
Úvod do Matematických Výpočtů 9. Přednáška

Motto: “Matematika je schovaná všude,
ovšem ne každý ji vidí”

Cílem přednášky je ukázat několik abstraktních matematických výsledků, které
se používají při řešení praktických problémů. Některé matematické věty ovšem
našly uplatnění až mnoho desítek či stovek let po svém vzniku.

Teorie čísel - šifrování zpráv

V dřívějších dobách se k šifrování používal tajný klíč. Nevýhodou bylo, že jej musely
znát všechny komunikující strany a snadno mohlo dojít k jeho prozrazení. Ukážeme si
metodu RSA, která slouží pro bezpečné šifrování pomocí veřejného klíče. Název metody
je odvozen od iniciálů autorů: R. I. Rivest, A. Shamir, L.M. Adleman (1978).

Princip metody:

Alice a Bob si potřebují posílat zprávy. Nejprve textové zprávě přiřadí přirozené číslo
(např. pomocí ASCII kódu). Pro vlastní šifrování si Alice a Bob vyberou každý 2 velká
prvočísla (alespoň 200 cifer). Označíme je pA, qA pro Alici a pB, qB pro Boba. Každý si
svá prvočísla vynásobí a získá číslo nA = pA ·qA (Alice) a nB = pB ·qB (Bob). Dále je ještě
nutné zvolit tzv. šifrovací exponenty eA (Alice) a eB (Bob) a vypočítat dešifrovací
exponenty dA a dB (podrobnosti viz. dále).

Každý zveřejní dvojici (nA, eA) a (nB, eB). A pokud chce jeden druhému poslat zprávu,
použije pro šifrování klíč toho druhého. Řekneme, že Bob chce poslat Alici zprávu. Po
převedení do ASCII kódu ji označíme X a nechť platí, že X < nA (pokud by bylo větší,
rozdělila by se zpráva na více menších). šifrovanou zprávu označíme X∗ a získáme jí z
vlastnosti (kongruence):

X∗ ≡ XeA mod nA,

jiným způsobem řečeno: dělíme-li XeA číslem nA, vyjde X∗ jako celočíselný zbytek (X∗ <
nA). Alice zprávu dešifruje na číslo (X∗)∗ pomocí vlastnosti:

(X∗)∗ ≡ (X∗)dA mod nA.

Otázka: Jak se určí eA, dA, aby platilo, že se dešifrovaná zpráva (X∗)∗ rovná
původní zprávě X∗?
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• Důležitou úlohu hraje tzv. Eulerova funkce ϕ(n), která je definována jako počet
přirozených čísel nepřevyšujících n, jež jsou s n nesoudělná.

• Je-li n dáno součinem 2 prvočísel (p 6= q), potom platí:

ϕ(n) = (p− 1)︸ ︷︷ ︸
ϕ(p)

· (q − 1)︸ ︷︷ ︸
ϕ(q)

= p · q︸︷︷︸
n

− ( p︸︷︷︸
(1)

+ q − 1︸ ︷︷ ︸
(2)

),

(1) musím odečíst p násobků čísla q,

(2) musím odečíst q násobků čísla p, ale pq jsem už odečetl.

Příklady:

a) 125 ≡ 6 mod 7

125 : 7 = 17
55
−49

6

b) 100 ≡ 0 mod 20

100 = 5 · 20

c) 1000 ≡ 12 mod 13

1000 : 13 = 76
−91

90
−78
12

• Šifrovací a dešifrovací exponent musí splňovat podmínku:

e · d ≡ 1 mod ϕ(n)

• Šifrovací exponent e musí být zvolen tak, aby byl s ϕ(n) nesoudělný.

Odpověď na otázku:

Jsou-li eA a ϕ(nA) nesoudělná a eA · dA ≡ 1 mod ϕ(nA) ⇒ (X∗)∗ = X

Důkaz je založen na Euler-Fermatově větě (18. století)

Pro nesoudělná x a n platí: xϕ(n) ≡ 1 mod n.

Hlavní trik metody RSA

Vynásobit 2 velká prvočísla je velmi snadné, zatímco zpětně rozložit tento součin na
prvočinitele není v současnosti v rozumném čase možné.

Pokud neznám rozklad na prvočinitele, nemůžu určit hodnotu Eulerovy funkce a tudíž
nemohu určit dešifrovací exponent (ten je tajný a bez něj zprávu nelze dešifrovat).
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Náznak důkazu:

Š: X∗ ≡ XeA mod nA ⇒ (X∗)dA ≡ (XeA)dA = XeA·dA mod nA (A)

D: (X∗)∗ ≡ (X∗)dA mod nA (B)

Dále platilo:
eA · dA ≡ 1 mod (pA − 1) a

eA · dA ≡ 1 mod (qA − 1).

Malá Fermatova věta: ∀p prvočíslo a ∀a ∈ Z nesoudělné: ap−1 ≡ 1 mod p.

⇒ XeA·dA ≡ X mod pA

⇒ XeA·dA ≡ X mod qA

Čínská věta o zbytcích ⇒ XeA·dA ≡ X mod pA · qA︸ ︷︷ ︸
nA

(C)

(A) + (C)⇒ (X∗)dA ≡ X mod nA (D)

(B) + (D)⇒ (X∗)∗ = X

�

Ukázkový příklad:

Uvažujeme velmi malá prvočísla - v praxi se používají o mnoho řádů větší.

pA = 61 a qA = 53 jsou dvě zvolená prvočísla

nA = pA · qA = 3 233 . . . modul (veřejný)

eA = 17 . . . zvolený šifrovací exponent tak, aby byl nesoudělný s

ϕ(nA) = (pA − 1)(qA − 1) = 60 · 52 = 3120

dA = 2 753 . . . vypočtený soukromý dešifrovací exponent tak, aby platilo:

dA · eA ≡ 1 mod ϕ(nA)

čili dA · 17 ≡ 1 mod 3120 (dA < nA takové, že toto splňuje je jediné)

Veřejný klíč = modul + šifrovací exponent: nA = 3233 a eA = 17
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Generovani verejneho a tajneho klice pro sifrovani
--------------------------------------------------------

Prvni zadane prvocislo p = 61 .
Druhe zadane prvocislo q = 53 .
Zadany sifrovaci exponent e = 17 .

Verejny modul n = p * q = 3233
Eulerova funkce phi = (p-1) * (q-1) = 3120

Spravne zadani pro sifrovani:
-----------------------------

1. prvocislo je p = 61
2. prvocislo je q = 53
Eulerova funkce phi = 3120
verejny klic je n = 3233, e = 17
tajny klic je d = 2753

Chceme zašifrovat třeba zprávu X = 123.

X∗ = 12317 mod 3233 = 855

Dešifrujeme
(X∗)∗ = 8552753 mod 3233 = 123 = X.

Sifrovaci metoda RSA
--------------------------------------------------------

Prvni zadane prvocislo p = 61 .
Druhe zadane prvocislo q = 53 .
Zadany sifrovaci exponent e = 17 .

Verejny modul n = p * q = 3233
Eulerova funkce phi = (p-1) * (q-1) = 3120

Verejny klic je n = 3233, e = 17
Tajny klic je d = 2753

Zadej zpravu ( 0<x<3233 ) x=123
Sifrovana zprava je 855
Desifrovana zprava je 123
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Digitální podpis:

Pokud chce mít Alice jistotu, že zprávu X∗ skutečně poslal Bob, pak Bob musí za X∗

připojit číslo Y ∗, které získá takto:

Elektronický podpis
Y ∗ ≡ XdB mod nB.

Alice po obdržení spočítá
(Y ∗)∗︸ ︷︷ ︸
=X∗

= (Y ∗)eB mod nB

Pokud při použití veřejného klíče (eB, nB) na dešifrování Y ∗ dostanu stejnou zprávu jako
při dešifrování X∗ pomocí mého tajného klíče (dA, nA), pak vím, že zprávu odeslal majitel
klíče (eB, nB).

Ukázkový příklad (viz předchozí):

veřejný klíč příjemce nA = 3233, eA = 17

tajný klíč příjemce dA = 2753

veřejný klíč odesílatele nB = 6319, eB = 29

tajný klíč odesílatele dB = 2549

zpráva X = 123

šifrovaná zpráva X∗ = 855

zprávu X = 123 zašifruji znovu, tentokrát s použitím svého tajného klíče:

1232549 mod 6319 = 4662

Zašifrovaný podpis připojím za šifrovanou zprávu.

Dále příjemci pošlu můj veřejný klíč, aby ho použil pro identifikaci podpisu

466229 mod 6319 = 123.

Příjemce po dešifrování obdržel stejnou zprávu 2x.

Podpis mohl poslat pouze držitel tajného klíče k zaslanému veřejnému klíči.

Poznámka: Prakticky se jako digitální podpis neposílá celá zašifrovaná zpráva, ale pouze
její tzv. otisk. Otisk je zhuštění původní zprávy (takové, že při změně původní zprávy se
mění i její otisk) https://cs.wikipedia.org/wiki/Hašovací_funkce).

Příjemce tedy kontroluje shodnost dešifrovaného otisku a otisku vytvořeného z původní
nešifrované zprávy.

Poznámka: Pokud by se posílal podpis pro celou zprávu i s veřejným klíče odesílatele,
mohl by si každý zprávu dešifrovat a tím by se celá zpráva prozradila.
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Digitalni podpis
--------------------------------------------------------

Zadana data pro prijemce:
---------------------------

p_prijemce = 61
q_prijemce = 53
e_prijemce = 17

Zadana data pro odesilatele:
------------------------------

p_odesilatele = 71
q_odesilatele = 89
e_odesilatele = 29

Spravne zadani pro sifrovani pro prijemce:

verejny klic prijemce je n = 3233, e = 17
tajny klic prijemce je d = 2753

Spravne zadani pro sifrovani pro odesilatele:

verejny klic odesilatele je n = 6319, e = 29
tajny klic odesilatele je d = 2549

Zadej zpravu ( 0<x<min(3233,6319) ) x=123
Sifrovana zprava je 855
Sifrovany podpis je 4662

Desifrovana zprava je 123
Pro desifrovani podpisu pouzij verejny klic odesilatele.
Desifrovany podpis je 123
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Teorie matic - řešení SLAR

Celá řada aplikací vede ve své podstatě na problém řešit soustavu lineárních algebraických
rovnic (SLAR)

Ax = b,

A . . . regulární matice typu N x N (det A 6= 0, ∀ vl. č. 6= 0, hod(A) = N)

b . . . sloupcový vektor o N složkách

x . . . hledané řešení (sloupcový vektor o N složkách)

1. způsob řešení: Cramerovo pravidlo

i-tou složku vektoru řešení vypočteme ze vztahu

xi =
detAi

detA
.

Ai . . . vznikne z původní matice tak, že i−tý sloupec nahradíme pravou stranou b.

Počet operací:

- musíme vypočítat N + 1 determinantů

- při výpočtu determinantu je třeba N ! sčítání a v každém sčítanci je N - 1 násobení

Celkem operací:
(N + 1) · [(N − 1)N ! +N !] = N(N + 1)!

2. způsob řešení: Gaussova eliminační metoda

- nejprve převedeme na 4 tvar

- zpětným chodem dosazujeme a počítáme složky řešení

Počet operací:

- v přímém chodu postupně bereme každý řádek o N složkách a jeho násobek přičítáme
ke zbývajícím . . . N2

- to opakujeme, abychom vynulovali všechny sloupce pod hlavní diagonálou . . . N3

Celkem operací přesněji
2

3
N3
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3. způsob řešení: Metoda sdružených gradientů (1952 M. R. Hesteners, E. Stiefel)

- metoda pro symetrické, pozitivně definitní matice

A = AT , xTAx > 0 pro x 6= 0

- konverguje k řešení (nalezne řešení) po N krocích

- počet iterací je řádově 2N3 (pro plné matice)

- metoda je odvozena pro řešení ekvivalentního problému:

Věta: Nechť A je symetrická a pozitivně definitní matice. Pak x̂ je řešením soustavy

Ax = b ⇔ minimalizuje funkcionál J(x) =
1

2
xTAx− bTx na prostoru RN.

- při jednotlivých iteracích metody sdružených gradientů se funkcionál J minimalizuje
na podprostorech, jejichž dimenze postupně vzrůstá

V úlohách, kde matice A je plná vychází nejlépe použití Gaussovy eliminační metody.
Situace se výrazně změní, pokud bude matice A řídká. To nastane velmi často, např. při
použití metody konečných prvků dostáváme matice např. pro N = 1000 000 neznámých,
které jsou ovšem velmi řídké a mají řádově N prvků. Očíslujeme-li vrcholy pak bude mít
matice nenulové prvky pouze v pozicích [i, j] takových, že i a j jsou sousední vrcholy
(spojeny hranou).
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Pokud je matice A řídká, stačí pro její uložení použít řádově N buněk. V průběhu metody
sdružených gradientů se matice A nemění, zatímco pokud bychom k řešení použili GEM,
ztratili bychom vlastnost řídkosti, matice se postupně začne zaplňovat a pro její uložení
budeme potřebovat opět řádově N2 buněk.

V důsledku velké rychlosti konvergence metody sdružených lze ukončit proces dříve než
po N krocích. Pro trojrozměrné úlohy vyžaduje GEM řádově N

7
3 operací, zatímco metoda

sdružených gradientů řádově N
4
3 operací a tzv. metoda sdružených gradientů s předpod-

míněním jen N
7
6 operací.

120



V tabulce uvedeme příslušné časy pro řešení Ax = b různými metodami pro N = 103 a
N = 106 a rychlosti 106 operací za sekundu.

Metoda Plná matice Řídká matice

N =103 N = 106 N = 103 N = 106

Cramerovo pravidlo 4· 102567s (?)

GEM 667 s 21125 let 10 s 3,17 roku

Sdružené gradienty 0,01 s 100 s

Předpodmíněné sdružené gradienty 0,0032 s 10 s

Pozn.: Rok má 60 x 60 x 24 x 365,25 = 3,15576 x 107 sekund.

(?) 1000000! ≈ 8,2639· 105565708 N(N + 1)!

106
= (N + 1)! . . . pro N = 106

1000001 · 1000000!
3, 15576 · 107

=
8, 2639 · 105565708

31, 5576
= 2, 619 · 105565707 let.
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