

NEW Si-B-C-N COATINGS: AB-INITIO CALCULATIONS AND EXPERIMENTAL VERIFICATION

<u>J. Houska</u>, J. Vlcek, J. Kalas, S. Hreben University of West Bohemia, Plzen, Czech Republic

> M.M.M. Bilek, D.R. McKenzie University of Sydney, Sydney, Australia

Motivation for new quaternary Si-B-C-N materials: exceptional oxidation resistance

Solid: Si-B-C-N

Dashed: Si-C-N = =

Dotted: other coatings...

 Very high oxidation resistance (up to a 1350 °C substrate limit): important role of the Si/C ratio and the B content

[J. Vlcek et al., J. Vac. Sci. Technol. A 23, 1513 (2005)]

Controllable properties of sputtered Si-B-C-N materials - hardness, compressive stress, electrical conductivity

- Properties controlled by C-Si-B/B₄C-Si composed target composition, N₂-Ar gas mixture composition, negative rf substrate bias
- High hardness, very low stress, promising optical and electrical properties

SUPPORT OF AN EXPERIMENT BY AB-INITIO SIMULATIONS

- Density functional theory (DFT) as implemented in the Car-Parrinello molecular dynamics (CPMD code)
- Atom cores and inner electron shells described by pseudopotentials (Goedecker type)
- Valence electrons described by Kohn-Sham (Schrödinger-like) equations expanded in a basis of plane-wave functions using BLYP functional
- <u>Liquid-quench algorithm</u> captures material formation conditions arising from rapid cooling of the localized melt around sites of energetic ion impact
- 3-dimensional periodical cubic cell with ~100 atoms

Molecular-dynamics simulations of Si-B-C-N materials

Si: ●,B: ●, C: ●, N: ○,

2 valence electrons:

- Si₃₂B₈C₆N₅₄ [75% Si]
 Single Si-N bonds
 ⇒ high coordination
- $Si_{11}B_{14}C_{39}N_{36}$ [5% Si] Double C=N, C=C and B=N, and triple C≡N bonds
 - \Rightarrow low coordination

Calculated bonding statistics and experimental verification

Composition Si₃₂B₈C₆N₅₄ (Ar, H, O neglected)

- Example of hard, transparent, thermally stable composition
- Comparison of bonding statistics with IR spectra (no oscillator strengths, single BN bonds in both c-BN and h-BN peaks)

Molecular-dynamics simulations of Si-B-C-N-Ar materials

Si: ●,B: ○, C: ○, N: ○,

Ar: O

2 valence electrons:

- Si₃₁B₈C₉N₄₆Ar₆ [high |U_b|]
 Si₃₁B₈C₁₃N₄₆Ar₂ [low |U_b|]
 : formation of cavities
 with isolated Ar atoms
- Experimentally known effect of Ar content on material characteristics

[J. Houska et al., J. Phys.: Condens. Matter 18, 2337 (2006)]

Effect of implanted Ar on Si-B-C-N materials (molecular dynamics)

Simulated composition $Si_{31}B_8C_{13}N_{46}Ar_2$

- Segregation of Si around Ar-cavities (long flexible bonds) ⇒ low energy penalty ⇒ low stress
- Formation of a two phase close-to-Ar (37% Si) and far-from-Ar (28 % Si) material ⇒ enhanced extrinsic hardness

Temperature stability of Si-(B)-C-N materials (molecular dynamics)

Simulated compositions

$$Si_{39}B_{14}C_{11}N_{44}, Si_{53}C_{11}N_{44}, Si_{11}B_{14}C_{39}N_{44}, Si_{11}C_{53}N_{44}$$

- Decomposition reactions
 Si₃N₄ + 3C -> 3SiC + 2N₂
 and Si₃N₄ -> 3Si + 2N₂
 => mass loss due to
 formation of N₂ molecules
- Less N₂ molecules formed at (1) higher Si/C ratio and (2) B addition

Simulation

bond type	bond lifetime 1000 K (%)	bond lifetime 2400 K (%)
low Si/C (S	Si ₁₁ B ₁₄ C ₃₉ N ₃₆)	
Si-N	46	33
B-N	53	45
C-N	48	40
high Si/C ($Si_{32}B_8C_6N_{54})$	
Si-N	82	59
B-N	89	70
C-N	96	68

Temperature stability of Si-(B)-C-N materials (molecular dynamics)

Simulated compositions Si₃₂B₈C₆N₅₄, Si₁₁B₁₄C₃₉N₃₆

Higher bond lifetimes in compositions with higher Si/C => more stable network => limited diffusion => decomposition reactions shifted to higher T => improved thermal stability

[J. Houska et al., Europhys. Lett. 76, 512 (2006)]

Role of B - comparing of Si-C-N and Si-B-C-N (experiment and molecular dynamics)

- Preferential bonding of B to N ⇒ converting of some N lonepairs to bonding electrons ⇒ higher nitrogen coordination
- Improved mechanical properties and thermal stability

CONCLUDING REMARKS

- A complex quaternary system Si-B-C-N: chemical bonding structure, electronic structure, high-temperature behaviour, role of energy, Si, B, C and implanted Ar
- Support of an experiment by simulations: providing information on atomic scale inaccessible experimentally
- Difference between Si-based and C-based networks:
 single Si bonds, many double and triple C bonds
- Role of implanted Ar atoms: segregation of Si around Ar-cavities ⇒ low stress, enhanced extrinsic hardness
- High-temperature stability: longer bond lifetimes at higher Si/C, lower rate of N₂ formation at higher Si/C and after addition of B