
CG, Lanczos a Gaussova kvadratura
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Formulace problému

Uvažujme systém
Ax = b

kde A ∈ Rn×n je symetrická, pozitivně definitní.

A je velká a řídká ,

nepotřebujeme znát přesné řešení ,

jsme schopni realizovat Av (v je vektor) .

Bez újmy na obecnosti, ‖b‖ = 1, x0 = 0.
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Metoda sdružených gradientů
input A, b
r0 = b, p0 = r0
for k = 1, 2, . . . do

γk−1 =
rTk−1rk−1

pTk−1Apk−1
xk = xk−1 + γk−1pk−1

rk = rk−1 − γk−1Apk−1

δk = rTk rk
rTk−1rk−1

pk = rk + δkpk−1

test kvality xk
end for
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Matematické vlastnosti CG
optimální vlastnost

ktý Krylovův podprostor,

Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b} .

CG → xk, rk, pk

rezidua r0, . . . , rk−1 tvoří ortogonální bázi Kk(A, b),

vektory p0, . . . , pk−1 tvoří A-ortogonální bázi Kk(A, b),

CG nalezne řešení Ax = b nejvýše po n krocích.

Aproximace řešení xk je optimální

‖x− xk‖A = min
y∈Kk

‖x− y‖A .
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Lanczosův algoritmus
A je symetrická, výpočet ortonormální báze Kk(A, b)

input A, b
v1 = b/‖b||, δ1 = 0
β0 = 0, v0 = 0
for k = 1, 2, . . . do
αk = vTk Avk
w = Avk − αkvk − βk−1vk−1
βk = ‖w‖
vk+1 = w/βk

end for

Tk
α1 β1

β1
. . .

. . . βk−1
βk−1 αk



Avk = βkvk+1 + αkvk + βk−1vk−1 .

Lanczosův algoritmus lze reprezentovat vztahem
AVk = VkTk + βkvk+1e

T
k , V ∗k Vk = I .
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CG versus Lanczos
Nechť A je symetrická, pozitivně definitní

CG aproximace xk je dána vztahem �

xk = Vk yk kde Tk yk = ‖b‖e1,

a
vk+1 = (−1)k rk

‖rk‖
.

CG generuje LDLT rozklad matice Tk = LkDkL
T
k kde �

Lk ≡


1
√
δ1

. . .

. . .
. . .√
δk−1 1

 , Dk ≡


γ−1

0
. . .

. . .

γ−1
k−1

 .
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CG versus Lanczos
Shrnutí

Oba algoritmy generují ortogonální bázi Krylova podprostoru
Kk(A, b).

Lanczos generuje ortonormální bázi v1, . . . , vk pomocí
tříčlenné rekurence → Tk.

CG generuje ortogonální bázi r0, . . . , rk−1 pomocí
zdvojené dvoučlenné rekurence → LDLT rozklad Tk.

Platí
vk+1 = (−1)k rk

‖rk‖
.
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Ortogonální vektory → ortogonální polynomy
rezidua r0, . . . , rk−1 tvoří ortogonální bázi Kk(A, b),

“CG je polynomiální metoda”,

v ∈ Kk(A, b) ⇒ v =
k−1∑
j=0

ζjA
jb = q(A)b

kde q je polynom stupně nejvýše k − 1.

Notace: rk = qk(A)b, A = UΛUT , b = Uω. Pro i 6= j

0 = rTi rj = bT qi(A)qj(A)b = ωT qi(Λ)qj(Λ)ω

=
N∑
`=1

ω2
` qi(λ`)qj(λ`) ≡ 〈qi, qj〉ω,Λ .

CG (implicitně) konstruuje
posloupnost ortogonálních polynomů.
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Distribuční funkce (míra) ω(λ)
A, b → 〈·, ·〉ω,Λ : 〈f, g〉ω,Λ =

N∑
`=1

ω2
` f(λ`)g(λ`) .

Definujme funkci ω(λ),

...

0

1

ω2
1

ω2
2
ω2

3

ω2
4

ω2
N

ζ λ1 λ2 λ3
. . . . . . λN ξ

Potom,
〈f, g〉ω,Λ =

∫ ξ

ζ
f(λ)g(λ) dω(λ) .
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Ortogonální polynomy a Gaussova kvadratura
obecná teorie

Kvadraturní vzorec∫ ξ

ζ
f(λ) dω(λ) =

k∑
i=1

wif(νi) + Rk[f ] .

Gaussův kvadraturní vzorec:
Maximální algebraická přesnost 2k − 1
Uzly a váhy mohou být počítány pomocí
ortogonálních polynomů (například νi jsou jejich kořeny).
Ortogonální polynomy mohou být generovány tříčlennou
rekurencí. Koeficienty → Jacobiho matice.
Uzly a váhy Gaussova kvadraturního vzorce mohou být
počítány ze znalosti Jacobiho matice.

10



CG, Lanczos a Gaussova kvadratura
K každém iteračním kroku k, CG (implicitně) určuje uzly a váhy
k-bodové Gaussovy kvadratury∫ ξ

ζ
f(λ) dω(λ) =

n∑
i=1

ω
(k)
i f(θ(k)

i ) + Rk[f ] .

Tk . . . Jacobiho matice, θ(k)
i . . . vlastní čísla Tk, ω(k)

i . . . kvadráty
první složek normalizovaných vlastních vektorů Tk.

f(λ) ≡ λ−1 . Kvadratura pomocí Lanczose:(
T−1
n

)
1,1

=
(
T−1
k

)
1,1

+Rk[λ−1].

Kvadratura pomocí CG

‖x‖2A =
k−1∑
j=0

γj‖rj‖2 + ‖x− xk‖2A .
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CG, Lanczos, kvadratura
Shrnutí

Souvislosti

CG, Lanczos,

Ortogonální polynomy, Jacobiho matrice,

Gaussova kvadratura, uzly a váhy.

Užitečné při

odhadování norem chyb v CG,

pochopení chování CG a Lanczose v konečné aritmetice.
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