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Outline

= How to prepare all films, including the O-rich ones, at high
deposition rates (avoiding target poisoning)

= How to prepare oxynitride films with elemental compositions
smoothly tuned in the full range from oxides to nitrides
(despite significantly higher reactivity of O, than that of N.,)

= What are the relationships between the elemental
composition and the structure and properties of the films

[ J. Rezek, J. Vicek, J. Houska, R. Cerstvy, Thin Solid Films 566, 70 (2014) ]
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Deposition technique (HIPIMS with RGFC)

= High-power impulse reactive mag. sputtering in Ar+O,+N,,
using patented reactive gas flow control (RGFC)

» RGFC: programmable logical controller opens / closes
O,+N, flux using pre-selected critical values of:
- dischage current (responds more sensitively e.qg. for Zr)
- or O,+N,, partial pressure (responds more sensitively e.g. for Ta)
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Deposition technique (HIPIMS with RGFC)

= High-power impulse reactive mag. sputtering in Ar+O,+N,,
using patented reactive gas flow control (RGFC)

» RGFC: programmable logical controller opens / closes
O,+N, flux using pre-selected critical values of:
- dischage current (responds more sensitively e.qg. for Zr)
- or O,+N,, partial pressure (responds more sensitively e.g. for Ta)

U

= No microarcs and discharge instabilities resulting from
compound mode

* No understoichiometry resulting from metallic mode

[J. Vicek et al., European patent application No. 13155936.1-1353]
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Deposition technique (HIPIMS with RGFC)

= High-power impulse reactive mag. sputtering in Ar+O,+N,,
using patented reactive gas flow control (RGFC)

» RGFC: programmable logical controller opens / closes
O,+N, flux using pre-selected critical values of:
- dischage current (responds more sensitively e.qg. for Zr)
- or O,+N,, partial pressure (responds more sensitively e.g. for Ta)

U
» Densified (ng5, = 2.19-2.22) stoichiometric (Kgg, < 6x10-3)
ZrO, at deposition rate 140 nm/min
» Densified (ng5, = 2.09-2.15) stoichiometric (Kggp < 1%x104)
Ta,O¢ at deposition rate 345 nm/min

[ J. Vicek, J. Rezek, J. Houska, R. Cerstvy, R. Bugyi, Surf. Coat. Technol. 236, 550 (2013) ]

[ J. Vicek, J. Rezek, J. Houska, T. Kozak, J. Kohout, Vacuum 114, 131 (2015) ]
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Smooth control of O/N

Challenges
= Extra O coming from the poisoned sputter target

= O, has higher reactivity than N,
(easier dissociation on and subsequent bonding to film surf.)

Solution

» Reactive gas flow control = no/limited target poisoning
—> oxygen and nitrogen on the same "starting line"

* Proper location and orientation of the reactive gas inlets
(in front of the target and towards the target, respectively)
= high dissociation of both O, and N,

= high reacitivity-of-65,tew-reactivity of N,
high reactivity of O, high reactivity of N
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Smooth control of O/N
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TaON - deposition conditions

= HIPIMS of Ta target (100 mm in diam., direct water cooling)
= Ar+0O,+N, gas mixture (pressure close to 2 Pa)

* TruPlasma 4002 (TRUMPF Huettinger) with RGFC
- repetition frequency 500 Hz

- voltage pulse length 50 ps J+\_
- duty cycle 2.5 % R e
y y 0 . ~ > B::'<
= Average target power density q
- 50 Wem2 during deposition AN (1
- up to 2390 Wem=2 in a pulse

= Siand glass substrate (floating potential, T < 250 °C)
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TaON - smoothly varied elemental composition

* |[ndeed, the higher reactivity of oxygen has been almost
suppressed (e.g. 50% O, + 50% N, = Ta,;0,,N3,)
—> ability to prepare any oxynitride composition
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TaON - smoothly varied elemental composition

* |[ndeed, the higher reactivity of oxygen has been almost
suppressed (e.g. 50% O, + 50% N, = Ta,;0,,N3,)

—> ability to prepare any oxynitride composition

Lower O+N content (higher Ta content) = lower O,+N, flow
(.,e. RGFC = as much reactive gas as we need, no more)
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TaON - deposition rate

Focus on O, & N, dissociation = short duty cycle 2.5% =
97 nm/min for dense oxide, up to 190 nm/min for oxynitride

(Focus on dep. rate = duty cycle 10% = 345 nm/min for oxide)
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TaON - structure (XRD)
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TaON - structure (FTIR)
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TaON - optical constants

= Transparent (O-rich) compositions: Cody-Lorentz dispersion

£, = ABE,E/[(E? - E,?)? + B2E?] (E-E,)%/[(E-E,)? +E,?] E = E+E,
Lorentz term, L(E) Cody term, G(E)

g, = L(E,+Ey) G(E,*+E) (E,+E)/E exp[(E-E,-E)/E,] E < E +E,
(Urbach tail)

fitted parameters discussed below include

- B, ("narrowly defined" optical gap)
- E,+E, ("widely defined” optical gap - incl. "defect” states)
-B (oscillator broadening)

= Opaque (N-rich) compositions: Lorentz oscillators
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TaON - optical constants
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TaON - optical gap (E,+E,), electrical resistivity
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TaON - explanation of electrical resistivity (p)

= Problem: non-monotonous dependence of p on O/N

= Solution: monotonous dependence of p on oscillator
broadening (high B = defects = more free charge carries)

i

0.1
0.01]

resistivity, p (10" Qcm)

|_\

m

w
asanl

1E-4
3

10.! 30%N, ' '

25% N

2

\a

40% N
O% I\IZ\. 2

e, = L(E)G(E)
(E2E +E)

1 ¢ =L(E+E) G(E +E) (E +E)/E =%

(E<Eg+Et)

{ L(E) = ABE E/[(E*E *)*+B°E’]

G(E) = (E-E))/[(E-E))*+E ]

50% N,

]

]

|
N)% N,

=1

0

1 2

3

4

Oscillator broadening, B (eV) 15/16



Conclusions

* Pulsed reactive gas flow control = stoichiomentric

oxides and oxynitrides at hundred(s) nm/min

= O is only slightly more reactive than N = dissociation

(gas inlet position!) leads to tunable oxynitride compositions

= TaON: smoothly varied composition, structure, electronic

structure (band gap), optical properties, electrical resistivity

= Ability to achieve visible range optical gap

(e.g. 50% O, + 50% N, = Ta,;0,,N3; with 2.5 eV)
= research in the field of visible-light photocatalysis
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