Design of high-performance VO₂-based thermochromic coatings, and pathway for their low-*T* preparation

Jiri Houska, D. Kolenaty, T. Barta, J. Rezek, J. Vlcek

Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Czech Republic

Acknowledgment

Grant Agency of the Czech Republic through Project No. 17-08944S

Thermochromic VO₂

Low temperature (monoclinic):

- semiconductor (band gap)
- transparent
- low eletrical and thermal conductivity

High temperature (tetragonal rutile):

- metallic
- opaque in IR
- high electrical and thermal conductivity

Applications

- smart energy-efficent windows (!)
- optical switches
- smart radiators
- protection of IR detectors
- thermal management in cars, ...

Challenges

Prepare VO₂ films by industry-friendly technique

- low temperature (≤300°C or so)
- technique allowing easy upscaling
- no substrate bias voltage (rf, or dc + conductive interlayer)

Achieve superior optical properties

- thermochromic transition temperature close to RT
- high luminous transmittance, T_{lum}
- high modulation of solar transmittance, $\Delta T_{\rm sol}$

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

Outline

How to prepare VO₂ on amorphous unbiased glass at 300°C

- J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)
- J. Houska et al., Appl. Surf. Sci. 421, 529 (2017)
- J. Houska et al., Thin Solid Film 660, 463-470 (2018)
- D. Kolenaty et al., J. Alloy. Compd. 767, 46-51 (2018)

What is the optimum design of VO₂-based multilayers

(parallel optimization of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

Control of transition temperature by W doping

(without concession in terms of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

Outline

How to prepare VO₂ on amorphous unbiased glass at 300°C

- J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)
- J. Houska et al., Appl. Surf. Sci. 421, 529 (2017)
- J. Houska et al., Thin Solid Film 660, 463-470 (2018)
- D. Kolenaty et al., J. Alloy. Compd. 767, 46-51 (2018)

What is the optimum design of VO_2 -based multilayers (parallel optimization of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

Control of transition temperature by W doping (without concession in terms of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

Deposition technique

High power impulse magnetron sputtering of V in Ar+O₂ plasma

highly ionized fluxes with many metal ions

crystallinity & densification without bias at **250** °C on crystalline Si substrate **300** °C on amorphous glass substrate (literature before 2016: ≥400 °C)

Pulsed reactive gas flow control (European patent 2015)

exactly as much oxygen as we need

 VO_2 film stoichiometry ($\times V_2O_5$, $\times V_2O_3$)

Narrow windows for critical process parameters

Narrow window ($\pm 10\%$) of critical O_2 pressures leading to crystalline thermochromic VO_2 ($\times V_2O_5$, V_2O_3 , etc.)

Cross-check by XRD and Raman (not shown)

O₂ window closes from ±10% to zero at improper voltage pulse duration

Shorter pulse ⇒ more oxygen & better crystallinity (role of compound fraction on sputter target and ion flux characteristics)

Narrow windows for critical process parameters

O₂ window closes from ±10% to zero at improper voltage pulse duration

Shorter pulse ⇒ more oxygen & better crystallinity (role of compound fraction on sputter target and ion flux characteristics)

Crystalline substrate or interlayer: use pulse length leading to optimum composition (crystallinity ensured by epitaxial growth)

Amorphous substrate: must use sufficiently short pulse length leading to crystallinity (regardless slightly suboptimum composition)

Properties of VO₂ prepared at 300°C on unbiased glass

Sufficiently short (50 μ s) pulses \Rightarrow crystallinity due to ion bomb. \Rightarrow lowering T from 400 to 300°C does not harm the properties

Longer (80 μ s) pulses \Rightarrow composition even closer to VO₂, but worse crystallinity especially at 300 °C

Properties of VO₂ prepared at 300°C on unbiased glass

Sufficiently short (50 μ s) pulses \Rightarrow crystallinity due to ion bomb. \Rightarrow lowering T from 400 to 300°C does not harm the properties

Longer (80 μ s) pulses \Rightarrow composition even closer to VO₂, but worse crystallinity especially at 300 °C

Outline

How to prepare VO₂ on amorphous unbiased glass at 300°C

- J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)
- J. Houska et al., Appl. Surf. Sci. 421, 529 (2017)
- J. Houska et al., Thin Solid Film 660, 463-470 (2018)
- D. Kolenaty et al., J. Alloy. Compd. 767, 46-51 (2018)

What is the optimum design of VO_2 -based multilayers (parallel optimization of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

Control of transition temperature by W doping (without concession in terms of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

Varying VO₂ thickness \Rightarrow tradeoff (thin films have high T_{lum} , thick films have high ΔT_{sol})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

Varying VO₂ thickness \Rightarrow tradeoff (thin films have high T_{lum} , thick films have high ΔT_{sol})

1st order antireflection layers \Rightarrow tradeoff (first-order maximum of T_{lum} overlaps with minimum of ΔT_{sol})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

Varying VO₂ thickness \Rightarrow tradeoff (thin films have high T_{lum} , thick films have high ΔT_{sol})

1st order antireflection layers \Rightarrow tradeoff (first-order maximum of T_{lum} overlaps with minimum of ΔT_{sol})

2nd order antireflection layers \Rightarrow improves both T_{lum} and ΔT_{sol}

 ${f 2}^{
m nd}$ order antireflection layers \Rightarrow improves both $T_{
m lum}$ and $\Delta T_{
m sol}$

chosen material of antireflection layers: ZrO₂ chosen VO₂ or V_{1-x}W_xO₂ thickness in calculations below: 50 nm

How to maximize T_{lum} and ΔT_{sol} (at $h_{therm} = 50 \text{ nm}$)

2nd order antireflection layers \Rightarrow improves both T_{lum} and ΔT_{sol}

1st order maximum of T_{lum} (ZrO₂ thickness of \approx 40 nm) corresponds to low ΔT_{sol}

2nd order maximum of T_{lum} (ZrO₂ thickness of \approx 180 nm) corresponds to **high** ΔT_{sol}

How to maximize T_{lum} and ΔT_{sol} (at $h_{therm} = 50 \text{ nm}$)

2nd order antireflection layers \Rightarrow improves both T_{lum} and ΔT_{sol}

1st order maximum of T_{lum} (ZrO₂ thickness of \approx 40 nm) corresponds to low ΔT_{sol} (handle of lasso)

2nd order maximum of T_{lum} (ZrO₂ thickness of \approx 180 nm) corresponds to **high** ΔT_{sol} (loop of lasso)

How to maximize T_{lum} and ΔT_{sol} (at $h_{therm} = 50 \text{ nm}$)

 $h_{\rm b} = h_{\rm t} = 40$ nm (1. order max.): high transmittance modulation only at high λ (>> 2000 nm), i.e. multiplied by low solar intensity

 $h_{\rm b} = h_{\rm t} = 180$ nm (2. order max.): high transmittance modulation at medium λ (wide range 800-2000 nm), i.e. multiplied by high solar intensity

in other words: optimum antireflection layers actually harm ΔT_{2500} , but improve the integral quantity $\Delta T_{\rm sol}$

Maximize T_{lum} and ΔT_{sol} - experimental verification

Tradeoff between T_{lum} and ΔT_{sol} (depending on VO₂ thickness)

figure for optimum thickness of AR ZrO_2 : $h_b = h_t = 180 \text{ nm}$

Maximize T_{lum} and ΔT_{sol} - experimental verification

figure for optimum thickness of AR ZrO_2 : $h_b = h_t = 180 \text{ nm}$ Tradeoff between T_{lum} and ΔT_{sol} (depending on VO₂ thickness)

 VO_2 (actually $V_{0.982}W_{0.018}O_2$) thickness $h_{therm} = 69$ nm: agreement with prediction

Experimental values

$$T_{\text{lum}} = 48\%$$

 $\Delta T_{\text{sol}} = 10.4\%$
transition at 20°C due to W_{0.018}

Outline

How to prepare VO₂ on amorphous unbiased glass at 300°C

- J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)
- J. Houska et al., Appl. Surf. Sci. 421, 529 (2017)
- J. Houska et al., Thin Solid Film 660, 463-470 (2018)
- D. Kolenaty et al., J. Alloy. Compd. 767, 46-51 (2018)

What is the optimum design of VO_2 -based multilayers (parallel optimization of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

Control of transition temperature by W doping

(without concession in terms of T_{lum} and ΔT_{sol})

J. Houska et al., Sol. Energy Mater. Sol. Cells 191, 365-371 (2019)

W doping

Thermochromic transition temperature $T_{\rm tr}$ (maximum derivative of T_{2500} , average over heating and cooling)

Literature:

doping by W decreases $T_{\rm tr}$ at the cost of $T_{\rm lum}$ and/or $\Delta T_{\rm sol}$

Presented deposition technique:

doping by W decreases $T_{\rm tr}$ at preserved (high) $T_{\rm lum}$ and $\Delta T_{\rm sol}$

```
bulk VO_2 (lit.) T_{tr} = 68^{\circ}C
film VO_2 T_{tr} = 57^{\circ}C
V_{0.988}W_{0.012}O_2 T_{tr} = 39^{\circ}C
V_{0.982}W_{0.018}O_2 T_{tr} = 20^{\circ}C
```

W doping

Presented deposition technique: doping by W decreases $T_{\rm tr}$ at preserved (high) $T_{\rm lum}$ and $\Delta T_{\rm sol}$

bulk
$$VO_2$$
 (lit.) $T_{tr} = 68^{\circ}C$
film VO_2 $T_{tr} = 57^{\circ}C$
 $V_{0.988}W_{0.012}O_2$ $T_{tr} = 39^{\circ}C$
 $V_{0.982}W_{0.018}O_2$ $T_{tr} = 20^{\circ}C$

AR layer also does not harm properties (e.g. $T_{\rm tr} = 39\pm1$ °C for $V_{0.988}W_{0.012}O_2$)

Conclusions

Thermochromic VO₂ prepared under highly industry-friendly conditions (on amorphous glass, no bias, low temperature)

Optimum coating design

1st order antireflection layers \Rightarrow tradeoff between T_{lum} and ΔT_{sol} 2nd order antireflection layers \Rightarrow improves both T_{lum} and ΔT_{sol}

Optimum way of doping by W decreases $T_{\rm tr}$ towards room temp. at preserved $T_{\rm lum}$ and $\Delta T_{\rm sol}$

