

Tantalum oxynitride films with smoothly tunable composition, electronic structure and properties

Jiri Houska, J. Vlcek, J. Rezek, R. Cerstvy

Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Czech Republic

Acknowledgment

Grant Agency of the Czech Republic through Project No. 14-03875S

Outline

- How to prepare all films, including the O-rich ones, at high deposition rates (avoiding target poisoning)
- How to prepare oxynitride films with elemental compositions smoothly tuned in the full range from oxides to nitrides (despite significantly higher reactivity of O₂ than that of N₂)
- What are the relationships between the elemental composition and the structure and properties of the films

[J. Rezek, J. Vlcek, J. Houska, R. Cerstvy, Thin Solid Films 566, 70 (2014)]

- High-power impulse reactive mag. sputtering in Ar+O₂+N₂ using patented reactive gas flow control (RGFC)
- RGFC: programmable logical controller opens / closes
 O₂+N₂ flux using pre-selected critical values of:
 - dischage current (responds more sensitively e.g. for Zr)
 - or O₂+N₂ partial pressure (responds more sensitively e.g. for Ta)

- High-power impulse reactive ma using patented reactive gas flov ₹
- RGFC: programmable logical co All Supports of the Policy o

 - or O₂+N₂ partial pressure (respon

- High-power impulse reactive mag. sputtering in Ar+O₂+N₂ using patented reactive gas flow control (RGFC)
- RGFC: programmable logical controller opens / closes
 O₂+N₂ flux using pre-selected critical values of:
 - dischage current (responds more sensitively e.g. for Zr)
 - or O₂+N₂ partial pressure (responds more sensitively e.g. for Ta)

- No microarcs and discharge instabilities resulting from compound mode
- No understoichiometry resulting from metallic mode

[J. Vlcek et al., European patent application No. 13155936.1-1353]

- High-power impulse reactive mag. sputtering in Ar+O₂+N₂ using patented reactive gas flow control (RGFC)
- RGFC: programmable logical controller opens / closes
 O₂+N₂ flux using pre-selected critical values of:
 - dischage current (responds more sensitively e.g. for Zr)
 - or O₂+N₂ partial pressure (responds more sensitively e.g. for Ta)

 \bigcup

- Densified ($n_{550} = 2.19-2.22$) stoichiometric ($k_{550} \le 6 \times 10^{-3}$) **ZrO₂ at deposition rate 140 nm/min**
- Densified ($n_{550} = 2.09-2.15$) stoichiometric ($k_{550} \le 1 \times 10^{-4}$) Ta₂O₅ at deposition rate 345 nm/min

[J. Vlcek, J. Rezek, J. Houska, R. Cerstvy, R. Bugyi, Surf. Coat. Technol. 236, 550 (2013)] [J. Vlcek, J. Rezek, J. Houska, T. Kozak, J. Kohout, Vacuum 114, 131 (2015)]

Smooth control of O/N

Challenges

- Extra O coming from the poisoned sputter target
- O₂ has higher reactivity than N₂
 (easier dissociation on and subsequent bonding to film surf.)

Solution

- Reactive gas flow control ⇒ no/limited target poisoning ⇒ oxygen and nitrogen on the same "starting line"
- Proper location and orientation of the reactive gas inlets (in front of the target and towards the target, respectively)
 - \Rightarrow high dissociation of both O_2 and N_2
 - \Rightarrow high reactivity of O₂, low reactivity of N₂ high reactivity of O, high reactivity of N

Smooth control of O/N

Challenges

- Extra O coming from the poiso
- O₂ has higher reactivity than N₂ (easier dissociation on and subjection)

Solution

- Reactive gas flow control ⇒ nc
 ⇒ oxygen and nitrogen on the
- Proper location and orientation of the reactive gas inlets (in front of the target and towards the target, respectively)
 - \Rightarrow high dissociation of both O_2 and N_2
 - \Rightarrow high reactivity of O₂, low reactivity of N₂ high reactivity of O, high reactivity of N

TaON - deposition conditions

- HIPIMS of Ta target (100 mm in diam., direct water cooling)
- Ar+O₂+N₂ gas mixture (pressure close to 2 Pa)
- TruPlasma 4002 (TRUMPF Huettinger) with RGFC
 - repetition frequency 500 Hz
 - voltage pulse length 50 μs
 - duty cycle 2.5 %
- Average target power density
 - 50 Wcm⁻² during deposition
 - up to 2390 Wcm⁻² in a pulse

Si and glass substrate (floating potential, T < 250 °C)

TaON - smoothly varied elemental composition

■ Indeed, the higher reactivity of oxygen has been almost suppressed (e.g. 50% O_2 + 50% N_2 ⇒ $Ta_{27}O_{40}N_{31}$) ⇒ ability to prepare any oxynitride composition

TaON - smoothly varied elemental composition

- Indeed, the higher reactivity of oxygen has been almost suppressed (e.g. 50% O_2 + 50% N_2 ⇒ $Ta_{27}O_{40}N_{31}$) ⇒ ability to prepare any oxynitride composition
- Lower O+N content (higher Ta content) \Rightarrow lower O₂+N₂ flow (i.e. RGFC \Rightarrow as much reactive gas as we need, no more)

TaON - deposition rate

Focus on O_2 & N_2 dissociation \Rightarrow short duty cycle 2.5% \Rightarrow 97 nm/min for dense oxide, up to 190 nm/min for oxynitride

(Focus on dep. rate \Rightarrow duty cycle 10% \Rightarrow 345 nm/min for oxide)

TaON - structure (XRD)

XRD:

$$Ta_2O_5 \rightarrow TaON \rightarrow Ta_3N_5 / TaN$$

TaON - structure (FTIR)

XRD:

$$Ta_2O_5 \rightarrow TaON \rightarrow Ta_3N_5 / TaN$$

FTIR:

$$Ta_2O_5 \rightarrow Ta_2O_5$$
-based solid solution

$$\rightarrow \text{TaO}_{x}N_{y} \rightarrow \text{TaN}$$
 (metallic conductivity)

TaON - optical constants

Transparent (O-rich) compositions: Cody-Lorentz dispersion

$$\varepsilon_2 = \mathsf{ABE_nE/[(E^2 - E_n^2)^2 + B^2E^2]} \; (\mathsf{E-E_g})^2 / [(\mathsf{E-E_g})^2 + \mathsf{E_p}^2] \; \mathsf{E} \geq \mathsf{E_g+E_t}$$
 Lorentz term, L(E) Cody term, G(E)

$$\varepsilon_2 = L(E_g + E_t) G(E_g + E_t) (E_g + E_t) / E \exp[(E - E_g - E_t) / E_u]$$
 $E < E_g + E_t$ (Urbach tail)

fitted parameters discussed below include

- **E**_g ("narrowly defined" optical gap)
- Eg+Et ("widely defined" optical gap incl. "defect" states)
- **B** (oscillator broadening)
- Opaque (N-rich) compositions: Lorentz oscillators

TaON - optical constants

• 0% N₂ in reactive gas (RG):

 $E_g = 4 \text{ eV}, E_t = 0, n_{550} = 2.12$ \Rightarrow pure & densified Ta_2O_5

- 25-40% N_2 in RG: narrower gap ($E_g = 3 \text{ eV}$), sharp band edge ($E_t = 0$), similar n_{550} of $2.02-2.03 \Rightarrow Ta_2O_5$ -based
- **50-60%** N₂ in RG: narrower gap (E_g+E_t = 2.5 eV), defects (E_t = 0.2-0.25 eV) \Rightarrow strong Urbach tail (k_{550} = 0.006-0.010)
 - **75-100% N₂ in RG:** metallic (TaN-based)

TaON - optical gap (E_q+E_t) , electrical resistivity

- 0% N₂ in RG:
 - 4 eV

 $7.7\times10^9~\Omega cm$

■ 25-40% N₂ in RG:

3 eV

up to $6.3\times10^{10}~\Omega cm$

• 50-60% N₂ in RG:

2.5 eV, defects (high E_t)

- \Rightarrow down to 9.1×10⁵ Ω cm
- 75-100% N₂ in RG:

opaque, down to

 $4.2 \times 10^{-2} \Omega cm$

TaON - explanation of electrical resistivity (ρ)

- Problem: non-monotonous dependence of ρ on O/N
- Solution: monotonous dependence of ρ on oscillator
 broadening (high B ⇒ defects ⇒ more free charge carries)

М

Conclusions

- Pulsed reactive gas flow control ⇒ stoichiomentric oxides and oxynitrides at hundred(s) nm/min
- O is only slightly more reactive than N ⇒ dissociation (gas inlet position!) leads to tunable oxynitride compositions
- TaON: smoothly varied composition, structure, electronic structure (band gap), optical properties, electrical resistivity
- Ability to achieve visible range optical gap (e.g. $50\% O_2 + 50\% N_2 \Rightarrow Ta_{27}O_{40}N_{31}$ with 2.5 eV) \Rightarrow research in the field of visible-light photocatalysis

