda

o Arnoldiho metoda na vypocet aproximaci vlastnich Cisel
vyuziva Arnoldiho algoritmus k vypoctu matice Hy. Poté
spocte vlastni Cisla a vlastni vektory y matice Hy, Viy je pak
aproximace vlastniho vektoru A.

o Pro obecnou nesymetrickou matici je problematické Fici
cokoliv o blizkosti spoctené aproximace vlastniho Cisla i k
nejbliz8imu vlastnimu ¢islu matice A, vime jen

| Az — p| = his1k et yl.

o Vlastni ¢isla H, — Ritzova disla,
vektory Viy — Ritzovy vektory.
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Arnoldiho algoritmus

aplikovany na symetrickou matici

o Arnoldiho algoritmus na symetrickou regularni A,
AVj, = Vi Hy + hyi1 gk 164 -
o Prendsobme matici VkT, ortogonalita sloupcl, symetrie,
VLAV, = Hy,
Hy =ViIAV, = VIATV, = (Vi Avi)T = HE.
o Hj, je symetricka, horni Hessenbergova = tridiagonalni,

(a1 B i

B2 a2 3

B

22



Lanczosiiv algoritmus

o Plati
AVy = Vi Ty, + Bri1vii1€p -

Rozepisme po sloupcich,
Bj-l—lvj-&—l = AU]' — V5 — ﬁjvj_l, j = 1, NN k.

o Ortogonalni bazi Krylovova prostoru Ize pro symetrickou
matici A poditat tficlennou rekurenci.

o fBj+1 je normalizaéni koeficient (vzdy kladny), a; uréime z
podminky v; 1 L vj, plati

Oéj = <A1}j, ’Uj>.

Ortogonalita k ostatnim vektoriim baze je automaticky
splnéna diky symetrii matice A.
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Lanczosiiv algoritmus

input A, v
v9:=0
vr == v/|[v]|
B1:=0

fork=1,2,... do
w = Avg — Brvg—1

Q= vw
W= W — OV
Brr1 = |Jw]|

V1 = W/ Bt
end for
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Lanczosova metoda

na vypocet aproximaci vlastnich Cisel

Qo

Qo

©

©

Lanczosova metoda = Arnoldiho metoda pro symetrickou A.

Necht k£ < d a necht (i, y) je vlastni par Ty, Try = pny,
= Vyy.

Protoze volime y tak, aby |ly|| =1, jei ||z] = 1.
Z AV, = ViTi + Brs1ve+1€f, plyne

Az = pix + B 1V 164 Y
a pro normu rezidua plati
1Az — p|| = Bra le yl-

Diky symetrii matice A lze tento vztah dale analyzovat.
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Analyza Lanczosovy metody

Blizkost aproximace

o A je symetricki — A = UAUT, kde U je ortogonalni a A je
diagonalni realna,

| Az — ual| = [UAUTz — ]| = AU 2 — p U]

o Oznaéme w = Uz, plati

Az — pzl| = [[(A— pl)w]]
> min|; — gl
j
= win |y, — gz
]
o Jinak reéeno,
. Az — pa| letyl
min [A; — pf < = Bt -
N B4l k4]
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Analyza Lanczosovy metody

Pfesna versus kone¢nd aritmetika
o Pomodci d&isla
T
Br+1 fek ?/|

Ize kontrolovat kvalitu prislusné aproximace .

o P¥i odvozeni odhadu jsme pouzili vlastnost

1=yl = ¥V Viy = |z,

neplati obecné pFi pocitani v kone¢né aritmetice, ztrata
ortogonality mezi sloupci Vi, miZe zpisobit ||y| > ||z||.

o Christopher C. Paige — netrivialni analyza, ukazal ze

min [ \; — 1| < Brss lefyl
J

plati i pro vypoctené hodnoty v kone¢né aritmetice (az na
moznou malou nepfesnost ~ u), navzdory ztraté ortogonality
a velikosti ||z||.
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Jacobiho matice

v Lanczosové algoritmu
o Matici

B2 s B3
T — |

B
L Br g |

kdea; e R, i=1,...,kap;>0,i=2,...,k nazveme
Jacobiho matici.

o Tyto matice se v priibéhu minulého stoleti staly stfredem
zajmu diky tomu, Ze se vyskytuji v obecné teorii
ortogonalnich polynomi a Gaussovy kvadratury.

o Vyskyt Jacobiho matic v Lanczosové algoritmu naznacuje
mozny blizky vztah mezi timto algoritmem a zminénou teorii.
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Nékteré vlastnosti Jacobiho matic

r s

o Vlastni cisla Jacobiho matic se ostie prokladaji.

o VSechna lezi pro k < d v otevieném intervalu (A, \;).

o Pro k < d jsou vlastni &isla T}, riizna od vlastnich cisel A.
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Cviceni
7.5 Uvazujme charakteristické polynomy Jacobiho matic Jj,
xoA) =1, xxg(A)=det(A\l —J), k=1,2,....
Ukazte, ze plati xo =1, x1=X—aq,

Xk(/\) = ()‘ - Oék)kal(A) - /BI%Xk72(/\)7 k=23,....

7.7 Ukazte pomoci predchozi rekurence, ze dvé po sobé jdouci
Jacobiho matice nemohou mit stejna vlastni Cisla.

7.8 Dokazte nasledujici vztah mezi vy, generovanymi Lanczosovym
algoritmem s pocatecnim vektorem v a charakteristickymi
polynomy xx(\) odpovidajicich Jacobiho matic:

1

_1(Awv, k=1,2,...,
B1Ba .. 5ka 1(4)

Vg =

kde X0 = 1.
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Cviceni

o Necht y je vlastni vektor matice T}, k < d. Ukazte, Ze jeho
posledni slozka je nenulova, tj. plati el y # 0.

Disledek: Pro k < d je

1Az — || = Brs exyl # 0.

tj. 1 neni vlastnim Cislem matice A.
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