CG, Lanczos a Gaussova kvadratura



Formulace problému

Uvazujme systém

Axr =0

kde A € R™" je symetricka, pozitivné definitni.

o A je velka a Fidka,
o nepotfebujeme znat presné feseni,

o jsme schopni realizovat Av (v je vektor) .

Bez Gjmy na obecnosti, ||b|| =1, zo = 0.



Metoda sdruzenych gradientf
input A, b

ro =0, po =10
fork=1,2,... do

T
N Te—1Tk—1
k-1 = o
pk_1Apk—1
T = Tg—1+ Vk—1Pk—1
TE = Th—1— Vk—1ADr—1
T?;Tk
o = —F——
Te—1Tk—1
Pk = Tk + OpPr—1

test kvality x,

end for



Matematické vlastnosti CG

optimalni vlastnost

kty Kryloviv podprostor,
K1 (A, b) = span{b, Ab, ..., A¥"1p} .

CG — xk, Tk, P&
o rezidua rg,...,rp_1 tvoii ortogonalni bazi KCx(A,b),
o vektory po, ..., pk_1 tvofi A-ortogonalni bazi ICx(A,b),
o CG nalezne feseni Az = b nejvyse po n krocich.

o Aproximace feseni xj, je optimalni

lz = 2klla = min [z —ylla-



Lanczosiiv algoritmus

A je symetrickd, vypoclet ortonormélni baze Ky (A, b)

input A, b
vy = b/||bl], 1 =0
50 = O, Vo = 0
fork=1,2,... do
ap = ’U%A’Uk
w = Avg — apvg — Br-1Vk—1
B = [lwl|
Vkg1 = w/ B
end for

Av, = Brug1 + vk + Br—1Vk—1 -

Lanczosiv algoritmus Ize reprezentovat vztahem

AV = ViTi + Brogsaer,

T
a1 B
B1

Br—1

Br-1
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CG versus Lanczos

Necht A je symetricka, pozitivné definitni

CG aproximace zj, je dana vztahem

xp = Vipyr kde Tpy, =|bller,

ok

— (—1)k B
vt = U

CG generuje LDL" rozklad matice Ty, = Ly Dy L1 kde

1 Yoo

LkE \/a - s DkE

Op—1 1

V-1



CG versus Lanczos
Shrnuti

o Oba algoritmy generuji ortogonalni bazi Krylova podprostoru
Kr(A,b).

o Lanczos generuje ortonormalni bazi vy, ..., v pomoci
triclenné rekurence — T}.

o CG generuje ortogonalni bazi rq,...,r,_1 pomoci
zdvojené dvouclenné rekurence — LDLT rozklad T}.
o Plati .
Tk
v = (~DF

Irell”



Ortogonalni vektory — ortogonalni polynomy
o rezidua rq,...,rx_1 tvofi ortogonalni bazi Ky (A,b),
o "CG je polynomialni metoda”,

k—1
vEKp(Ab) = v="> (Ab=q(A)b
§=0
kde ¢ je polynom stupné nejvyse k — 1.

o Notace: 7, = qi(A)b, A = UAUT, b=Uw. Proi#j
0 = 7lr;=b"qi(A)g(A)b = w g (A)g(A)w

i

N
= Y wia(M)gi(Me) = (@i @)wn -
=1

o CG (implicitné) konstruuje
posloupnost ortogonalnich polynomii.



Distribucni funkce (mira) w(\)

N
Ay b = (G )unc (f. @wn = > _wif(A)g(Ae).
/=1
Definujme funkci w(A), Wl
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Ortogonalni polynomy a Gaussova kvadratura

obecné teorie

Kvadraturni vzorec

k

| S = Y wif) + Ralf].

i=1

Gaussuv kvadraturni vzorec:

Qo

Qo

Maximalni algebraicka presnost 2k — 1

Uzly a vahy mohou byt poditany pomoci

ortogonalnich polynomii (napfiklad v; jsou jejich kofeny).
Ortogonalni polynomy mohou byt generovany tticlennou
rekurenci. Koeficienty — Jacobiho matice.

Uzly a vahy Gaussova kvadraturniho vzorce mohou byt
pocitany ze znalosti Jacobiho matice.
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CG, Lanczos a Gaussova kvadratura
K kazdém itera¢nim kroku k, CG (implicitné) uréuje uzly a vahy
k-bodové Gaussovy kvadratury

| R = S w00y + Rylf].

i=1

Ty, ... Jacobiho matice, ng) ...vlastni &isla T}, wi(

prvni slozek normalizovanych vlastnich vektorl 7.

) kvadréty

f(A) = A~! . Kvadratura pomoci Lanczose:

-1 _ -1 -1
(T" )1,1 o (Tk )1,1+Rk[/\ )
Kvadratura pomoci CG
k—1
lzl% = > vl l® + lle =zl

J=0
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CG, Lanczos, kvadratura
Shrnuti

Souvislosti
o CG, Lanczos,
o Ortogonalni polynomy, Jacobiho matrice,
o Gaussova kvadratura, uzly a vahy.
Uzite€né pri
o odhadovani norem chyb v CG,

o pochopeni chovani CG a Lanczose v kone¢né aritmetice.
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	Short recurrences

