
Arnoldiho a Lanczosova metoda

1



Částečný problém vlastních čísel

Ne vždy je potřeba (a někdy to není ani technicky možné)
nalézt celé spektrum dané matice (velké řídké matice).

Úloze, ve které chceme aproximovat pouze malou část
spektra, budeme říkat částečný problém vlastních čísel.

Dvě základní metody,

Arnoldiho metoda → obecné matice
Lanczosova metoda → hermitovské matice.

Stačí, když jsme schopni realizovat násobení matice
vektorem.
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Metody Krylovových podprostorů

Dána čtvercová regulární A ∈ Rn×n, startovací vektor v.

Velké řídké matice → jedinou operací, kterou jsme schopni s
A provést, je násobení Av, A nemusí být dána explicitně.

Využití této operace: budování posloupnosti podprostorů

Kk(A, v) ≡ span{v,Av,A2v, . . . , Ak−1v},

Krylovovy podprostory.

Problém (řešení soustavy či problém vlastních čísel)
projektujeme na tyto podprostory a tím získáme postupné
aproximace řešení.
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Metody Krylovových podprostorů
Příklad - systém lineárních rovnic

Ax = b, hledáme aproximaci xk

xk ∈ Kk(A, b).

Aby xk jednoznačné → nutné předepsat k podmínek.

Definujme k-té reziduum vztahem rk ≡ b−Axk,

xk ∈ Kk(A, b) ⇒ rk ∈ b+AKk(A, b).

Pokud ‖rk‖ = 0 ⇒ xk je přesné řešení.

Logický požadavek: ‖rk‖ co nejmenší v rámci daných omezení
⇔ ortogonální projekce b na AKk(A, b),

rk ⊥ AKk(A, b).

5



Metody Krylovových podprostorů
Systém lineárních rovnic

Pokud
dim(Kk(A, b)) = k,

pak je xk určeno jednoznačně.

b projektujeme do stále většího a většího podprostoru a
norma rezidua se zmenšuje.

Roste-li dimenze Kk(A, b), dostáváme pro k = n

AKn(A, b) = Rn,

Potom je

rn ⊥ Rn ⇒ rn = 0 ⇒ xn = x.
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Metody Krylovových podprostorů
Příklad - problém vlastních čísel Ay = λy

Vlastní vektor a příslušné vlastní číslo (vlastní pár) budeme
aproximovat dvojicí (yj , µj) tak, aby

yj ∈ Kk(A, v), Ayj − µjyj ⊥ Kk(A, v),

v je daný startovací vektor.

Pokud dimKk(A, v) = k a je-li A diagonalizovatelná, potom
existuje právě k párů (yj , µj) splňující tuto podmínku →
získáme aproximace k vlastních čísel a vektorů.

Roste-li dimenze Krylovových podprostorů, získáme pro
k = n všechny vlastní vektory a vlastní čísla matice A.
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Dimenze Krylovových podprostorů

Kk(A, v) ≡ span{v,Av,A2v, . . . , Ak−1v}

Maximální dimenzi, jež mohou Krylovovy podprostory
generované maticí A a vektorem v dosáhnout, budeme
nazývat stupněm v vzhledem k A,

d(A, v) ≡ min{k; dimKk(A, v) = dimKk+1(A, v)}.

d(A, v) je dimenze nejmenšího Krylovova podprostoru
Kk(A, v) invariantního vzhledem k násobení maticí A

x ∈ Kk(A, v)⇒ Ax ∈ Kk(A, v) .

d(A, v) je omezeno stupněm minimálního polynomu.
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Báze Krylovových prostorů

Abychom mohli s Krylovovými prostory pracovat →
potřebujeme rozumnou bázi.
Báze v,Av, ..., Ak−1v není vhodná k výpočtům (špatná
podmíněnost), viz mocninná metoda.

Pro efektivní a numericky stabilní práci je nutné umět počítat
dobře podmíněnou bázi (ideálně ortogonální).

Chceme bázové vektory v1, . . . , vk podprostoru Kk(A, v),
které vyhovují podmínkám

vi+1 ∈ Ki+1(A, v) \ Ki(A, v), span{v1, . . . , vi} = Ki(A, v)

Bez újmy na obecnosti ‖vi‖ = 1, 1 ≤ i ≤ k.

9



Arnoldiho algoritmus
Základní myšlenka

Nechť v1, . . . , vk splňují

vi+1 ∈ Ki+1(A, v) \ Ki(A, v),
span{v1, . . . , vi} = Ki(A, v) , i = 1, . . . , k − 1 ,

a nechť k < d(A, v).

Potom
Avk ∈ Kk+1(A, v) \ Kk(A, v) .

Idea projekce,

w = Avk −
k∑
i=1

hi,kvi, vk+1 = w

‖w‖
,

kde hi,k jsou vhodně zvolené koeficienty.

v1, . . . , vk, vk+1 splňují opět danou podmínku.
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Podrobněji
Krok 1:

v1 ≡
v

‖v‖
.

Krok 2: urči w tak, aby w ⊥ v1 a normuj

w = Av1 − h1,1v1, h1,1 = 〈Av1, v1〉

h2,1 = ‖w‖, v2 = w

h2,1
,

Av1 = h1,1v1 + h2,1v2.

Krok k + 1:

w = Avk −
k∑
i=1

hi,kvi, hi,k = 〈Avk, vi〉,

hk+1,k = ‖w‖, vk+1 = w

hk+1,k
.

Avk = h1,kv1 + h2,kv2 + · · ·+ hk,kvk + hk+1,kvk+1.
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Arnoldiho algoritmus
Algebraicka formulace

Av1 = h1,1 v1 + h2,1 v2 ,

Av2 = h1,2 v1 + h2,2 v2 + h3,2 v3 ,

...

Avk = h1,kv1 + · · ·+ hk,k vk + hk+1,k vk+1

tj.

AVk = VkHk + hk+1,k vk+1 e
T
k ,

Vk ≡ [v1, . . . , vk] , Hk =


h1,1 h1,2 . . . h1,k
h2,1 h2,2 . . . h2,k

. . .
. . .

...
hk,k−1 hk,k

 .
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Arnoldiho algoritmus
Algorimus počítající ortogonální bázi Krylovova prostoru, který
jsme právě odvodili nazveme Arnoldiho algoritmem.

1: input A, v
2: v1 = v

‖v‖
3: for k = 1, 2, . . . do
4: w = Avk
5: for i = 1 : k do
6: hi,k = 〈w, vi〉
7: w = w − hi,k vi
8: end for
9: hk+1,k = ‖w‖

10: vk+1 = w
hk+1,k

11: end for

AVk = VkHk + hk+1,k vk+1 e
T
k .
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Ukončení Arnoldiho algoritmu

K ukončení Arnoldiho algoritmu dochází tehdy, je-li
hk+1,k = 0, tj. ‖w‖ = 0 a platí

Avk =
k∑
i=1

hi,kvi.

Jinak řečeno, Avk ∈ Kk(A, v) a platí

Kk(A, v) = span{v1, . . . , vk}
= span{v1, . . . , vk, Avk} = Kk+1(A, v)

a tudíž je k = d(A, v).

Arnoldiho algoritmus najde ortogonální bázi celého
invariantního prostoru Kd(A, v).
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Arnoldiho algoritmus počítá po sloupcích QR rozklad

Arnoldi ↔ Gram-Schmidt. Lze na Arnoldiho algoritmus
nahlížet jako na QR rozkladu nějaké matice?

Matici [Av1, . . . , Avk] rozšíříme o první sloupec v1, platí

[v1, Av1, . . . , Avk] = Vk+1


1 h1,1 h1,2 . . . h1,k

h2,1 h2,2 . . . h2,k
. . .

. . .
...

hk,k−1 hk,k
hk+1,k

 .

Arnoldiho algoritmus počítá postupně po sloupcích QR
rozklad matice [v1, Av1, . . . , Avk], která na počátku výpočtu
není známa. Tato matice vzniká postupně po sloupcích.
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Arnoldiho algoritmus
a vlastní čísla matice A

Vektory počítané Arnoldiho algoritmem splňují

AVk = VkHk + hk+1,kvk+1e
T
k

a pro k = d(A, v) je hd+1,d = 0,

AVd = VdHd.

Nechť platí Hd y = µ y, y 6= 0, potom

AVd y︸︷︷︸
x

= VdHd y = µVd y︸︷︷︸
x

.

Množina vlastních čísel Hd je podmnožinou vlastních čísel
A, vlastní vektory A lze spočíst z vlastních vektorů Hd.

A regulární ⇒ Hd regulární.
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Arnoldiho algoritmus
a aproximace vlastních čísel matice A

Pro k < d je hk,k+1 6= 0. Vlastní čísla a vektory Hk poskytují
pouze aproximace vlastních čísel A. Přenásobením vztahu y
(vlastní vektor Hk) dostáváme

AVky = VkHky + hk+1,kvk+1e
T
k y

= µVky + hk+1,kvk+1e
T
k y.

Jinak řečeno, vektor x ≡ Vky splňuje

Ax− µx = hk+1,kvk+1e
T
k y

tj. reziduum Ax− µx je násobkem vk+1,

‖Ax− µx‖ = hk+1,k |eTk y|.
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Arnoldiho metoda

Arnoldiho metoda na výpočet aproximací vlastních čísel
využívá Arnoldiho algoritmus k výpočtu matice Hk. Poté
spočte vlastní čísla a vlastní vektory y matice Hk, Vky je pak
aproximace vlastního vektoru A.

Pro obecnou nesymetrickou matici je problematické říci
cokoliv o blízkosti spočtené aproximace vlastního čísla µ k
nejbližšímu vlastnímu číslu matice A, víme jen

‖Ax− µx‖ = hk+1,k |eTk y|.

Vlastní čísla Hk → Ritzova čísla,
vektory Vky → Ritzovy vektory.
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Arnoldiho algoritmus
aplikovaný na symetrickou matici

Arnoldiho algoritmus na symetrickou regulární A,

AVk = VkHk + hk+1,kvk+1e
T
k .

Přenásobme maticí V T
k , ortogonalita sloupců, symetrie,

V T
k AVk = Hk,

Hk = V T
k AVk = V T

k A
TVk = (V T

k AVk)T = HT
k .

Hk je symetrická, horní Hessenbergova ⇒ tridiagonální,

Hk =



α1 β2
β2 α2 β3

. . .
. . .

. . .

. . .
. . . βk
βk αk


≡ Tk .
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Lanczosův algoritmus

Platí
AVk = VkTk + βk+1vk+1e

T
k .

Rozepišme po sloupcích,

βj+1vj+1 = Avj − αjvj − βjvj−1, j = 1, . . . , k.

Ortogonální bázi Krylovova prostoru lze pro symetrickou
matici A počítat tříčlennou rekurencí.

βj+1 je normalizační koeficient (vždy kladný), αj určíme z
podmínky vj+1 ⊥ vj , platí

αj = 〈Avj , vj〉.

Ortogonalita k ostatním vektorům báze je automaticky
splněna díky symetrii matice A.
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Lanczosův algoritmus

input A, v
v0 := 0
v1 := v/‖v‖
β1 := 0
for k = 1, 2, . . . do
w := Avk − βkvk−1
αk := v∗kw
w := w − αkvk
βk+1 := ‖w‖
vk+1 := w/βk+1

end for
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Lanczosova metoda
na výpočet aproximací vlastních čísel

Lanczosova metoda = Arnoldiho metoda pro symetrickou A.

Nechť k < d a nechť (µ, y) je vlastní pár Tk, Tky = µy,

x ≡ Vky.

Protože volíme y tak, aby ‖y‖ = 1, je i ‖x‖ = 1.

Z AVk = VkTk + βk+1vk+1e
T
k plyne

Ax = µx+ βk+1vk+1e
T
k y

a pro normu rezidua platí

‖Ax− µx‖ = βk+1 |eTk y|.

Díky symetrii matice A lze tento vztah dále analyzovat.
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Analýza Lanczosovy metody
Blízkost aproximace

A je symetrická → A = UΛUT , kde U je ortogonální a Λ je
diagonální reálná,

‖Ax− µx‖ = ‖UΛUTx− µx‖ = ‖ΛUTx− µUTx‖.

Označme w ≡ UTx, platí

‖Ax− µx‖ = ‖(Λ− µI)w‖
≥ min

λj

|λj − µ|‖w‖

= min
λj

|λj − µ|‖x‖.

Jinak řečeno,

min
λj

|λj − µ| ≤
‖Ax− µx‖
‖x‖

= βk+1
|eTk y|
‖x‖

.
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Analýza Lanczosovy metody
Přesná versus konečná aritmetika

Pomocí čísla
βk+1 |eTk y|

lze kontrolovat kvalitu příslušné aproximace µ.

Při odvození odhadu jsme použili vlastnost

1 = ‖y‖ =
√
yTV T

k Vky = ‖x‖,

neplatí obecně při počítání v konečné aritmetice, ztráta
ortogonality mezi sloupci Vk může způsobit ‖y‖ � ‖x‖.

Christopher C. Paige → netriviální analýza, ukázal že

min
λj

|λj − µ| ≤ βk+1 |eTk y|

platí i pro vypočtené hodnoty v konečné aritmetice (až na
možnou malou nepřesnost ∼ u), navzdory ztrátě ortogonality
a velikosti ‖x‖.
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Jacobiho matice
v Lanczosově algoritmu

Matici

Tk =



α1 β2
β2 α2 β3

. . .
. . .

. . .

. . .
. . . βk
βk αk


,

kde αi ∈ R, i = 1, . . . , k a βi > 0, i = 2, . . . , k nazveme
Jacobiho maticí.

Tyto matice se v průběhu minulého století staly středem
zájmu díky tomu, že se vyskytují v obecné teorii
ortogonálních polynomů a Gaussovy kvadratury.

Výskyt Jacobiho matic v Lanczosově algoritmu naznačuje
možný blízký vztah mezi tímto algoritmem a zmíněnou teorií.
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Některé vlastnosti Jacobiho matic

Vlastní čísla Jacobiho matic se ostře prokládají.

Všechna leží pro k < d v otevřeném intervalu (λ1, λn).

Pro k < d jsou vlastní čísla Tk různá od vlastních čísel A.
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Cvičení
7.5 Uvažujme charakteristické polynomy Jacobiho matic Jk,

χ0(λ) ≡ 1, χk(λ) = det(λI − Jk), k = 1, 2, . . . .

Ukažte, že platí χ0 = 1, χ1 = λ− α1,

χk(λ) = (λ− αk)χk−1(λ)− β2
kχk−2(λ), k = 2, 3, . . . .

7.7 Ukažte pomocí předchozí rekurence, že dvě po sobě jdoucí
Jacobiho matice nemohou mít stejná vlastní čísla.

7.8 Dokažte následující vztah mezi vk generovanými Lanczosovým
algoritmem s počátečním vektorem v a charakteristickými
polynomy χk(λ) odpovídajících Jacobiho matic:

vk = 1
β1β2 . . . βk

χk−1(A)v, k = 1, 2, . . . ,

kde χ0 = 1.
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Cvičení

Nechť y je vlastní vektor matice Tk, k < d. Ukažte, že jeho
poslední složka je nenulová, tj. platí eTk y 6= 0.

Důsledek: Pro k < d je

‖Ax− µx‖ = βk+1 |eTk y| 6= 0.

tj. µ není vlastním číslem matice A.
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