Pathways for the preparation of technologically important metal oxides

Jiri Houska

Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Czech Republic

Acknowledgment

Grant Agency of the Czech Republic through Project No. 19-14011S

Motivation

- Reproducing the film growth by MD allows one to disentangle
 - crystal nucleation and crystal growth
 - effects of individual parts of the total particle flux
 - experimentally correlated process parameters
- Reproduce film growth
 - used for covalent films, ionic oxides, metallic glasses, ..., in this presentation focus on metal oxides
 - classical molecular dynamics
 - reliable interaction potentials (force fields)
- Relationships between growth conditions and
 - film densification
 - crystal nucleation (non-epitaxial template)
 - crystal growth (epitaxial template)

Outline

- Simulation protocol
- Reliable interaction potential

```
- details for ZrO<sub>2</sub> [J. Houska, Comp. Mater. Sci. 111 (2016) 209–217]
```

- briefly for Al₂O₃, TiO₂ [J. Houska, Comp. Mater. Sci. 134 (2017) 1-7]
- Results of growth simulations

```
- details for ZrO<sub>2</sub> [J. Houska, Surf. Coat. Technol. 304 (2016) 23–30]
```

- briefly for Al₂O₃, TiO₂ [J. Houska, Surf. Coat. Technol. 235 (2013) 333-341] [J. Houska et al., J. Appl. Phys. 112 (2012) 073527]

Conclusions

Outline

- Simulation protocol
- Reliable interaction potential

```
- details for ZrO<sub>2</sub> [J. Houska, Comp. Mater. Sci. 111 (2016) 209–217]
```

- briefly for Al₂O₃, TiO₂ [J. Houska, Comp. Mater. Sci. 134 (2017) 1-7]
- Results of growth simulations

```
- details for ZrO<sub>2</sub> [J. Houska, Surf. Coat. Technol. 304 (2016) 23–30]
```

- briefly for Al₂O₃, TiO₂ [J. Houska, Surf. Coat. Technol. 235 (2013) 333-341] [J. Houska et al., J. Appl. Phys. 112 (2012) 073527]
- Conclusions

Recursive atom-by-atom simulation protocol

- Substrate or previously nucleated crystal (given structure & temperature)
- 2) **New atoms** (given energy distribution function)
- 3) **Fixed-energy (NVE) run** (particle collisions and energy dissipation)
- 4) **Fixed-temperature (NVT) run** (to reestablish the deposition temperature)
- 5) Removal of resputtered/desorbed particles and return to 2

Recursive atom-by-atom simulation protocol

Crucial prerequisite: reliable interaction potential (force field)

- must exhibit energy minima corresponding to the crystalline phases of interest (lattice constants, formation energies, etc.)
- must lead to correct results, e.g. coordination numbers, of the open surface film growth simulations (next slides)
- must be used with sufficiently long interaction cutoff

example for Al₂O₃ using Matsui potential

[M. Matas et al., Mol. Simul. 43 (2017) 1436-1441]

Outline

- Simulation protocol
- Reliable interaction potential
 - details for ZrO₂ [J. Houska, Comp. Mater. Sci. 111 (2016) 209–217]
 - briefly for Al₂O₃, TiO₂ [J. Houska, Comp. Mater. Sci. 134 (2017) 1-7]
- Results of growth simulations
 - details for ZrO₂ [J. Houska, Surf. Coat. Technol. 304 (2016) 23–30]
 - briefly for Al₂O₃, TiO₂ [J. Houska, Surf. Coat. Technol. 235 (2013) 333-341] [J. Houska et al., J. Appl. Phys. 112 (2012) 073527]
- Conclusions

Buckingham interaction potential

$$U = Ae^{-r/\rho} - Cr^{-6} + q_1q_2/4\pi\varepsilon r$$

- State the art for ionic metal oxides; more complex potentials (reactive, variable charge) did not lead to better results
- Potential parameters in the literature for most materials:

fitted with other simulation protocols in mind

wrong preferred coordination numbers

unsuitable for reliable growth simulations

Literature potentials for ZrO₂ lead to undercoordination

Criterion of success: Zr coordination, N_{Zr}

Experiment: $N_{zr} = 8 \text{ (c- & t-ZrO}_2)$

 $N_{\rm Zr} = 7 \, (\rm m - ZrO_2)$

Ab-initio: $N_{Zr} \le 7 \text{ (a-ZrO}_2)$

Growth by simulations on amorphous ZrO₂

Schelling 2001: $N_{zr} < 6$

Dwiwedi 1990+Kilo 2003: $N_{zr} < 5$

Lewis 1985: $N_{zr} = 0$ (desorption)

Noordhoek 2014 (variable-charge): $N_{zr} < 4$

Growth by simulations on cubic ZrO₂

Schelling 2001: $N_{Zr} = 6$ (fictitious rutile-like structure)

Literature potentials for ZrO₂ lead to undercoordination

Growth by simulations on cubic ZrO₂ Schelling 2001:

$$N_{zr} = 6$$
 (fictitious rutile-
like structure)

$$U = Ae^{-r/\rho} - Cr^{-6} + q_1q_2/4\pi\varepsilon r$$

Starting point: **full-charge** Schelling pot. $(A, \rho, C \text{ at } q_{Zr} = +4e)$

Solution: partial-charge (q_{7r} between 0 and +4e)

- additional degree of freedom \Rightarrow correct N_{Zr}
- closer to the experiment
- avoiding too high potential energies of ionization ← (delivered into growing films in parallel to the kinetic energy)

$$U = Ae^{-r/\rho} - Cr^{-6} + q_1q_2/4\pi \varepsilon r$$

- 1) Starting-point potential correct lattice const. and energies
- 2) $q_{\rm Zr} = q_{\rm Zr} \Delta q_{\rm Zr} \Rightarrow$ new (incorrect) lattice const. and energies
- 3) changing the length scale
 - \Rightarrow new A, ρ , C, q_{7r}
 - ⇒ correct lattice constants
- 4) changing the energy scale at preserved length scale (quadratic dependece of ionization energy on q_{Zr} , thus quadratic equation for the rescaling factor)
 - \Rightarrow new A, ρ , C, q_{Zr}
 - ⇒ correct formation energies
- 5) return to 2

$$U = Ae^{-r/\rho} - Cr^{-6} + q_1q_2/4\pi\varepsilon r$$

Results : q_{Zr} -dependent short-range parameters A, ρ , C (shown for various starting-point potentials, one is used below)

Newly fitted partial-charge potentials lead to

the same lattice constants and energies (fitted for c- & t-ZrO₂, shown for c-ZrO₂)

... but ...

different coordination numbers, experimental $N_{\rm Zr}$ for $q_{\rm Zr}$ = 3.542 e

Test of fitted ZrO₂ potentials

- Growth on a-ZrO₂: experimental $N_{\rm Zr}$ for $q_{\rm Zr}$ = 3.542 e
- Growth on c-ZrO₂ (under optimum growth conditions):

 $q_{\rm Zr} = 4.0$: undercoordination, fictitious rutile-like

 $q_{\rm Zr}$ around 3.5 : indeed, c-ZrO₂ growth

 $q_{\rm Zr}$ too low: overcoordination, amorphization

Outline

- Simulation protocol
- Reliable interaction potential
 - details for ZrO₂ [J. Houska, Comp. Mater. Sci. 111 (2016) 209–217]
 - briefly for Al₂O₃, TiO₂ [J. Houska, Comp. Mater. Sci. 134 (2017) 1-7]
- Results of growth simulations
 - details for ZrO₂ [J. Houska, Surf. Coat. Technol. 304 (2016) 23–30]
 - briefly for Al₂O₃, TiO₂ [J. Houska, Surf. Coat. Technol. 235 (2013) 333-341] [J. Houska et al., J. Appl. Phys. 112 (2012) 073527]
- Conclusions

Some literature potentials work well (e.g. partial-charge potentials by Matsui et al. for Al_2O_3 and other oxides), but there are many opposite examples (e.g. Post 1986 for TiO_2)

Let's apply the fitting procedure presented for cubic ZrO_2 to rutile and anatase TiO_2 . Again, the fitted partial-charge potentials lead to the same lattice constants and energies (this time for both rutile and anatase TiO_2)

... but ...

different coordination numbers, experimental N_{Ti} for $q_{Ti} = 3.197$ e

Test of fitted TiO₂ potentials

- Growth on a-TiO₂: experimental N_{Ti} for $q_{Zr} = 3.197$ e
- Growth on anatase TiO₂ (under optimum growth conditions):

 q_{Ti} too high: undercoordination, amorphization

 q_{Ti} around 3.2 : indeed, anatase TiO₂ growth

 q_{Ti} too low: overcoordination, amorphization or fictitious cubic

Outline

- Simulation protocol
- Reliable interaction potential
 - details for ZrO₂

[J. Houska, Comp. Mater. Sci. 111 (2016) 209-217]

- briefly for Al₂O₃, TiO₂

[J. Houska, Comp. Mater. Sci. 134 (2017) 1-7]

- Results of growth simulations
 - details for ZrO₂

[J. Houska, Surf. Coat. Technol. 304 (2016) 23-30]

- briefly for Al₂O₃, TiO₂

[J. Houska, Surf. Coat. Technol. 235 (2013) 333-341] [J. Houska et al., J. Appl. Phys. 112 (2012) 073527]

Conclusions

c-ZrO₂ growth - effect of energy, E

- Densification with increasing energy
- Same energy of all atoms \Rightarrow fully densified at $E \ge 5$ eV
- Defects at E > 100 eV

c-ZrO₂ growth - effect of energy distribution function

c-ZrO₂ growth - effect of energy distribution function

(quantification of the above results)

- Increasing fraction of slow atoms ⇒ less densified (low N_{Zr}, high thickness)
- Fast heavy Zr: densification
 - ×Fast light O:poor densification
- Reproducible local N_{Zr}
 minima (limit for inducing specific kind of defect)

c-ZrO₂ growth - effect of energy distribution function

(same data as a function of energy per any atom, not fast atom)

Dependencies still do not overlap

 Presence of slow atoms cannot be compensated by higher energy of fast atoms (ions) - correct average energy is not enough for crystal growth

Amorphous ZrO₂ growth and c-ZrO₂ nucleation

- Dependencies closer to each other
- Correct average energy is not enough for crystal growth, but ±enough for densification of amorphous

 Frequent c-ZrO₂ nucleation at energy of fast atoms (for various energy distribution functions) ≥200 eV

Growth × nucleation: effect of energy and EDF

minimum E of fast atoms leading to crystallinity & densification ($N_{Zr} > 7.7$)

- Epitaxial growth can be utilized at optimum EDF only:
 then, 5 eV of all atoms is enough for dense crystal growth
- Non-optimum EDF or amorphous substrate:
 200 eV of some atoms is needed for frequent (re)nucleation

Growth × nucleation: effect of temperature

full & empty symbols: two different energies

- Growth of existing crystals is almost T-independent
- Nucleation of crystals (on amorphous substrate)
 takes place on longer time scale, is T-dependent

Outline

- Simulation protocol
- Reliable interaction potential
 - details for ZrO₂ [J. Houska, Comp. Mater. Sci. 111 (2016) 209–217]
 - briefly for Al₂O₃, TiO₂ [J. Houska, Comp. Mater. Sci. 134 (2017) 1-7]
- Results of growth simulations
 - details for ZrO₂ [J. Houska, Surf. Coat. Technol. 304 (2016) 23–30]
 - briefly for Al₂O₃, TiO₂ [J. Houska, Surf. Coat. Technol. 235 (2013) 333-341] [J. Houska et al., J. Appl. Phys. 112 (2012) 073527]
- Conclusions

growth of rutile TiO₂ (001)

effect of ion energy, E, at T = 300 or 800 K

Experiment:

 deposition of rutile requires high E and/or T

Simulation:

- high E and/or T is needed for nucleation only
- nucleated rutile grows in a wide range of conditions
- independent of crystal orientation (not shown)

growth of anatase TiO₂ (001)

effect of ion energy, E, at T = 300 or 800 K

Simulation:

- amorphization at too low E or low T
- amorphization at too high *E* (not shown)

Qualitative difference

- presence of anatase is controlled by growth
- presence of rutile is controlled by nucleation

growth of anatase TiO₂ (001)

effect of ion energy, E, at T = 300 or 800 K

Qualitative difference

- presence of anatase is controlled by growth
- presence of rutile is controlled by nucleation

Experiment

[S. Mraz in *J. Houska, S. Mraz and J.M. Schneider, J. Appl. Phys.* 112, 073527 (2012)]

- anatase obtained in low-density DC plasma
- rutile survived high-density RF plasma (but required higher *T*)

growth of anatase TiO_2 (001) effect of ion energy and crystal size, E, at T = 800 K

Anatase (not rutile) growth limited also by maximum E:
 the limit depends on crystal width

growth of anatase TiO₂ (111)

effect of ion energy, E, at T = 300 or 800 K

Simulation:

- (111) anatase amorphizes or converts to distorted rutile
- same observation also for (110) anatase (not shown)

Experiment

- indeed, (111) and (110) anatase not observed experimentally

growth of α -Al₂O₃ (0001) and γ -Al₂O₃ (001) effect of ion energy, *E*, at T = 300 or 800 K

- α-Al₂O₃: energy window
 (50eV at 300K, 35eV at 800K)
- γ-Al₂O₃: growth at almost any energy

growth of α -Al₂O₃ (0001) (in more detail) effect of ion energy, *E*, at T = 300 or 800 K

- α-Al₂O₃: octahedrally coordinated Al only
- **T** = **300 K**: maximum at 50-70 eV
- *T* = 800 K: maximum at 30-40 eV

growth of α -Al₂O₃ (0001) (discussion) effect of ion energy, *E*, at T = 300 or 800 K

- too low E: insufficient to "punch" Al to octahedral positions
- too high E: accumulation of ioninduced defects leads to amorphization

growth of α -Al₂O₃ (0001, 11-20, 1-100) effect of crystal orientation (and *E*) at T = 800 K

■ α-Al₂O₃ (0001 - reminder):

- E window for crystal growth
- defects and distortions

• α -Al₂O₃ (11-20 and 1-100):

- no defects or distortions
- prone to abruptly amorphize at any E

growth of α -Al₂O₃ (0001) effect of low-E film-forming particles at T = 300 K

- 100% ions (all atoms have same E) \Rightarrow E window exists
- <100% ions (some atoms have E = 1eV) \Rightarrow amorphization (presence of neutrals cannot be compensated by higher ion E)

Conclusions

 procedure for improvement (coorrect coordination numbers) of literature interaction potentials

difficult nucleation: high-E tail of arriving atoms, high T difficult growth: E window, high T, effect of orientation

- narrow EDF is beneficial (lower E per volume needed for densification) or necessary (phases requiring E window)
- densification by heavier atoms is more effective