AN ASYMPTOTIC EXPANSION FOR EXPECTATIONS OF FUNCTIONS OF SUMS VIA CONDITIONAL MOMENTS

MICHAL FRIESL

Abstract

For functions of sums of conditionally independent random variables an asymptotic expansion of their expectations is presented. As an example, the expansion of a Bayes risk is given.

Key words and phrases. Asymptotic expansion, Bayes risk.

1. Introduction

Let random variables X_{n} and functions $g_{n}, n \in \mathbf{N}$, be given, the variables X_{n} being asymptotically close to some value μ. Hurt (1986) presents a set of propositions on asymptotic expansions of $\mathrm{E} g_{n}\left(X_{n}\right)$ as $n \rightarrow \infty$ using the first q derivatives of g_{n} with remainders of the order $O\left(\mathrm{E}\left(X_{n}-\mu\right)^{q+1}\right)$. If X_{n} is an arithmetic mean of n i.i.d. random variables and $\mu=\mathrm{E} X_{1}$, then the remainder is $O\left(1 / n^{(q+1) / 2}\right)$.

In the present paper we assume that distributions of X_{n} 's are defined conditionally given values of a random variable θ and that the asymptotic value μ depends on θ too. In a special case, X_{n} 's will be cumulated sums of conditionally (given θ) i.i.d. random variables, and $\mu=\mu_{\theta}=\mathrm{E}\left[X_{1} \mid \theta\right]$ will be their conditional expected value.

If we use an expansion from Hurt (1986) for each particular value of θ then the remainders depend on θ in an unknown way. To obtain expansions of unconditional moments by taking expectations of the conditional ones with respect to θ, we need a more detailed form of the remainder.

2. Propositions

First we adopt a form of the remainder given in Hurt (1986), Theorem 2.
Proposition 2.1. Let X_{1}, X_{2}, \ldots be random variables with values in an interval $A \subset \mathbf{R}$ and $\mu \in A$. Let $g_{n}: A \rightarrow \mathbf{R}, n \in \mathbf{N}$, be functions having continuous derivatives of the order $(q+1)$ on $M=(\mu-\varepsilon, \mu+\varepsilon) \cap A$. Let $k \geq 0$ be an integer and let $\mathrm{E}\left|X_{n}-\mu\right|^{q+1+2 k}$ exist for $n \in \mathbf{N}$. If for some $0 \leq u \leq k, a, a_{0}, a_{1}, \ldots, a_{q+1} \geq 0$, and for all $n \in \mathbf{N}$

$$
\begin{gather*}
\left|g_{n}^{(j)}(\mu)\right| \leq a_{j}, \quad j=0, \ldots, q \\
\left|g_{n}^{(q+1)}(x)\right| \leq a_{q+1} \quad \text { on } M, \quad\left|g_{n}(x)\right| \leq a|x|^{u} n^{k} \quad \text { on } M^{c}=A \backslash M, \tag{2.1}
\end{gather*}
$$

then

$$
\begin{align*}
\mid \mathrm{E} g_{n}\left(X_{n}\right)- & \left.\sum_{j=0}^{q} \frac{g_{n}^{(j)}(\mu)}{j!} \mathrm{E}\left(X_{n}-\mu\right)^{j} \right\rvert\, \leq C\left(\left(\sum_{j=0}^{q+1} a_{j} \varepsilon^{j-q-1}\right) \mathrm{E}\left|X_{n}-\mu\right|^{q+1}\right. \tag{2.2}\\
& \left.+a\left(1+\frac{1+\mu^{q+1+2 k}}{\varepsilon^{q+1+2 k}}\right) n^{k} \mathrm{E}\left|X_{n}-\mu\right|^{q+1+2 k}\right)
\end{align*}
$$

where C depends on q and k only.
Proof. Denoting F_{n} the distribution of X_{n}, we have

$$
\begin{equation*}
\mathrm{E} g_{n}\left(X_{n}\right)-\sum_{j=0}^{q} \frac{g_{n}^{(j)}(\mu)}{j!} \mathrm{E}\left(X_{n}-\mu\right)^{j}=I+J-\sum_{j=0}^{q} \frac{J_{j}}{j!} \tag{2.3}
\end{equation*}
$$

with

$$
\begin{gathered}
I=\int_{M} g_{n}(x)-\sum_{j=0}^{q} \frac{g_{n}^{(j)}(\mu)}{j!}(x-\mu)^{j} \mathrm{~d} F_{n}(x), \quad J=\int_{M^{c}} g_{n}(x) \mathrm{d} F_{n}(x), \\
J_{j}=\int_{M^{c}} g_{n}^{(j)}(\mu)(x-\mu)^{j} \mathrm{~d} F_{n}(x), \quad j=0, \ldots, q .
\end{gathered}
$$

We estimate all terms involved in (2.3).
For $x \in M$ we use Taylor expansion of g_{n} around μ to write (with a suitable ξ_{x} between x and μ, and hence in M)

$$
|I|=\left|\int_{M} \frac{g_{n}^{(q+1)}\left(\xi_{x}\right)}{(q+1)!}(x-\mu)^{q+1} \mathrm{~d} F_{n}(x)\right| \leq \frac{a_{q+1}}{(q+1)!} \mathrm{E}\left|X_{n}-\mu\right|^{q+1}
$$

Next we denote $v=q+1+2 k, M_{1}=M^{c} \cap\{x ;|x| \geq 1\}, M_{2}=M^{c} \cap\{x ;|x|<1\}$, and estimate J. Using bounds for g_{n}, we have

$$
\begin{aligned}
|J| & \leq a n^{k} \int_{M^{c}}|x|^{u} \mathrm{~d} F_{n}(x) \leq a n^{k}\left(\int_{M_{1}}|x|^{v} \mathrm{~d} F_{n}(x)+\int_{M_{2}} 1 \mathrm{~d} F_{n}(x)\right) \\
& \leq a n^{k}\left(2^{v-1} \int_{M_{1}}|x-\mu|^{v} \mathrm{~d} F_{n}(x)+2^{v-1} \int_{M_{1}}|\mu|^{v} \mathrm{~d} F_{n}(x)+\int_{M_{2}} 1 \mathrm{~d} F_{n}(x)\right) \\
& \leq a n^{k}\left(2^{v-1} \mathrm{E}\left|X_{n}-\mu\right|^{v}+\left(2^{v-1}|\mu|^{u}+1\right) \mathrm{P}\left[X_{n} \in M^{c}\right]\right) \\
& \leq a n^{k}\left(2^{v-1}+\frac{2^{v-1}|\mu|^{v}+1}{\varepsilon^{v}}\right) \mathrm{E}\left|X_{n}-\mu\right|^{v},
\end{aligned}
$$

the probability $\mathrm{P}\left[X_{n} \in M^{c}\right]=\mathrm{P}\left[\left|X_{n}-\mu\right|>\varepsilon\right]$ being estimated by the Chebyshev inequality.

Using the Hölder and the Chebyshev inequalities, we get for the terms $J_{j}(j=$ $0, \ldots, q$) the estimates

$$
\begin{align*}
\left|J_{j}\right| & \leq a_{j} \int_{M^{c}}|x-\mu|^{j} \mathrm{~d} F_{n}(x) \tag{2.4}\\
& \leq a_{j}\left(\int_{M^{c}} 1 \mathrm{~d} F_{n}(x)\right)^{(q+1-j) /(q+1)}\left(\int_{M^{c}}|x-\mu|^{q+1} \mathrm{~d} F_{n}(x)\right)^{j /(q+1)} \\
& \leq a_{j}\left(\frac{\mathrm{E}\left|X_{n}-\mu\right|^{q+1}}{\varepsilon^{q+1}}\right)^{(q+1-j) /(q+1)}\left(\mathrm{E}\left|X_{n}-\mu\right|^{q+1}\right)^{j /(q+1)}=a_{j} \frac{\mathrm{E}\left|X_{n}-\mu\right|^{q+1}}{\varepsilon^{q+1-j}} .
\end{align*}
$$

Particularly we will consider the special case $\mu_{\theta}=\mathrm{E}\left[X_{1} \mid \theta\right]$ and suppose that X_{n} is a sum of conditionally (given θ) independent and identically distributed random variables.

Proposition 2.2. Let $X_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ where given θ the variables Y_{i} are i.i.d. For each value of θ let the functions $g_{n}, n \in \mathbf{N}$, satisfy the assumptions of Proposition 2.1 with $\mu=\mu_{\theta}=\mathrm{E}\left[Y_{i} \mid \theta\right]$ and with constants $a, a_{0}, a_{1}, \ldots, a_{q+1}, \varepsilon$ in (2.1) possibly depending on θ. For even naturals m let P_{m} denote a set of all products
$\prod_{j=1}^{s} \mathrm{E}\left[\left|Y_{1}-\mu_{\theta}\right|^{i_{j}} \mid \theta\right]$ where $1 \leq s \leq m / 2$ and integers $i_{1}, \ldots, i_{s} \geq 2$ are such that $\sum_{j=1}^{s} i_{j}=m$, and for m odd let $P_{m}=\left\{1+p, p \in P_{m+1}\right\}$. If there exist the expectations

$$
\begin{equation*}
\mathrm{E}\left(\left(1+\frac{1+\left|\mu_{\theta}\right|^{q+1+2 k}}{\varepsilon_{\theta}^{q+1+2 k}}\right) p_{1 \theta}\right) \quad \text { for all } p_{1 \theta} \in P_{q+1+2 k} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left(a_{j \theta} \varepsilon_{\theta}^{j-q-1} p_{2 \theta}\right) \quad \text { for all } p_{2 \theta} \in P_{q+1}, \quad j=0, \ldots, q+1, \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{E} g_{n}\left(X_{n}\right)=\mathrm{E} \sum_{j=0}^{q} \frac{g_{n}^{(j)}\left(\mu_{\theta}\right)}{j!} \mathrm{E}\left[\left(X_{n}-\mu_{\theta}\right)^{j} \mid \theta\right]+O\left(1 / n^{(q+1) / 2}\right) \quad \text { as } n \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
&\left|\mathrm{E} g_{n}\left(X_{n}\right)-\mathrm{E} \sum_{j=0}^{q} \frac{g_{n}^{(j)}\left(\mu_{\theta}\right)}{j!} \mathrm{E}\left[\left(X_{n}-\mu_{\theta}\right)^{j} \mid \theta\right]\right| \\
& \leq \mathrm{E}\left|\mathrm{E}\left[g_{n}\left(X_{n}\right) \mid \theta\right]-\sum_{j=0}^{q} \frac{g_{n}^{(j)}\left(\mu_{\theta}\right)}{j!} \mathrm{E}\left[\left(X_{n}-\mu_{\theta}\right)^{j} \mid \theta\right]\right|
\end{aligned}
$$

and we apply (2.2). The order of the convergence (2.7) follows from the fact that for an arithmetic mean \bar{Z} of n zero mean i.i.d. random variables Z_{1}, \ldots, Z_{n} and each even positive integer m

$$
\mathrm{E}|\bar{Z}|^{m}=\mathrm{E}\left(\sum_{i=1}^{n} Z_{i} / n\right)^{m} \leq K n^{-m / 2} \sum \mathrm{E} Z_{1}^{i_{1}} \ldots \mathrm{E} Z_{1}^{i_{m / 2}}
$$

where the last sum is over all $\left(i_{1}, \ldots, i_{m / 2}\right)$ with components from $\{0,2,3, \ldots, m\}$ such that $\sum_{\ell=1}^{m / 2} i_{\ell}=m$, and K is a constant depending on m only. For m odd,

$$
\mathrm{E}|\bar{Z}|^{m}=\mathrm{E}|\bar{Z}|^{m} I_{\left[|\bar{Z}|<n^{-1 / 2}\right]}+\mathrm{E}|\bar{Z}|^{m} I_{\left[|\bar{Z}| \geq n^{-1 / 2}\right]} \leq n^{-m / 2}+n^{1 / 2} \mathrm{E} \bar{Z}^{m+1},
$$

the second term in the sum being estimated in the same way as the integral in (2.4) with $x-\mu=z, j=q=m, \varepsilon=n^{-1 / 2}$.

In some applications, $\varepsilon_{\theta}=\mu_{\theta} / 2$ is suitable and the (conditional) moments of Y_{1} are bounded by linear combinations of powers of its first moment. Then we can replace (2.5) and (2.6) as follows.

Proposition 2.3. Let $X_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ where given θ the variables Y_{i} are i.i.d. For each value of θ let the functions $g_{n}, n \in \mathbf{N}$, satisfy the assumptions of Proposition 2.1 with $\mu=\mu_{\theta}=\mathrm{E}\left[Y_{i} \mid \theta\right]>0, \varepsilon=\varepsilon_{\theta}=\mu_{\theta} / 2$, and with constants a, $a_{0}, a_{1}, \ldots, a_{q+1}$ in (2.1) possibly depending on θ. Let moments of Y_{1} satisfy $\mathrm{E}\left[\left|Y_{1}^{j}\right| \mid \theta\right] \leq \sum_{i=1}^{j} c_{i} \mu_{\theta}^{i}$ with some constants $c_{1}, \ldots, c_{j}>0, j=1, \ldots, q+\delta+1+2 k$ (where $\delta=0$ for q odd and $\delta=1$ for q even). If the expectations $\mathrm{E} a_{\theta} \mu_{\theta}^{i}$ for $i=-(q+\delta+2 k), \ldots, q+\delta+$ $1+2 k$ and $\mathrm{E} a_{j \theta} \mu_{\theta}^{i}$ for $i=j-q-\delta, \ldots, j+\delta(j=0, \ldots, q+1)$ exist then (2.7) holds.

3. Example

Let us express the Bayes risk for a Bayes estimator of the expected number e of trials preceeding the first success in a sequence of Bernoulli trials with a success probability p.

Observing I successes during n trials and assuming a prior beta distribution $\mathrm{B}(r, s)$ for p (i.e. the natural conjugate system distribution), the Bayes estimator (under the quadratic loss) of $e=(1-p) / p$ is

$$
\widehat{e}=\mathrm{E}(e \mid I)=(n-I+s) /(I+r-1) .
$$

For the associated Bayes risk we have

$$
\mathrm{BR} \widehat{e}=\mathrm{E}(e-\widehat{e})^{2}=\mathrm{E} \operatorname{var}(e \mid I)=\mathrm{E} \frac{(n-I+s)(n+r+s-1)}{(I+r-1)^{2}(I+r-2)}=\frac{1}{n} \mathrm{E} g_{n}(I / n)
$$

with

$$
\begin{equation*}
g_{n}(i)=(1-i+s / n)(1+(r+s-1) / n)(i+(r-1) / n)^{-2}(1+(r-2) / n)^{-1} . \tag{3.1}
\end{equation*}
$$

An asymptotic expansion of $\mathrm{E} g_{n}(I / n)$ for $n \rightarrow \infty$ is obtained by conditioning on p and expanding around $\mathrm{E}(I / n \mid p)=p$. With regard to assumptions of Proposition 2.1 we have $q=0, k=3, g_{n}(i) \leq$ const $\cdot(r-2)^{-3} n^{3}$. We take $\mu=p, \varepsilon=p / 2$, hence $g_{n}(p)$ and g_{n}^{\prime} on ($p / 2,3 p / 2$) are bounded for all n by a multiple of p^{-3} and p^{-4}, respectively. Therefore, Proposition 2.3 can be applied. For $r>7$ the expectations $\mathrm{E} p^{i}$ for $i=-7, \ldots, 8, \mathrm{E} p^{-3} p^{i}$ for $i=-1,0$, and $\mathrm{E} p^{-4} p^{i}$ for $i=0,1,2$ are finite and we can write $\mathrm{E} g_{n}(I / n)=\mathrm{E} g_{n}(p)+O(1 / \sqrt{n})$, which yields

$$
\mathrm{BR} \widehat{e}=\frac{1}{n} \mathrm{E} \frac{1-p}{p^{3}}+O\left(1 / n^{3 / 2}\right)=\frac{1}{n} \frac{s(r+s-1)(r+s-2)}{(r-1)(r-2)(r-3)}+O\left(1 / n^{3 / 2}\right)
$$

In fact, under the same assumption $r>7$ this formula can be written with $O\left(1 / n^{2}\right)$ instead of $O\left(1 / n^{3 / 2}\right)$ - if the expansion is made with $q=1$.

Resumé

Příspěvek uvádí asymptotický rozvoj středních hodnot náhodných veličin, které jsou funkcemi součtù podmíněně nezávislých náhodných veličin. Jako př̌iklad je uveden rozvoj bayesovského rizika.

References

1. J. Hurt (1986), Asymptotic expansions for moments of functions of stochastic processes and their applications, Statist. Decisions 4, no. 2-3, 251-271.
[^0]
[^0]: Mgr. Michal Friesl, Ph.D.
 Department of Mathematics
 Faculty of Applied Sciences
 University of West Bohemia
 Address: Univerzitní 22, 30614 Pilsen, Czech Republic
 E-mail: friesl@kma.zcu.cz
 URL: http://home.zcu.cz/~~friesl http://www.kma.zcu.cz/Friesl

