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Abstract: The paper deals with nonparametric Bayes estimators in the Koziol-
Green model of random censorship. A gamma process is assumed as a prior
distribution for cumulative hazard rate and the Bayes estimator incorporating
the proportional hazards censorship property of the model is presented. The
estimator is also applied to two data sets from literature.
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1 Introduction
In survival data analysis we deal with times to occurrence of an event. If a variable of
interest X is censored from the right by a time censor Y (random variable independent of
X) we get the random censorship model. In effect we observe just a pair

Z = min(X,Y ) and I = I[X≤Y ] , (1)

where I is indicator of noncensored observation. In present paper we consider the propor-
tional hazards censorship model of Koziol and Green (1976), in which survival functions
S(t) = Pr(X > t), t > 0, of X and SY (t) = Pr(Y > t), t > 0, of the time censor are
moreover assumed to satisfy

SY (x) =
(
S(x)

)γ
, x > 0 , (2)

with some positive constant γ. Using cumulative hazard rate Λ(t) = − ln S(t) of X ,
condition 2 states that the cumulative rate of Y equals γΛ. For continuous distributions
(but this will not actually be our case) the model can similarly be defined by the propor-
tionality assumption of noncumulative hazard rates (λ(t) = −S ′(t)/S(t) of X , e.g.) and
the conditions are also equivalent to independence of random variables Z and I . Then
the constant γ is linked with the probability that the uncensored time will be observed,
the relation is Pr(I = 1) = Pr(X ≤ Y ) = (1 + γ)−1. Csörgő (1988) reviews various
implications of assumption 2 to inference.

The subject of the present paper is nonparametric Bayesian estimation of the survival
function S. Using nonparametric Bayesian setup (introduced by Ferguson, 1973) we are
not limited with possible shapes of S to certain parametric family. Instead, S (or Λ) is
picked from a class of potentially all survival functions (cumulative hazard rates). Of
course then the prior does not act on a space of values of several parameters of the family
but describes distribution of the function S (or function Λ) considered as a stochastic
process, see Walker et al. (1999) for a review.
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In survival analysis, processes neutral to the right (Doksum, 1974), i.e. with corre-
sponding cumulative hazard rate process Λ having independent increments, prove man-
ageable as prior processes. Bellow we will use the gamma process. The next section
introduces notation and prior distribution in detail, Section 3 describes the Bayes estima-
tor. In Section 4 an application of the estimator to two data sets taken from literature is
shown.

2 The Model
We work with data formed by a random sample (Z1, I1), . . . , (Zn, In) from 1 assuming 2.
The sample Z1, . . . , Zn of the observed minima consists of say N ≤ n distinct times (we
allow for ties) denoted by

T1 < · · · < TN , (3)

we also define T0 = 0 and TN+1 = ∞. Let

Nj = #{k; Zk > Tj} , j = 0, . . . , N ,

be the number of items failed or censored after Tj , i.e. Nj is the number of items at risk
at time Tj+1. Let

Uj =
∑

k;Zk=Tj

Ik and Cj =
∑

k;Zk=Tj

(1− Ik) , j = 1, . . . , N ,

denote the number of uncensored and censored observations with times Zk equal to Tj

and let
i = i(s) = max{k; Tk ≤ s}+ 1 ∈ {1, . . . , N + 1} (4)

indexes the interval [Ti−1, Ti) which contains s.
We will assume that prior distribution of the unknown parameter Λ is a gamma process

Λ(0) = 0 and Λ(s, t) = Λ(t)− Λ(s) ∼ G(n0, n0Λ0(s, t)) , 0 ≤ s ≤ t ,

where Λ0 is cumulative hazard rate of some continuous distribution, n0 > 0, and G(a, p)
denotes the gamma distribution with shape parameter p and scale parameter 1/a. As we
have

EΛ(t) = Λ0(t) and varΛ(t) = Λ0(t)/n0 , t > 0 ,

the parameters Λ0 and n0 represent a “central distribution” and accuracy of prior infor-
mation, respectively.

Recall that even if the ‘mean’ cumulative hazard rate Λ0 is continuous, the realization
of the gamma process Λ is with probability 1 a cumulative hazard rate of some discrete
distribution (this is where positive probability of ties in data arises) and has infinitely many
jumps in every interval on which Λ0 increases. Note also that ES(t) = E exp(−Λ(t))
considered as a survival function does not equal to exp(−EΛ(t)) = exp(−Λ0(t)) but
rather to product integral

∏
(0,t](1 − EΛ∗( ds)) where Λ∗(t) = − ∫

(0,t]
(S( ds)/S(s−)) is

a modification of cumulative hazard rate related to S which is occasionally used.
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Finally, let γ have a prior density π(γ) with respect to some measure µ on (0,∞) and
be independent of Λ.

If the censoring distribution was independent of Λ, standard formulae of Ferguson and
Phadia (1979) would apply (the Y ′s could be considered fixed) and yield the estimator

ŜFP(t) =

(i−1∏
j=1

( n0 + Nj−1

n0 + Nj−1 + 1

)n0Λ0(Tj−1,Tj)
)
·
( n0 + Ni−1

n0 + Ni−1 + 1

)n0Λ0(Ti−1,t)

(5)

where i = i(t) is defined in 4. But regarding 2 we can find a better estimator that will
utilize the additional information from Y .

3 Posterior Distribution and Estimators

The posterior distribution is described in terms of neutral to the right process again. We
use the notation

Mj(γ) = n0 + Nj(1 + γ) , j = 0, . . . , N , and

cj(γ) =

Uj∑

k=1

Cj∑

`=1

(−1)k+`

(
Uj

k

)(
Cj

`

)
ln

Mj(γ) + Cj

Mj(γ) + Cj + k + `γ
,

qj(γ) =
(
Mj−1(γ)

)−n0Λ0(Tj−1,Tj)cj(γ), j = 1, . . . , N .

Proposition 1. Given γ the process Λ a posteriori corresponds to a neutral to the right
distribution which also has jumps at observation times 3. The increments of Λ over
intervals not containing Tj’s are (given γ) gamma distributed, specifically for (s, t] ⊂
(Tj−1, Tj) we have

(Λ(s, t) | data, γ) ∼ G(Mj−1(γ), n0Λ0(s, t)).

The size of the jump at Tj has probability density function

x−1e−(Mj(γ)+Cj)x(1− e−x)Uj(1− e−γx)Cj/cj(γ), x > 0,

where cj(γ) is a normalizing constant. Marginal posterior distribution of γ has density

π(γ | data) ∝
( N∏

j=1

qj(γ)
)
π(γ) (6)

with respect to µ.

Proof. The posterior distribution follows by recognizing the alleged distributions in pos-
terior moment generating functions of increments of Λ, similarly to the case with no ties
in Friesl (2005).
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We may note that the conditional distribution of jump sizes is not affected by disloca-
tion of the observed times Tk and does not depend on the assumed prior central rate Λ0

either. It is given solely by configuration of counts of uncensored and censored observa-
tions. This is an implication of homogeneity of the Lévy measure of the prior process.

Using the independent increments property of conditional posterior distribution of
the process Λ for given γ we can express the posterior conditional expected value of
S(s) = exp(−Λ(s)) =

(∏
j<i e

Λ(Tj−)−Λ(Tj−1)eΛ(Tj)−Λ(Tj−)
)
eΛ(s)−Λ(Ti−1) given γ, here

i = i(s) is from 4. Averaging further over γ with weights given by the right hand side of
6 we get

A(s) =

∫ (∏
j<i

q+
j (γ)

)(∏
j≥i

qj(γ)
)(Mi−1(γ)

M+
i−1(γ)

)n0Λ0(Ti−1,s)

π(γ | data) dµ(γ) ,

where q+
j (γ) is defined in the same way as qj(γ) with M.(γ)’s in definitions of qj(γ) and

cj(γ) replaced by M+
. (γ) = M.(γ) + 1. The estimator of S follows.

Proposition 2. The Bayes estimator of the survival function S(t) taken as its posterior
expected value reads

Ŝ(t) = A(t)/A(0) .

Proof. To get the expectation we divide A(t) by normalizing constant of 6 which can be
written as A(0).

The expression is explicit up to the integration with respect to γ. No (numerical)
integration is needed provided the range of γ is finite.

4 Examples
As an illustration we consider two data sets from literature. Besides the above estimator
Ŝ we display the Bayes estimator without the Koziol-Green assumption (i.e. ŜFP from 5)
and also the standard Kaplan-Meier (KM) nonparametric estimator

ŜKM(t) =

i(t)−1∏
j=1

(
1− Uj

Nj−1

)
, t < TN ,

and Abdushukurov, Cheng and Lin (ACL) estimator

ŜACL(t) =
(#{k; Zk > t}

n

)Pn
1 Ij/n

=
(Ni(t)−1

n

)PN
1 Uj/n

.

The ACL estimator reflects the proportionality property of the Koziol-Green model simply
by taking a power (the exponent equals to estimated proportion of uncensored items) of
the sample survival function estimator of variable Z.

Where applicable the prior distribution for γ is taken uniform on the set of nine values
of γ yielding (1+γ)−1 = 0.1, . . . , 0.9. Several other choices of prior on this set were also
tested and except for very sharp prior knowledge of γ the choice of probabilities does not
seem in both examples to affect the results much.
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Figure 1: Prostate cancer data. ACL and KM estimators (thick solid and thin dotted stairs)
of S together with Exp(100) survival function (smooth dashed-dotted curve).

Figure 2: Prostate cancer data. Nonparametric Bayes estimators of S with (solid)
and without (dotted) the Koziol-Green model assumption, together with exp(−Λ0(t))
(dashed-dotted). Using Λ0 of Exp(100), n0 = 10 (thick) and n0 = 100 (thin).

The first data set are survival times of 211 state IV prostate cancer patients treated
with ostregon at V.A.C.U.R.G. as presented in Hollander and Proschan (1979). Among
n = 211 observations 90 are uncensored, minimum is 0 and maximum 164 months. The
number of distinct times among observations is 97, of which 53 are ties. In figure 1
we can see Kaplan-Meier and ACL estimators of the survival function S. The graph is
completed by the survival function of the exponential distribution with mean 100 month,
which we use as a centre of the prior gamma process when computing nonparametric
Bayes estimators. This distribution was tested to fit the data in Koziol and Green (1976)
using proportionality assumption, but it is rejected by other tests; the proportionality as-
sumption for these data may not hold.

Figure 2 displays nonparametric Bayes estimators Ŝ and ŜFP corresponding to the case
with (without, respectively) the proportionality assumption. As a prior sample size we
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select n0 = 10 and n0 = 100. While ŜFP only jumps at times with at least one uncensored
observation (at times with no uncensored observation we may however note nonsmooth
changes in slope), the estimator Ŝ jumps at all observation times.

Figure 3: Channing House data. ACL (thick solid) and KM (thin dotted) estimators
of S together with survival function of Weibull distribution with cumulative hazard rate
Λ0(x) = (x/θ)b, x > 0, θ = 1071, b = 15.9 (dashed-dotted).

Figure 4: Channing House data. Nonparametric Bayes estimators in the Koziol-Green
model (thick) using n0 = 50 and Weibull shape parameter b/2 (solid) and 2b (dotted),
together with ACL estimator (thin stairs in the middle) and prior mean survival functions
(dashed-dotted and dashed).

Figures 3–5 refer to the Channing House data (Hyde, 1977) on lifetimes of 97 men,
ignoring left truncation, which satisfy the Koziol-Green model (Csörgő, 1988). The data
consist of n = 97 observations out of which 46 are uncensored. Minimal observed life-
time is 775, maximal 1153 month. We find 10 duplicate observation times and 2 tripli-
cated. Figure 3 shows ŜKM and ŜACL estimators, and a reference prior mean we impose,
namely the Weibull distribution with parameters obtained by transformation of quantile
estimates of associated Weibull distribution of Z.
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Figure 5: Channing House data. Nonparametric Bayes estimators of S with (thick) and
without (thin) the Koziol-Green model assumption using n0 = 50 (solid), n0 = 10 (dot-
ted) and Weib(0.9θ, b/2), together with mean prior (bellow) and ACL estimator (up).

Figure 4 reflects influence of the choice of shape parameter b in the prior (twice the
estimated value and half of it) on the nonparametric Bayes estimator when n0 = 50. We
can see a difference in the tails. Figure 5 illustrates the effect of the strength of belief in
the prior to the results. We take some incorrect prior and confront n0 = 50 with n0 = 10.

A final note concerns practical computation of the estimator. One should consider a
number of significant digits needed to evaluate cj(γ) and c+

j (γ) to get a sufficient accuracy
for large values of Uj and Cj .
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