Role of boron in amorphous SiBCN and nanocomposite MSiBCN

Jiri Houska

Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Plzen (Pilsen), Czech Republic

Role of boron in amorphous SiBCN and nanocomposite MSiBCN

Jiri Houska

Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Plzen (Pilsen), Czech Republic

Acknowledgment (2001-2017)

- J. Capek, R. Cerstvy, J. Cizek, S. Hreben, J. Kalas, J. Kohout, M. Kormunda,
 S. Kos, P. Mares, J. Martan, V. Perina, V. Petrman, S. Potocky, V. Simova,
 P. Steidl, J. Vlcek, P. Zeman, S. Zuzjakova (University of West Bohemia in Plzen)
- M. Bilek et al. (Sydney), L. Martinu et al. (Montreal), E.I. Meletis et al. (Arlington)

Predecessors and motivation

■ **SiCN and BCN films** (1990's):

- controllable properties of SiCN such as hardness or thermal stability, but not as good as after B incorporation
- high compressive stress of BCN

SiBCN by pyrolysis

[R. Riedel et al., A silicoboron carbonitride ceramic stable to 2000 °C, Nature 382, 796 (1996)]

SiBCN films

[J. Vlcek et al., J. Vac. Sci. Technol. A 23, 1513 (2005)]: first paper on sputtered SiBCN [J. Houska, Ceram. Int. 41, 7921 (2015)]: includes recent overview on sputtered SiBCN

- amorphous structure stable up to a 1700 °C limit
- extremely high oxidation resistance in air above 1500 °C
- high H up to 44 GPa and $E/(1-v^2)$ up to 240 GPa
- controllable $E_{\rm g}$ = 0 to 3.5 eV \Rightarrow transparency ($k_{\rm 550nm}$ = 2×10⁻⁴) or finite resistivity (~10¹ Ω m) depending on composition

MSiBCN films

```
[ M. Zhang et al., Appl. Surf. Sci. 357, 1343 (2015) ] : example for M = Hf [ J. Houska et al., Ceram. Int. 42, 4361 (2016) ] : example for M = Zr
```

- wider range of structures, e.g. MB₂-based
- wider range of properties, e.g. resistivity of "interesting" compositions SiBCN: from insulating to ~10 1 Ω m (SiBCN), ~10 $^{-1}$ Ω m (N-free SiBC) MSiBCN: from insulating to ~10 $^{-6}$ Ω m

Predecessors and motivation

specific strength and working temperature of SiBCN

[D. Jia et al., Prog. Mater. Sci. 98, 1 (2018)]

Boron-focused outline

Phenomena relevant for amorphous **SiBCN** (including amorphous matrix of nanocomposite MSiBCN)

- 1-1: effect of B content: thermal stability, hardness
- 1-2: high compressive stress of BCN: how to decrease it
- 1-3: homogeneous networks × formation of B-rich zones
- 1-4: high-T oxidation: h-BN between bulk and surface oxide
- 1-5 : room-*T* oxidation: effect of B content on ageing resistance

Phenomena relevant only for MSiBCN

- 2-1 : crystalline phases obtained: h-MB₂, fcc-MB_xN_{1-x}
- 2-2: effect of crystallinity: electrical and thermal conductivity
- 2-3: high compressive stress of MB₂: how to decrease it
- 2-4 : M=Ti \rightarrow M=Zr \rightarrow M=Hf: effect on crystallinity
- 2-5 : $M=Ti \rightarrow M=Zr \rightarrow M=Hf$: effect on properties

Phenomenon 1-1 (SiBCN): effect of B content

B incorporation into SiCN (at high Si/C or low Si/C):

better thermal stability

higher hardness

Phenomenon 1-1 (SiBCN): effect of B content

Explanation of hardness and stability after B incorporation:

- structures predicted by liquidquench ab-initio simulations
- high affinity of B to N

some N electrons are lonepairs in SiCN, but bonding el. in SiBCN

higher N coordination in SiBCN

lower rate of N₂ formation, longer bond lifetimes (not shown)

Phenomenon 1-1 (SiBCN): effect of B content

Sputtering of $Si_x(B_4C)_{1-x}$ targets: **densification** (hardness, refractive index) is different for B_4C -rich and Si-rich films

- B₄C-rich SiBCN:
 best densification by
 high-energy (500 eV)
 nitrogen ions
- Si-rich SiBCN: best densification by medium-energy (100 eV) argon ions

Related also to the Si role during Ar+ implantation (next slide)

Phenomenon 1-2 (SiBCN): compressive stress

BCN sputtered in N_2 +Ar:

 high compressive stress due to implanted Ar+

Increasing Si content:

 stress relaxation (decreasing slope of the stress-Ar content dependence)

Phenomenon 1-2 (SiBCN): compressive stress

Explanation of stress relaxation after Si incorporation:

again, structures predicted by ab-initio simulations Si B C N Ar

■ short B/C/N bonds × long Si bonds

surrounding the Ar-containing voids by longer and more flexible Si bonds leads to lower energy penalty

low-stress networks with Si-rich zones segregated around Ar

Phenomenon 1-3 (SiBCN): formation of B-rich zones

N-rich SiBCN:

homogeneous (SiN, BN, CN bonds)

Replacement of N by Si:

- steeply increasing number of BB bonds
- B atoms nevertheless trapped in a-Si have coordination of 4 (similarly to B dopants in c-Si)

Phenomenon 1-4 (SiBCN): high-T oxidation

SiBCN annealed in air up to 1700 °C:

amorphous SiO₂-based top layer
 transition layer with BN nanocrystals in amorphous SiO₂-based matrix
 original bulk layer of SiBCN (on SiC)

 ■ BN-rich transition layer is another barrier for O₂ diffusion

higher oxidation resistance of SiBCN compared to SiCN

Phenomenon 1-5 (SiBCN): room-T oxidation

80 SiBCN coatings oxidizing at room-T for 12 years

two information in one box: effect of substrate bias

- bottom: B₂O₃ layer can protect bulk material
- top: SiO₂ layer can protect bulk material
- medium compositions:
 Si_xB_yO_z (B constitutes impurities, not oxide in its own right) can NOT protect bulk material

N₂+Ar discharge gas mixture composition

Phenomenon 1-5 (SiBCN): room-*T* oxidation

Bias voltage leading to better ageing resistance

 corelation with growth conditions leading to best densification (Phenomenon 1-1):

bombardment of B₄C-rich SiBCN by 500 eV N₍₂₎⁺

bombardment of Si-rich SiBCN by 100 eV Ar+

N₂+Ar discharge gas mixture composition

Phenomenon 2-1 (MSiBCN): crystalline phases obtained

ZrBCN deposited in a wide range of $Zr_x(B_4C)_{1-x}$ target compositions and N_2 +Ar gas mixture compositions

- medium Zr content : h-ZrB₂ based nanocomposites
- high Zr content : fcc-ZrN based nanocomposites
- N is amorphizer (seriously: ZrN-like crystals are more likely at zero N content than at too high N content)
- Si is amorphizer (not shown)

15/25

Phenomenon 2-2 (MSiBCN): effect of crystallinity

Nine (Zr)BC(N) films of various structures from the previous slide

- Thermal conductivity
 & diffusivity & effusivity
 depend mostly on structure
- Heat capacity depends mostly on composition
- High hardness achieved for
 - (i) crystalline compositions, and
 - (ii) B₄C-rich amorphous compositions

Phenomenon 2-2 (MSiBCN): effect of crystallinity

Nine (Zr)BC(N) films of various structures

 Electrical conductivity is high at sufficiently high Zr content and sufficiently low N content (seriously: ZrN is conductive, but N makes ZrBC insulating)

for the same compositions which are crystalline

 Difference between thermal conductivities is due to the electronic contribution (well corresponds to the Wiedemann-Franz law)

Phenomenon 2-3 (MSiBCN): compressive stress

HfB₂-based HfSiBC with a wide range of Si contents

- Si-free HfBC : huge compressive stress of 5 GPa
- Si content of 1-10%:
 stress relaxation to
 2 GPa and then 1 GPa
 at preserved hardness

Phenomenon 2-3 (MSiBCN): compressive stress

Explanation of stress relaxation by HRTEM

0% Si on target: wide HfB₂ nanocolumns

1% Si on target: narrow HfB₂ nanocolumns (at a lower stress and preserved *H*)

7.5% Si on target: isotropic MB_2 nanocrystals (at even lower stress and still preserved H)

30% Si on target: almost amorphous

Phenomenon 2-4 (MSiBCN): M choice ↔ crystallinity

• Sputtering of $M_{0.45}(B_4C)_{0.55}$ in 5% N_2 + 95% Ar :

M=Ti
$$\rightarrow$$
 M=Zr \rightarrow M=Hf
leads to **stronger MN peaks**
(incl. shifted: solid solutions)

• Sputtering of $M_{15}Si_{20}(B_4C)_{65}$ in 5% N_2 + 95% Ar

 $M=Ti \rightarrow M=Zr \rightarrow M=Hf$ leads to **stronger MB₂ peaks**

Phenomenon 2-4 (MSiBCN): M choice ↔ crystallinity

• Sputtering of $M_{0.45}(B_4C)_{0.55}$ in 5% N_2 + 95% Ar :

M=Ti
$$\rightarrow$$
 M=Zr \rightarrow M=Hf leads to **stronger MN peaks** (incl. shifted: solid solutions)

Explanation by ab-initio calculations:

 $M=Ti \rightarrow M=Zr \rightarrow M=Hf$

leads to decreasing formation energy of the corresponding solid solutions

crystallization does not need (so much) segregation

Phenomenon 2-5 (MSiBCN): M choice ↔ properties

High N content

(high importance of M-free amorphous matrix, if there is any):

- M=Ti → M=Zr → M=Hf
 leads to increasing resistivity
 of MN-based MBCN
 (better crystallinity shown above ⇒
 conductive crystals encapsulated
 by insulating amorphous matrix)
- M=Ti → M=Zr → M=Hf leads to increasing resistivity of MB₂-based MSiBCN (same reason)

Phenomenon 2-5 (MSiBCN): M choice ↔ properties

High N content

(high importance of M-free amorphous matrix, if there is any):

■ M=Ti → M=Zr → M=Hf leads to decreasing refractive index and extinction coefficient of MB₂-based MSiBCN

(complementary to the resistivity shown above: more conductive material is less transparent)

Phenomenon 2-5 (MSiBCN): M choice ↔ properties

M=Ti → M=Zr → M=Hf
leads to worse oxidation
resistance of M-rich N-poor
MB₂-based MSiBCN

(in agreement with ab-initio calculations: motivation to oxidize M-based phases)

M=Ti → M=Zr → M=Hf
leads to better oxidation
resistance of M-poor N-rich
MB₂-based MSiBCN

Conclusions

- amorphous SiBCN:
 - thermal stability (1700 °C), oxidation resistance (1500 °C), hardness (44 GPa), transparency ($k_{550\text{nm}} = 2 \times 10^{-4}$), resistivity (from insulating to $10^{1} \Omega \text{m}$), etc.
- amorphous or MB₂-based or MN-based MSiBCN:
 wider range of resistivity (from insulating to 10-6 Ωm), etc.
- effect of B and MB₂ on materials properties explained
- compressive stress relaxation in SiBCN or MB₂ explained
- effect of Ti/Zr/Hf choice on structure and properties explained