Design of high-performance VO₂-based thermochromic coatings, and pathway for their industry-friendly preparation

<u>Jiri Houska</u>, David Kolenaty, Tomas Barta, Jiri Rezek, Jaroslav VIcek

Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Plzen, Czech Republic

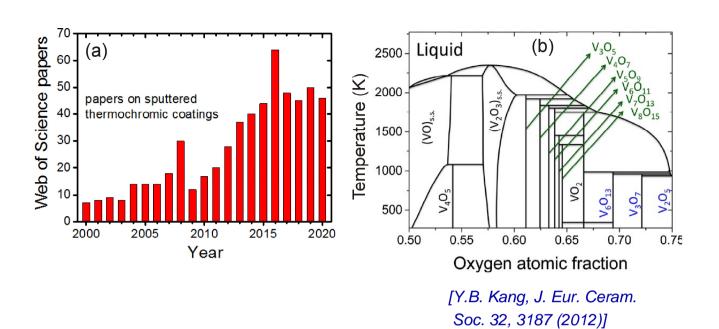
Acknowledgment

Grant Agency of the Czech Republic through Project No. 21-28277S

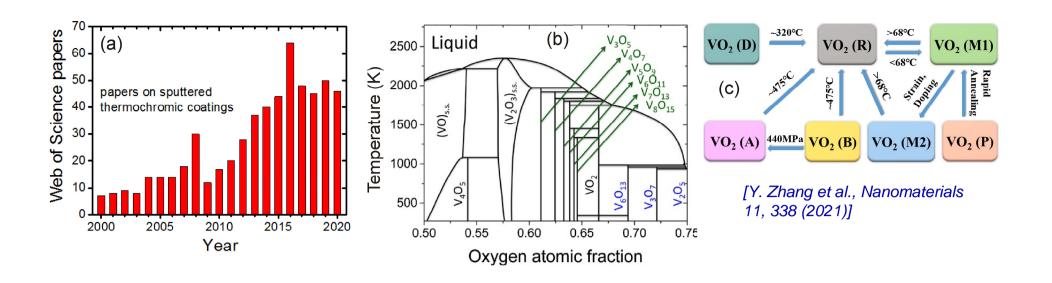
Basis of outline and figures

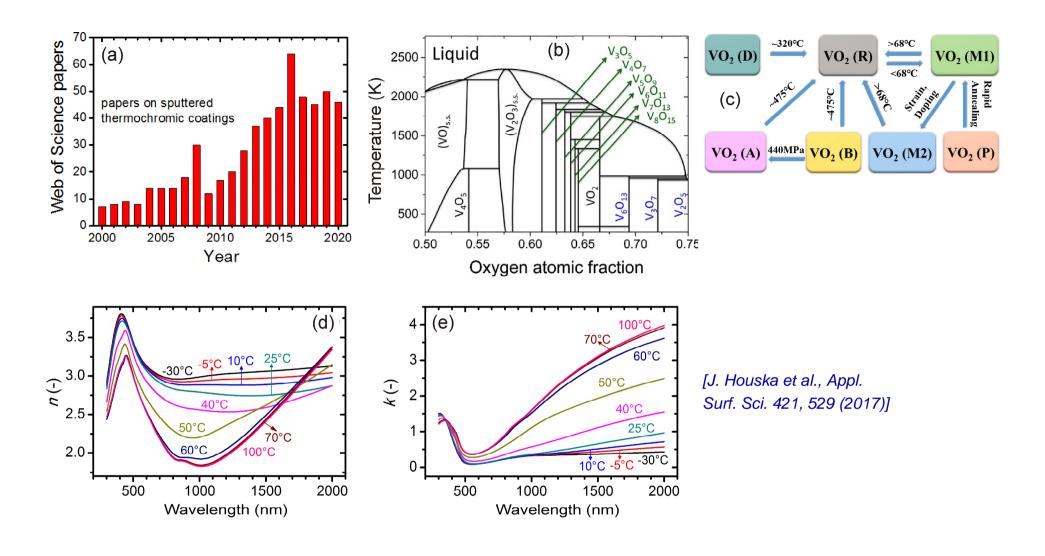
Recent invited Perspective paper

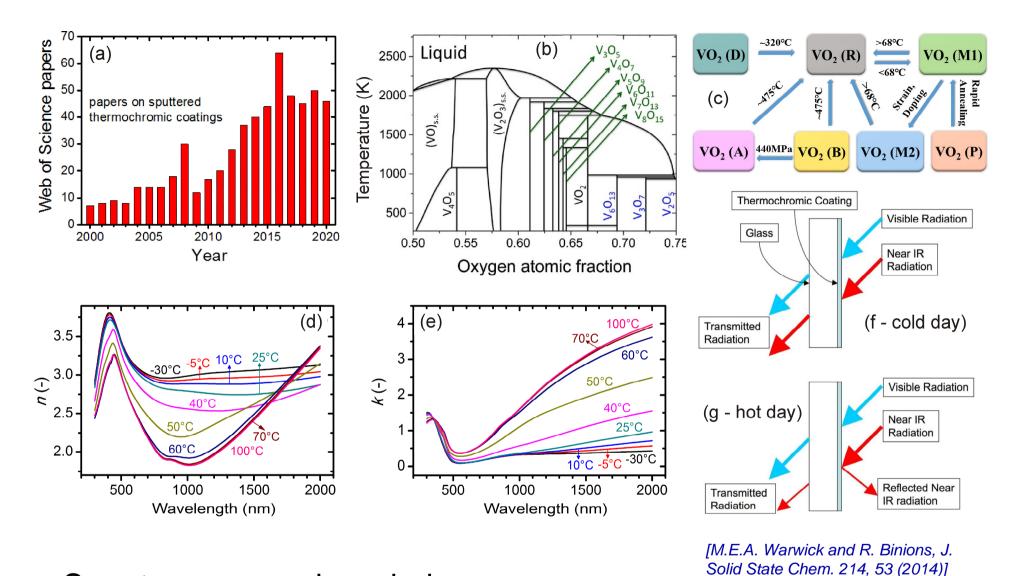
- J. Houska, Design and reactive magnetron sputtering of thermochromic coatings, J. Appl. Phys. 131, 110901 (2022)
- results of our lab: prof. J. Vlcek, J. Rezek, D. Kolenaty, T. Barta, ...
- results of other labs (reused with publishers' permission): profs. P. Jin, P.J. Klar, C.G. Granqvist, L. Martinu, ...


- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

I. Introduction and background


- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook


Era of interest in energy-saving applications \Rightarrow enhanced number of papers on thermochromic coatings, predominantly based on $VO_2(M1) \Leftrightarrow VO_2(R)$ ${}^{\approx}68^{\circ}C$


Necessary crystallinity and VO_2 stoichiometry (only one of many possible stoichiometries) \Rightarrow challenging preparation

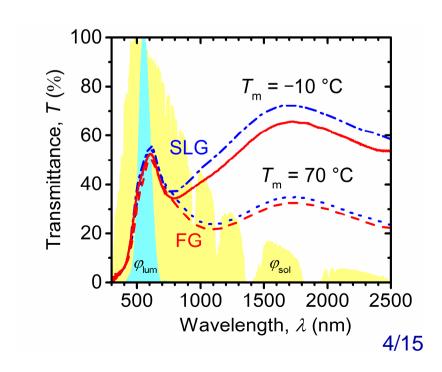
Even at guaranteed crystallinity and stoichiometry, the desired thermochromic phase $VO_2(M1 \Leftrightarrow R)$ is only one of many polymorphs (especially at low preparation temperature)

Nevertheless, thermochromic $VO_2(M1 \Leftrightarrow R)$ can be prepared (see below) \Rightarrow strong modulation of free charge carrier concentration and all related properties

Smart energy-saving windows

- transmittance modulation in the infrared
- preserved transmittance in the visible (advantage over market-available electrochromic coatings)

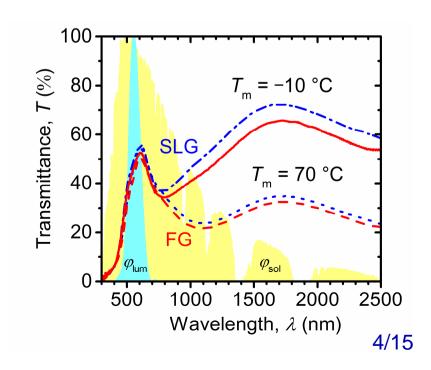
- I. Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook


• thermochromic transition temperature $T_{\rm tr}$

- thermochromic transition temperature $T_{\rm tr}$
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$ (thickness-independent)

- thermochromic transition temperature $T_{\rm tr}$
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$ (thickness-independent)
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$ (thickness-dependent)

- thermochromic transition temperature T_{tr}
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})


$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

- thermochromic transition temperature T_{tr}
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

- thermochromic transition temperature T_{tr}
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_{\rm m} < T_{\rm tr}) - T_{sol}(T_{\rm m} < T_{\rm tr})$$

- thermochromic transition temperature T_{tr}
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

modulation of integral quantities, most importantly

$$\Delta T_{sol} = T_{sol}(T_{\rm m} < T_{\rm tr}) - T_{sol}(T_{\rm m} < T_{\rm tr})$$

■ modulation at a single λ , often ΔT_{2500} (less useful than ΔT_{sol})

- thermochromic transition temperature T_{tr}
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol} (T_{\rm m} < T_{\rm tr}) - T_{sol} (T_{\rm m} < T_{\rm tr})$$

- modulation at a single λ , often ΔT_{2500} (less useful than ΔT_{sol})
- resistivity ρ and its modulation ($\Delta \log \rho$ rather than $\Delta \rho$)

- thermochromic transition temperature $T_{\rm tr}$
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol} (T_{\rm m} < T_{\rm tr}) - T_{sol} (T_{\rm m} < T_{\rm tr})$$

- modulation at a single λ , often ΔT_{2500} (less useful than ΔT_{sol})
- resistivity ρ and its modulation ($\Delta \log \rho$ rather than $\Delta \rho$)
- color (coordinates in color space such as L*a*b*)

- thermochromic transition temperature T_{tr}
- refractive index $n(\lambda)$ and extinction coefficient $k(\lambda)$
- transmittace $T(\lambda)$, reflectance $R(\lambda)$, absorption $A(\lambda)$
- integral luminous transmittance T_{lum} (& R_{lum} & A_{lum})

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol} (T_{\rm m} < T_{\rm tr}) - T_{sol} (T_{\rm m} < T_{\rm tr})$$

- modulation at a single λ , often ΔT_{2500} (less useful than $\Delta T_{\rm sol}$)
- resistivity ρ and its modulation ($\Delta \log \rho$ rather than $\Delta \rho$)
- color (coordinates in color space such as L*a*b*)
- maximum temperature T_s during deposition and annealing

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

luminous transmittance

$$T_{\text{lum}} \ge 60\%$$

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_m < T_{tr}) - T_{sol}(T_m < T_{tr})$$
5/15

luminous transmittance

$$T_{\text{lum}} \geq 60\%$$

■ modulation of solar energy transmittance $\Delta T_{sol} \ge 10\%$

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_m < T_{tr}) - T_{sol}(T_m < T_{tr})$$
5/15

luminous transmittance

$$T_{\text{lum}} \ge 60\%$$

- modulation of solar energy transmittance $\Delta T_{sol} \ge 10\%$
- transition temperature

$$T_{tr} \approx 20^{\circ} C$$

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_m < T_{tr}) - T_{sol}(T_m < T_{tr})$$
5/15

luminous transmittance

$$T_{\text{lum}} \ge 60\%$$

■ modulation of solar energy transmittance $\Delta T_{sol} \ge 10\%$

transition temperature

$$T_{\rm tr} \approx 20^{\circ} \rm C$$

 maximum substrate temperature without any substrate bias voltage

$$T_{\rm s} \approx 300^{\circ}{\rm C}$$

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_{\rm m} < T_{\rm tr}) - T_{sol}(T_{\rm m} < T_{\rm tr})$$

luminous transmittance

$$T_{\text{lum}} \ge 60\%$$

■ modulation of solar energy transmittance $\Delta T_{sol} \ge 10\%$

transition temperature

$$T_{\rm tr} \approx 20^{\circ} \rm C$$

 maximum substrate temperature without any substrate bias voltage

$$T_{\rm s} \approx 300^{\circ}{\rm C}$$

All relevant quantities are optimized in parallel. Only the reports that include values of all of them should be taken seriously.

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_{\rm m} < T_{\rm tr}) - T_{sol}(T_{\rm m} < T_{\rm tr})$$

luminous transmittance

$$T_{\text{lum}} \ge 60\%$$

■ modulation of solar energy transmittance $\Delta T_{sol} \ge 10\%$

transition temperature

$$T_{\rm tr} \approx 20^{\circ} \rm C$$

 maximum substrate temperature without any substrate bias voltage

$$T_{\rm s} \approx 300^{\circ}{\rm C}$$

All relevant quantities are optimized in parallel. Only the reports that include values of all of them should be taken seriously.

appealing color in transmission (presently yellowish/brownish)

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol}(T_{\rm m} < T_{\rm tr}) - T_{sol}(T_{\rm m} < T_{\rm tr})$$

luminous transmittance

$$T_{\text{lum}} \ge 60\%$$

■ modulation of solar energy transmittance $\Delta T_{sol} \ge 10\%$

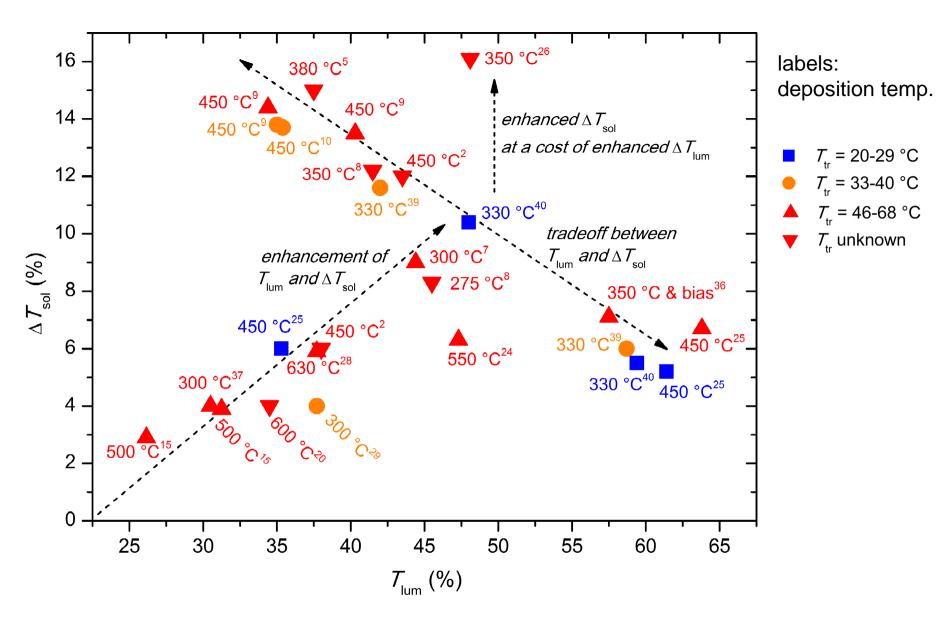
transition temperature

$$T_{\rm tr} \approx 20^{\circ} \rm C$$

 maximum substrate temperature without any substrate bias voltage

$$T_{\rm s} \approx 300^{\circ}{\rm C}$$

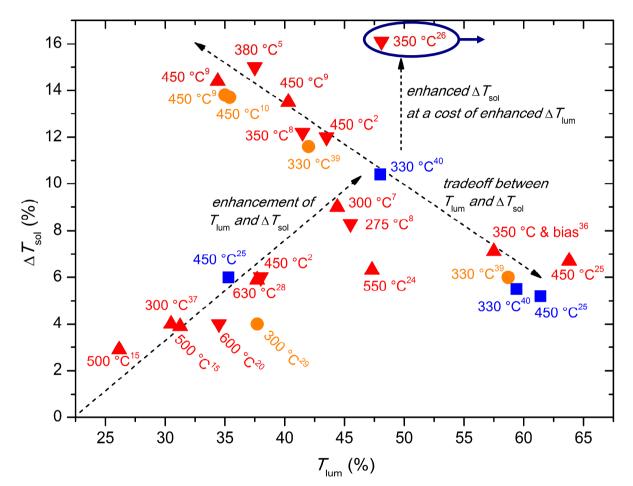
All relevant quantities are optimized in parallel. Only the reports that include values of all of them should be taken seriously.

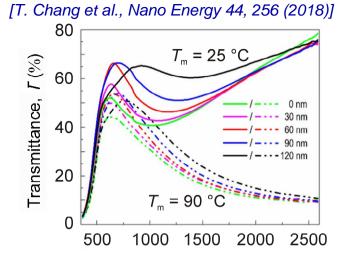

- appealing color in transmission (presently yellowish/brownish)
- long-time environmental stability

$$T_{lum} = \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{380}^{780} \varphi_{lum}(\lambda) \varphi_{sol}(\lambda) d\lambda$$

$$T_{sol} = \int_{300}^{2500} \varphi_{sol}(\lambda) T(\lambda, T_m) d\lambda / \int_{300}^{2500} \varphi_{sol}(\lambda) d\lambda$$

$$\Delta T_{sol} = T_{sol} (T_{\rm m} < T_{\rm tr}) - T_{sol} (T_{\rm m} < T_{\rm tr})$$

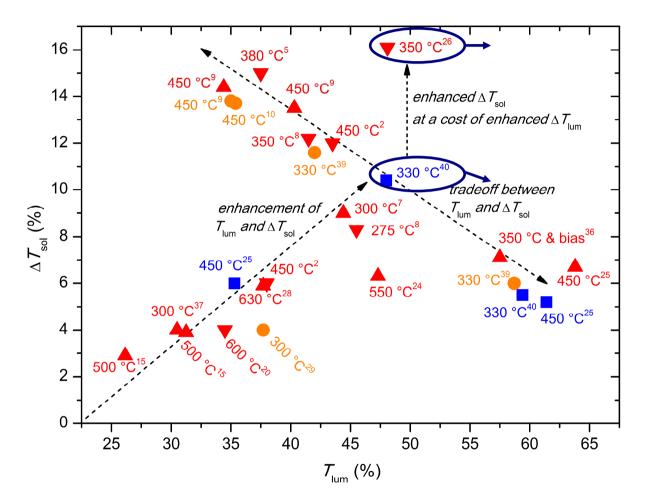

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

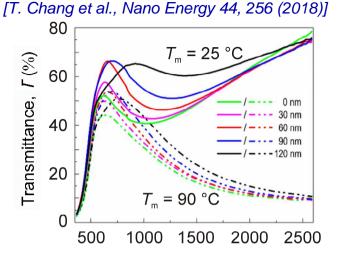


- Development trend leading to enhanced T_{lum} and $\Delta T_{\rm sol}$
- Tradeoff between T_{lum} and ΔT_{sol} of state-of-the-art coatings
- Lowered $T_{\rm tr}$ to ≈20°C & $T_{\rm s}$ to ≈300 °C at preserved $T_{\rm lum}$ & $\Delta T_{\rm sol}$

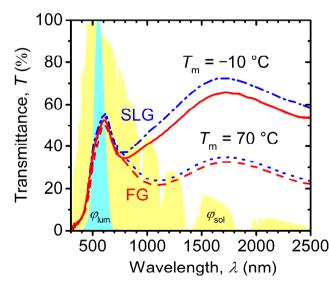
labels: deposition temperature

- $T_{tr} = 20-29 \, ^{\circ}\text{C} \, (doping)$
- $ightharpoonup T_{tr} = 46-68 \, ^{\circ}\text{C} \, (undoped)$
- $T_{tr} = 33-40 \text{ °C (mostly doping)} \quad \nabla \quad T_{tr} \text{ unknown (undoped)}$

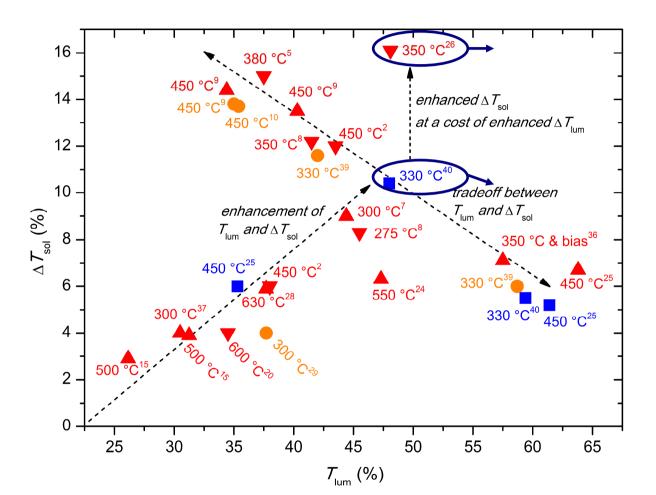


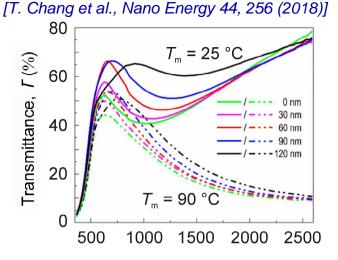


■ Some VO₂-based coatings: switching also in the visible

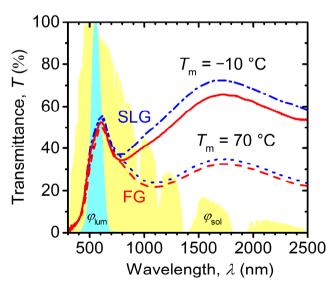

labels: deposition temperature

- $T_{+} = 20-29 \, ^{\circ}\text{C} \, (doping)$
- $T_{tr} = 33-40 \text{ °C (mostly doping)} \quad \forall \quad T_{tr} \text{ unknown (undoped)}$

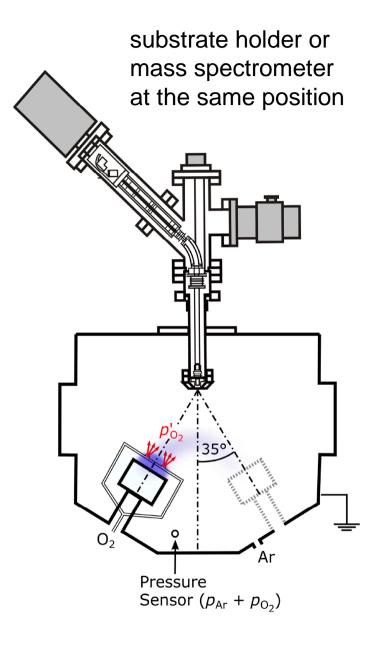




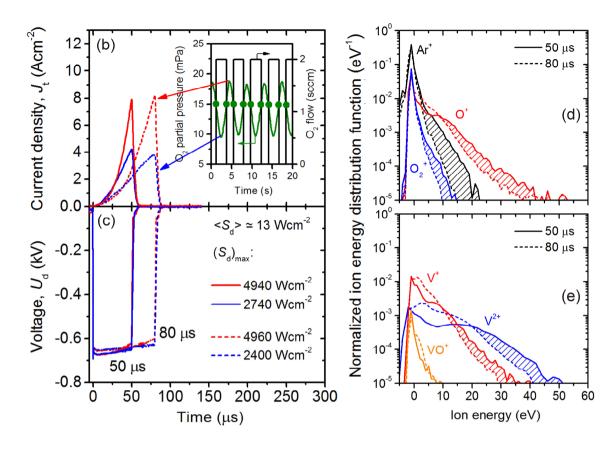
- Some VO₂-based coatings: switching also in the visible
- Other VO₂-based coatings: switching only in the infrared


labels: deposition temperature

- $T_{L} = 20-29 \, ^{\circ}\text{C} \, (doping)$
- $\Lambda_{11} = 46-68 \, ^{\circ}\text{C} \, (\text{undoped})$
- $T_{tr} = 33-40 \text{ °C (mostly doping)} \quad \nabla \quad T_{tr} \text{ unknown (undoped)}$



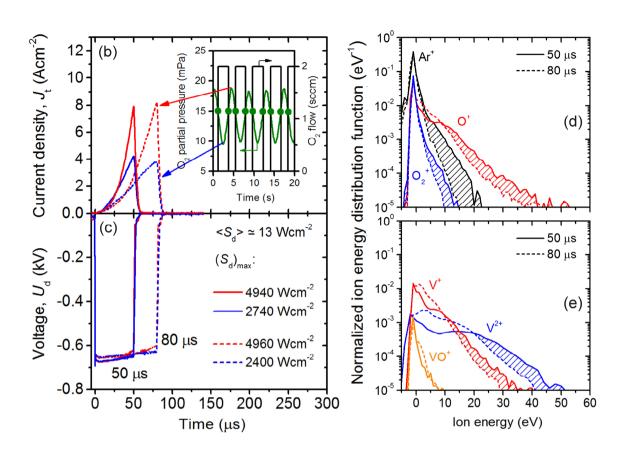
- Some VO₂-based coatings: switching also in the visible
- Other VO₂-based coatings: switching only in the infrared
- (speculation mode activated) Role of exact VO_{2+x} composition?


- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

Only one deposition technique previously fulfilled all the key requirements (T_{lum} , ΔT_{sol} , T_{tr} , T_{s})

Let's see the core of this technique: full utilization of the advantages of HiPIMS (not just using HiPIMS) of VO₂ with pulsed O₂ flow control

[J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)] [J. Vlcek et al., J. Phys. D Appl. Phys. 52, 025205 (2019)]

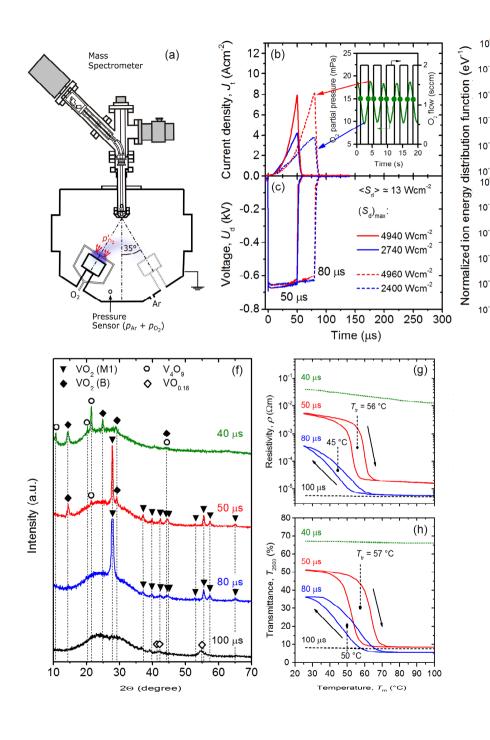

HiPIMS:

(≤5 kWcm⁻² in a pulse at 13 Wcm⁻² in a period and 1% duty cycle)

bombardment by highly ionized fluxes with many metal ions

crystallinity at low $T_s = 300$ °C on glass substrate (250 °C on crystalline substrate)

[J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)] [J. Vlcek et al., J. Phys. D Appl. Phys. 52, 025205 (2019)]


Pulsed O₂ flow control:

O₂ partial pressure or sputtering current compared with its preset critical value

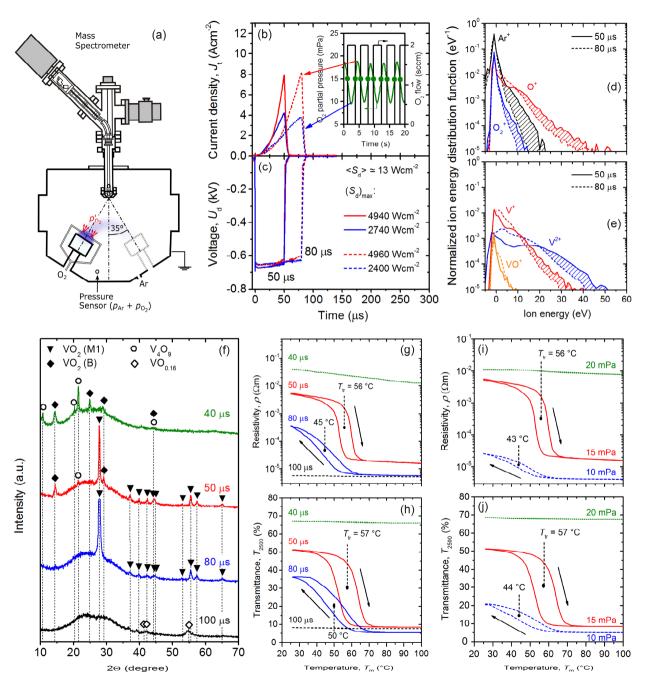
O₂ flux opened and closed by a feedback logical controller

desired VO₂ stoichiometry

[J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)]
[J. Vlcek et al., J. Phys. D Appl. Phys. 52, 025205 (2019)]

Two main control parameters

(1) voltage pulse duration, t_{on}


-----80 μs

10 20 30 40

Ion energy (eV)

higher energy delivered into films and higher [O]/[V] ratio at shorter t_{on}

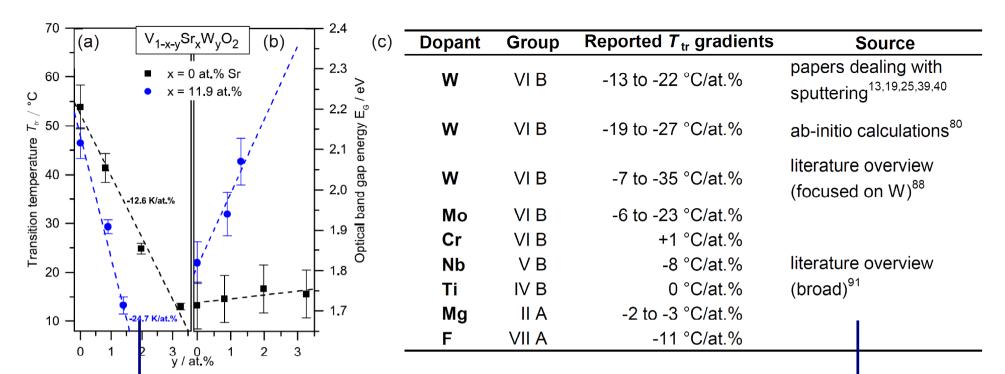
[J. Vlcek et al., J. Phys. D Appl. Phys. 50, 38LT01 (2017)]
[J. Vlcek et al., J. Phys. D Appl. Phys. 52, 025205 (2019)]

Two main control parameters

(1) voltage pulse duration, t_{on}

higher energy delivered into films and higher [O]/[V] ratio at shorter t_{on}

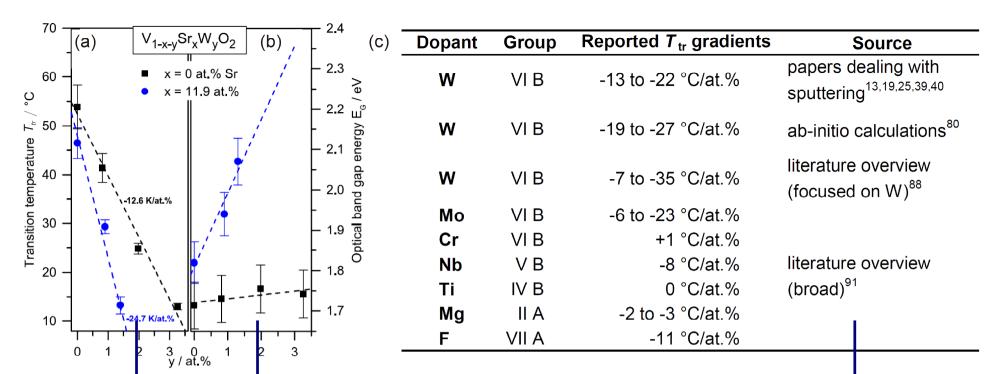
(2) critical O_2 partial pressure, $(p_{ox})_{cr}$


narrow ($\approx \pm 10\%$) (p_{ox})_{cr} window at proper t_{on} , closes to zero at improper t_{on}

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂

IV. Ways to improve the coating characteristics

A. Suitable doping elements


- B. Suitable materials of antireflection layers
- C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
- D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
- E. Designs based on layers containing VO₂ nanoparticles
- F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

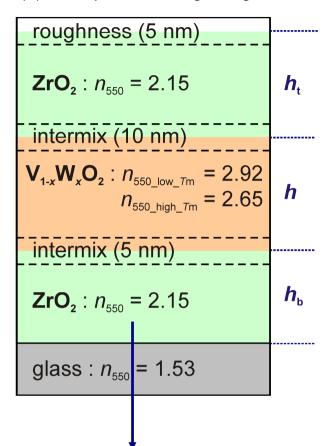
[M.K. Dietrich et al., Appl. Phys. Lett. 110, 141907 (2017)]

Two reasons to dope VO₂

- (1) shift T_{tr} from 68°C (bulk) or \approx 60°C (films) to \approx 20°C
 - disorder by large atoms + one extra electron ⇒ W, Mo
 - linear dependence between [W] and T_{tr}
 - however, various gradients (our data -15 to -19 °C/at.%)

[M.K. Dietrich et al., Appl. Phys. Lett. 110, 141907 (2017)]

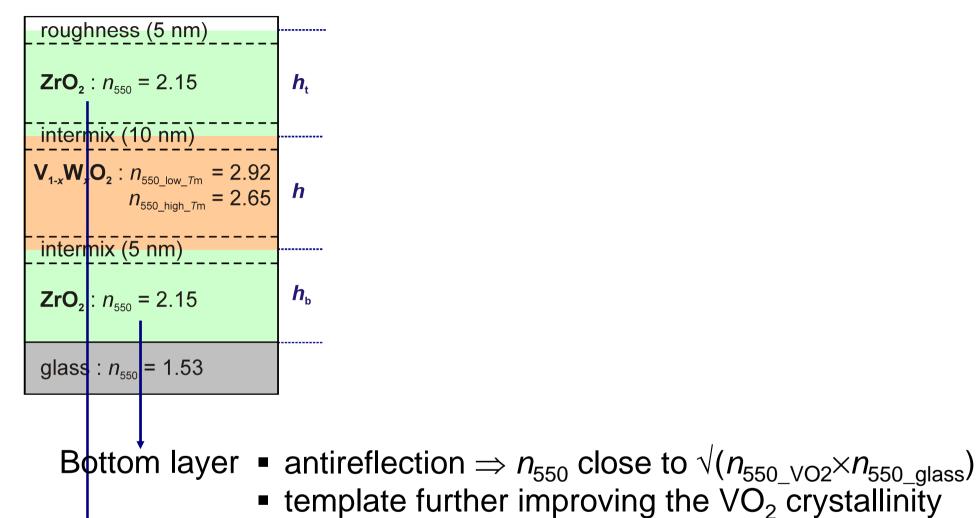
Two reasons to dope VO₂


- (1) shift T_{tr} from 68°C (bulk) or \approx 60°C (films) to \approx 20°C
 - disorder by large atoms + one extra electron ⇒ W, Mo
 - linear dependence between [W] and T_{tr}
 - however, various gradients (our data -15 to -19 °C/at.%)
- (2) manipulate transmittance and color
 - widening of optical gap by Mg (large gradient), Ca, Sr, Ba
 - doping on O sublattice by F (CH₃F or CF₄ in plasma)

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂

IV. Ways to improve the coating characteristics

- A. Suitable doping elements
- B. Suitable materials of antireflection layers
- C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
- D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
- E. Designs based on layers containing VO₂ nanoparticles
- F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook


(a) Example of coating design³⁹

Bottom layer • antireflection $\Rightarrow n_{550}$ close to $\sqrt{(n_{550_VO2} \times n_{550_glass})}$

template further improving the VO₂ crystallinity

(a) Example of coating design³⁹

Top layer

■ antireflection $\Rightarrow n_{550}$ close to $\sqrt{(n_{550 \text{ VO2}} \times n_{550 \text{ air}})}$

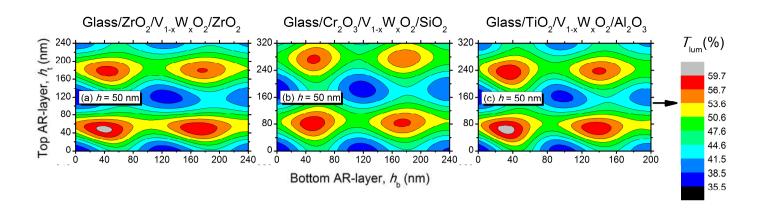
hard protective layer

(a) Example of coating design³⁹

(b) Materials of AR-layers

roughness (5 nm) ZrO₂ : n_{550} = 2.15 intermix (10 nm)	 h _t	Material	n ₅₅₀ allowing functionality of bottom AR-layer	Potential as crystalline template	n ₅₅₀ allowing functionality of top AR-layer	Protective because harder than VO ₂	Wide band gap guaranteeing low k 550
		ZrO ₂	yes	yes	yes	yes	yes
$V_{1-x}W_xO_2: n_{550_low_Tm} = 2.92$ $n_{550_high_Tm} = 2.65$		SiO ₂	too low	irrelevant due to $n_{\rm 550}$	yes	no	yes
intermix (5 nm)		Al_2O_3	too low	irrelevant due to n_{550}	yes	comparable	yes
$ZrO_2: n_{550} = 2.15$	h _b	Cr ₂ O ₃	yes	yes	high but acceptable	yes	no
		SnO ₂	yes	yes	yes	no	no
glass : $n_{550} = 1.53$		TiO ₂	too high	excellent	too high	irrelevant due to n_{550}	really no

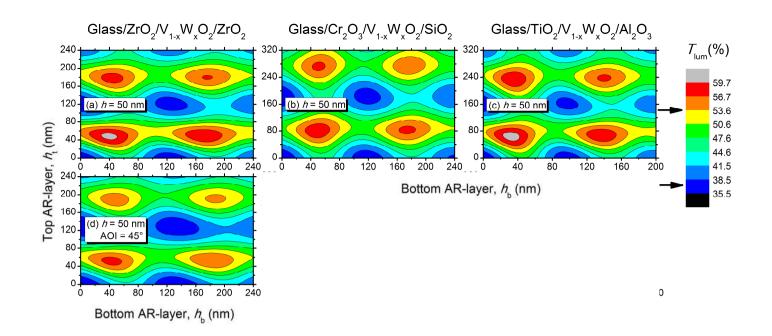
Bottom layer • antireflection + template


Top layer • antireflection + protective

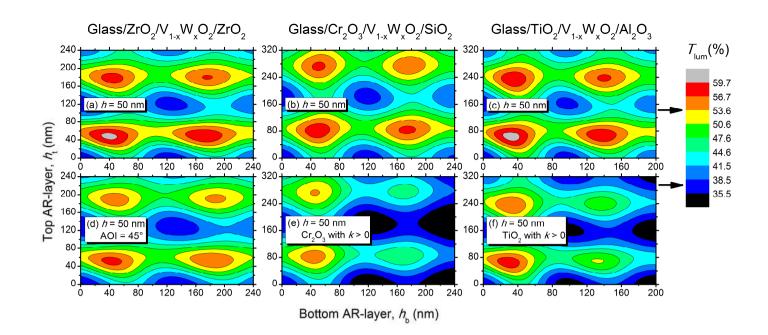
Complementary (dis)advantages, including (non)zero extinction coeffcient, of various candidate oxides and other materials

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂

IV. Ways to improve the coating characteristics

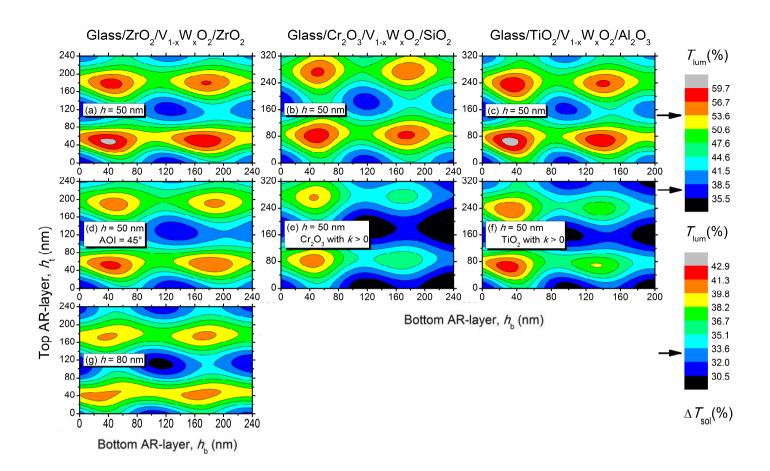

- A. Suitable doping elements
- B. Suitable materials of antireflection layers
- C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
- D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
- E. Designs based on layers containing VO₂ nanoparticles
- F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]


1st-order and 2nd-order maxima of T_{lum} for 3 different designs

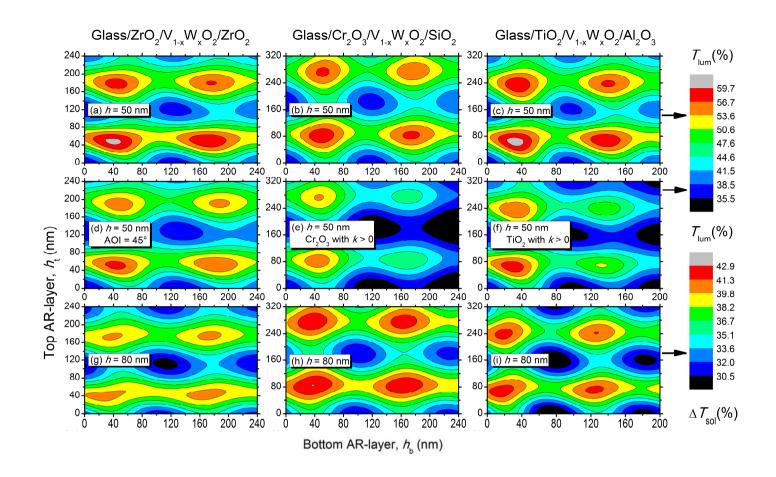
[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]

1st-order and 2nd-order maxima of T_{lum} for 3 different designs


■ Angle of incidence AOI = 45° instead of 0°: refraction toward normal ⇒ only slight shift

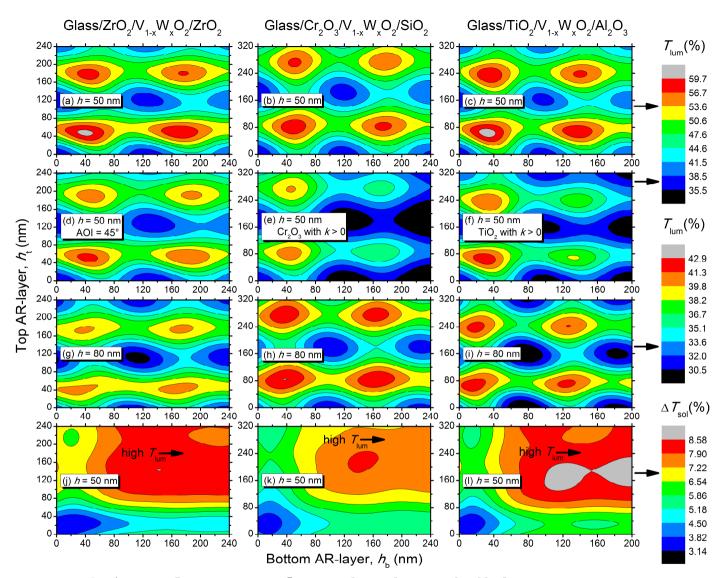
[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]

1st-order and 2nd-order maxima of T_{lum} for 3 different designs

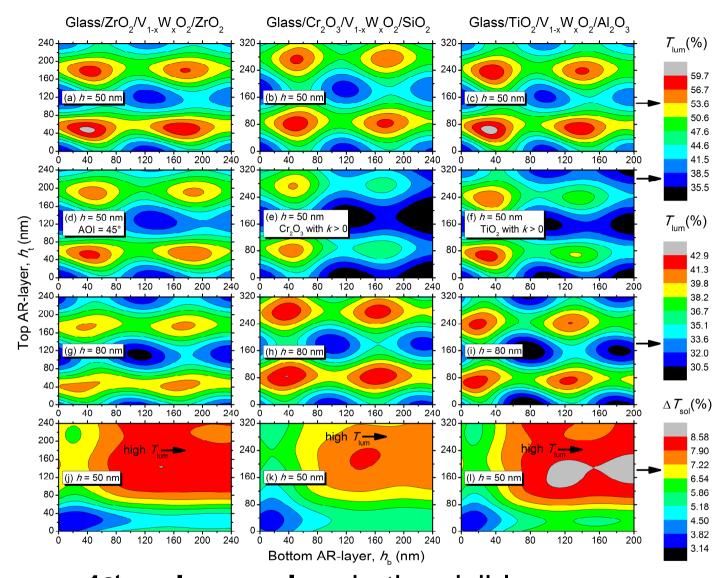

- Angle of incidence AOI = 45° instead of 0°: refraction toward normal ⇒ only slight shift
- Realistic $k_{550} > 0$ of Cr_2O_3 & TiO_2 : 2^{nd} -order maxima of T_{lum} are lower

[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]

 VO_2 thickness h = 80 nm instead of h = 50 nm


■ ZrO₂, SiO₂, Al₂O₃ (n₅₅₀ far from VO₂): weak effect on optimum AR-layer thickness

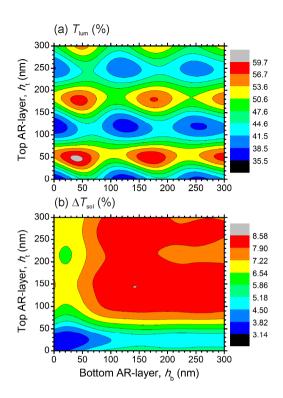
[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]

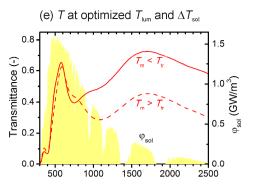

 VO_2 thickness h = 80 nm instead of h = 50 nm

- ZrO₂, SiO₂, Al₂O₃ (n₅₅₀ far from VO₂):
 weak effect on optimum AR-layer thickness
- Cr₂O₃, TiO₂ (n₅₅₀ closer to VO₂):
 negative correlation with optimum AR-layer thickness

[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]

■ 1st-order maxima in the visible: nothing special in the infrared, high T_{lum} but low ΔT_{sol}

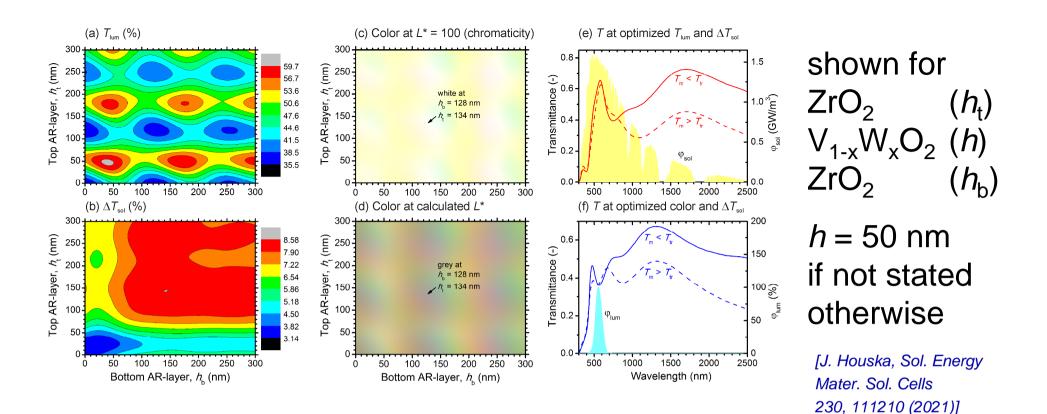

[J. Houska, Sol. Energy Mater. Sol. Cells 191, 365 (2019)]


- 1st-order maxima in the visible: nothing special in the infrared, high T_{lum} but low ΔT_{sol}
- 2nd-order maxima in the visible: 1st-order maxima in the infrared, high T_{lum} and high ΔT_{sol} 10/15

- I. Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂

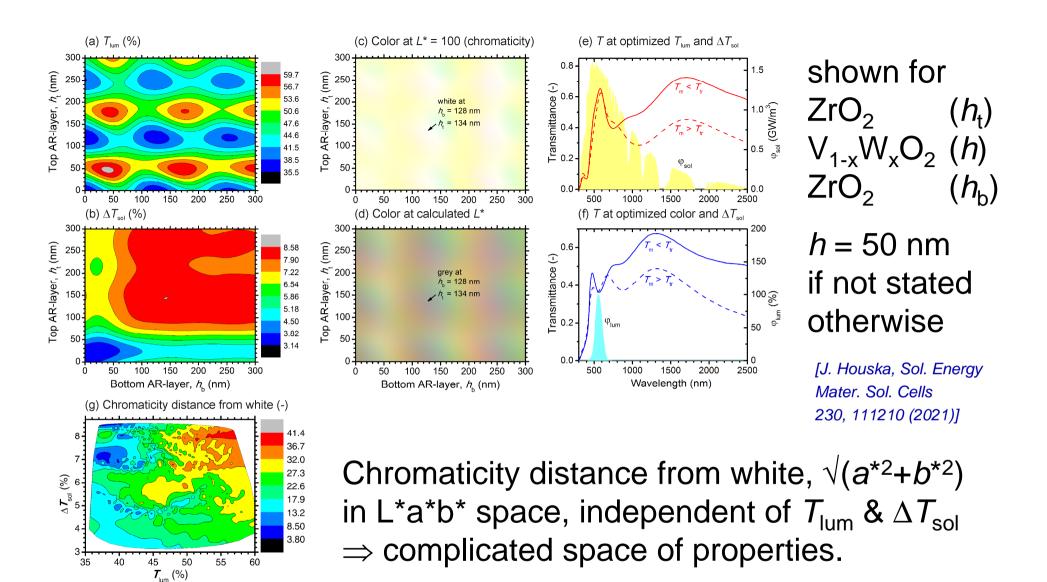
IV. Ways to improve the coating characteristics

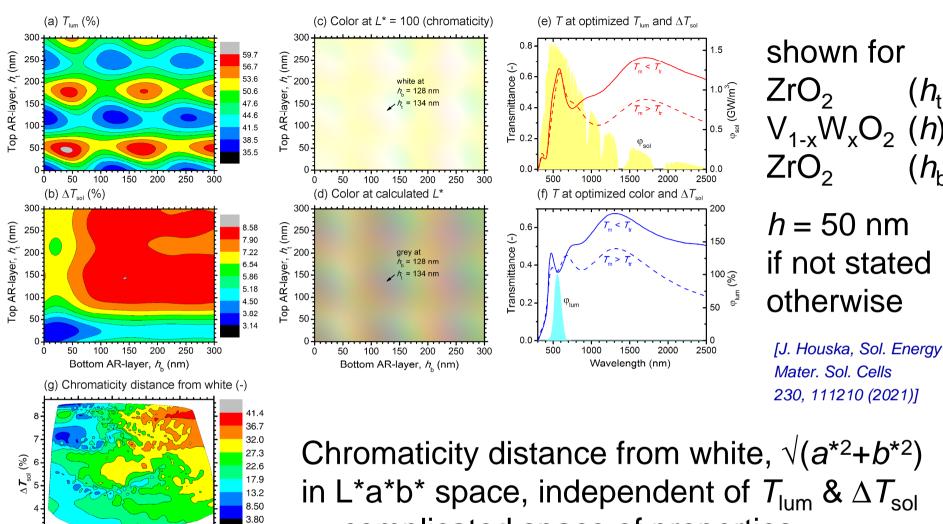
- A. Suitable doping elements
- B. Suitable materials of antireflection layers
- C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
- D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
- E. Designs based on layers containing VO₂ nanoparticles
- F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook



shown for ZrO_2 (h_t) $V_{1-x}W_xO_2$ (h) ZrO_2 (h_b)

h = 50 nmif not statedotherwise

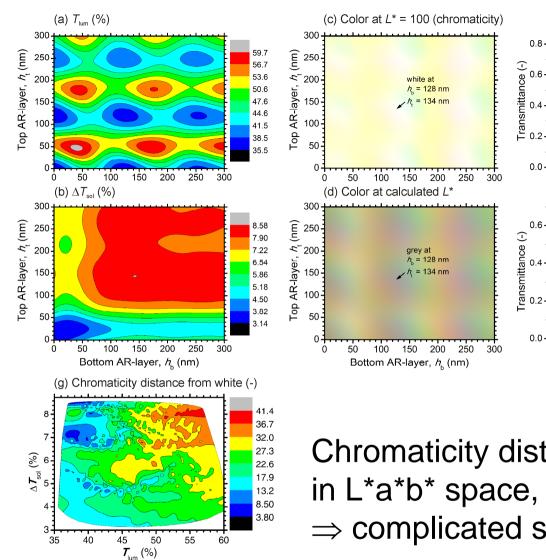

[J. Houska, Sol. Energy Mater. Sol. Cells 230, 111210 (2021)]


High T_{lum} & ΔT_{sol} at $h_{\text{b,t}} \approx 180 \text{ nm}$ 2nd-order maxima of $T(\lambda)$ in the visible \Rightarrow 1st-order maxima of $T(\lambda)$ in the infrared

High T_{lum} & ΔT_{sol} at $h_{\text{b,t}} \approx 180 \text{ nm}$ 2nd-order maxima of $T(\lambda)$ in the visible \Rightarrow 1st-order maxima of $T(\lambda)$ in the infrared

White chromaticity at $h_{b,t} \approx 130 \text{ nm}$ at a cost of minimum $T(\lambda)$ in the visible

50


 T_{lum} (%)

55

in L*a*b* space, independent of $T_{\text{lum}} \& \Delta T_{\text{sol}}$ ⇒ complicated space of properties.

At gived thickness of V_{1-x}W_xO₂

■ tradeoff between T_{lum} and color

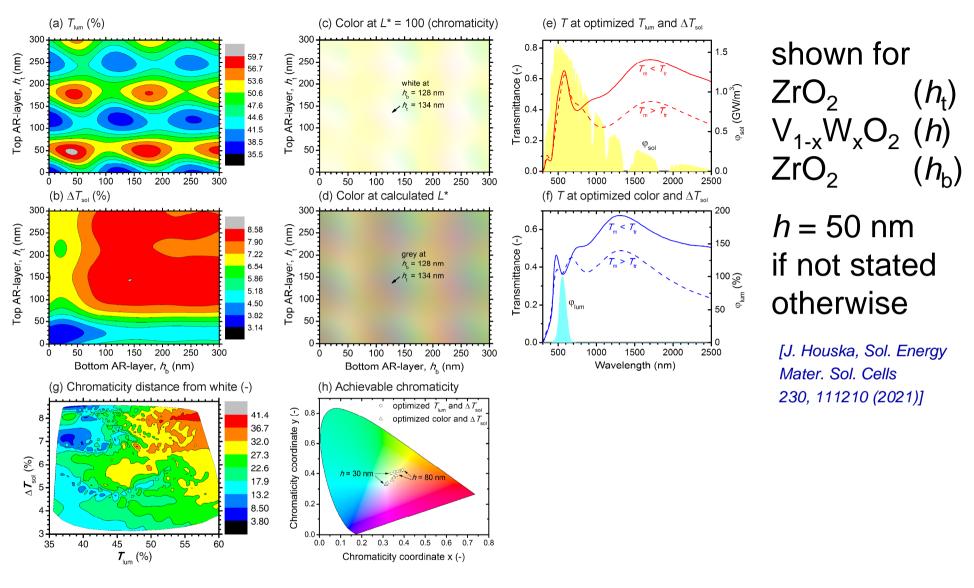
[J. Houska, Sol. Energy Mater. Sol. Cells 230, 111210 (2021)]

otherwise

Chromaticity distance from white, $\sqrt{(a^{*2}+b^{*2})}$ in L*a*b* space, independent of $T_{\text{lum}} \& \Delta T_{\text{sol}} \Rightarrow$ complicated space of properties.

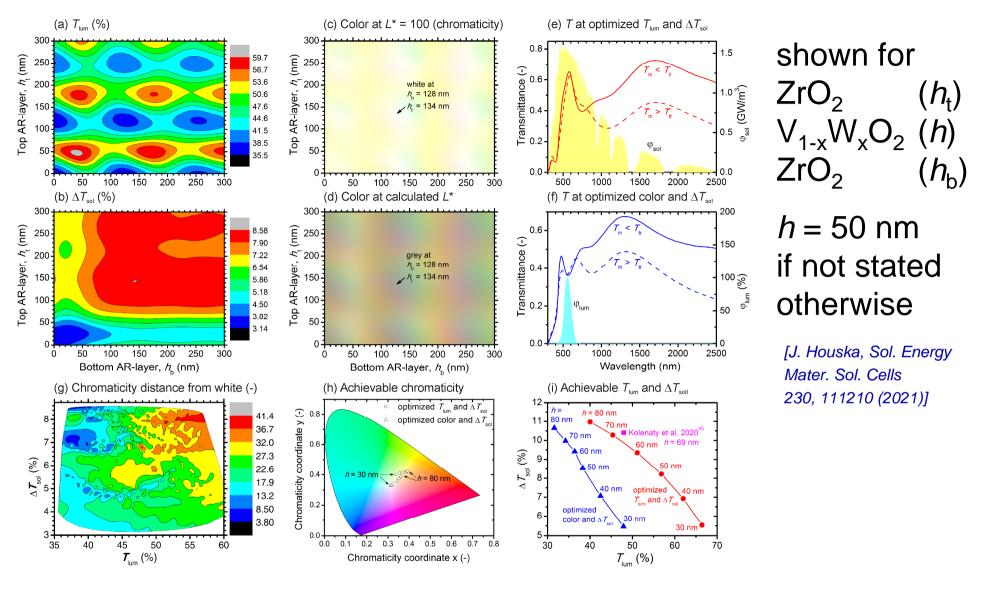
1000 1500

Wavelength (nm)

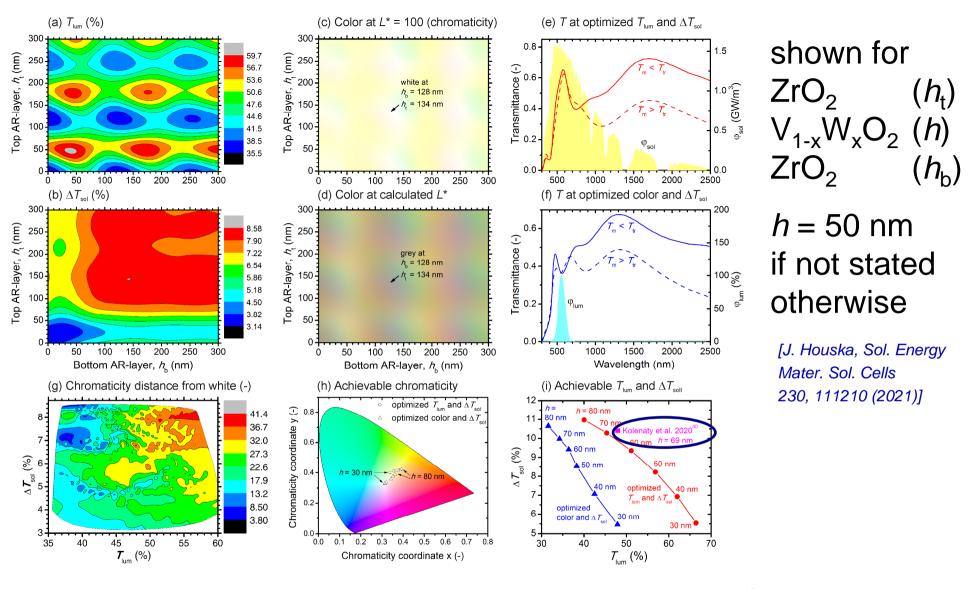

2000

At gived thickness of V_{1-x}W_xO₂

■ tradeoff between T_{lum} and color


500

• no tradeoff between $\Delta T_{\rm sol}$ and color



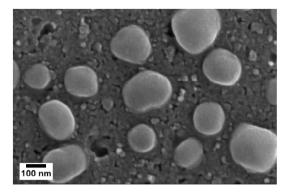
In parallel, the coating color depends on V_{1-x}W_xO₂ thickness

- at optimized T_{lum}
- at optimized color

■ Tradeoff between T_{lum} and ΔT_{sol} : role of $V_{1-x}W_xO_2$ thickness at optimized T_{lum} as well as at optimized color

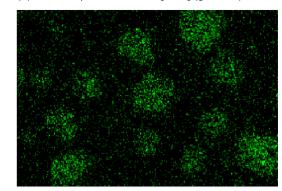
- Tradeoff between T_{lum} and ΔT_{sol} : role of $V_{1-x}W_xO_2$ thickness at optimized T_{lum} as well as at optimized color
- Agreement with an example of experimental result

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂


IV. Ways to improve the coating characteristics

- A. Suitable doping elements
- B. Suitable materials of antireflection layers
- C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
- D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color

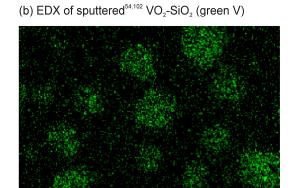
E. Designs based on layers containing VO₂ nanoparticles


- F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

(a) SEM of sputtered VO₂-SiO₂

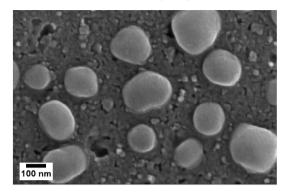
[C.G. Granqvist and G.A. Niklasson, Buildings 7, 3 (2017)]

(b) EDX of sputtered^{54,102} VO₂-SiO₂ (green V)

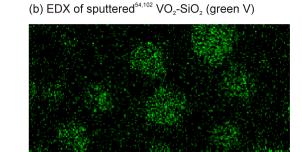


VO₂(-based) nanoparticles in dielectric matrix

(a) SEM of sputtered VO₂-SiO₂



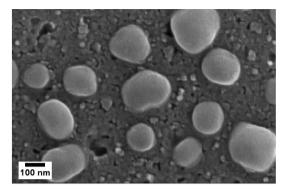
[C.G. Granqvist and G.A. Niklasson, Buildings 7, 3 (2017)]



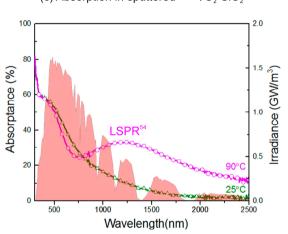
VO₂(-based) nanoparticles in dielectric matrix \downarrow metal / dielectric interface above $T_{\rm tr}$ (VO₂ is metallic)

(a) SEM of sputtered 54,102 VO₂-SiO₂

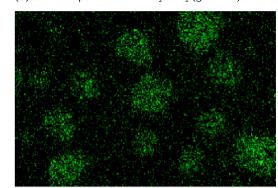
[C.G. Granqvist and G.A. Niklasson, Buildings 7, 3 (2017)]

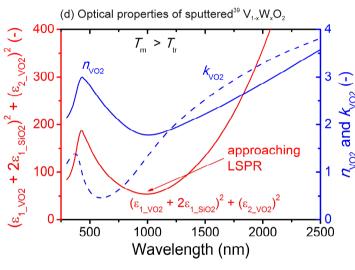

[calculation using the same properties of our VO₂ as above]

VO₂(-based) nanoparticles in dielectric matrix ↓


metal / dielectric interface above T_{tr} (VO₂ is metallic)

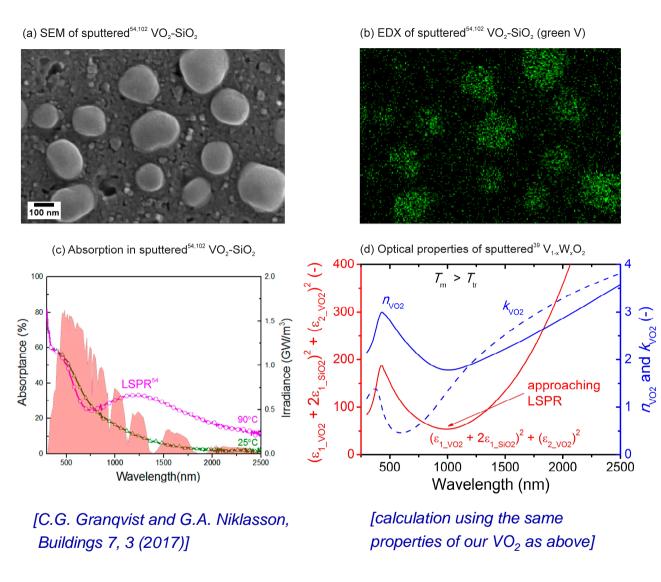
approaching localized surface plasmon resonance in the near infrared above $T_{\rm tr}$




(c) Absorption in sputtered 54,102 VO₂-SiO₂

[C.G. Granqvist and G.A. Niklasson, Buildings 7, 3 (2017)]

(b) EDX of sputtered^{54,102} VO₂-SiO₂ (green V)


[calculation using the same properties of our VO₂ as above]

VO₂(-based) nanoparticles in dielectric matrix ↓↓

metal / dielectric interface above T_{tr} (VO₂ is metallic)

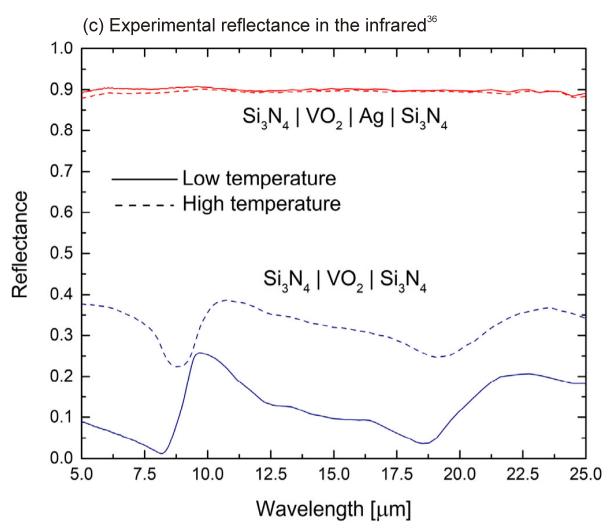
approaching localized surface plasmon resonance in the near infrared above $T_{\rm tr}$

enhanced $A(\lambda)$ in the near infrared above T_{tr}

Enhanced modulation of $T(\lambda)$ in the near infrared, enhanced $\Delta T_{\rm sal}$

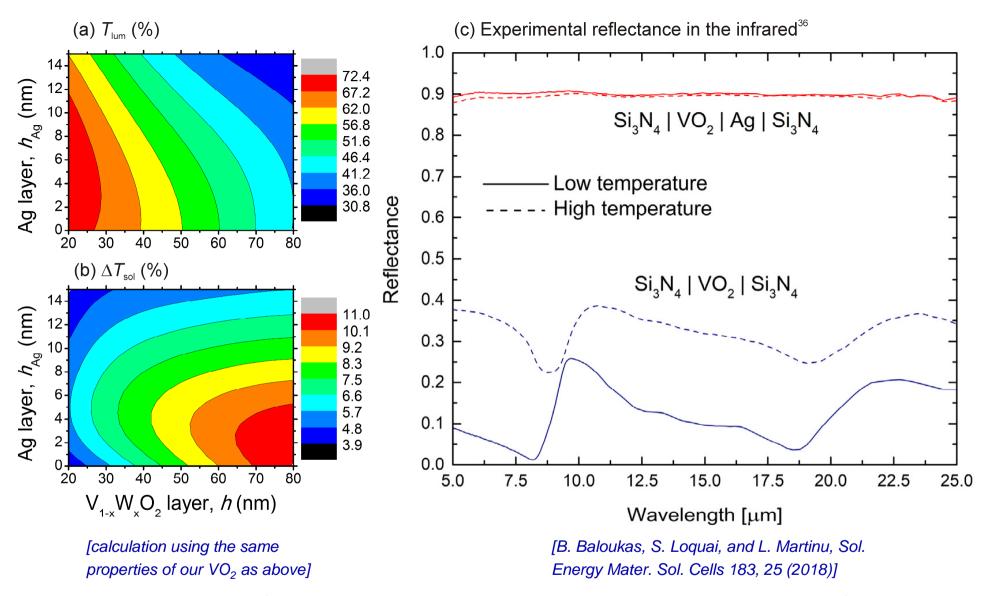
VO₂(-based) nanoparticles in dielectric matrix metal / dielectric interface above T_{tr} (VO₂ is metallic) approaching localized surface plasmon resonance in the near infrared above T_{tr} enhanced $A(\lambda)$ in the near infrared

above T_{tr}


- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂

IV. Ways to improve the coating characteristics

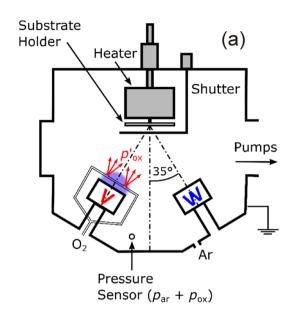
- A. Suitable doping elements
- B. Suitable materials of antireflection layers
- C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
- D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
- E. Designs based on layers containing VO₂ nanoparticles

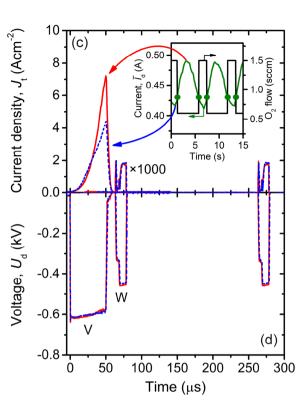

F. Decreasing the coating emissivity in the infrared

- V. Sputtering of high-performance VO₂-based multilayers
- VI. Summary and outlook

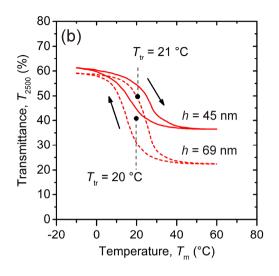
[B. Baloukas, S. Loquai, and L. Martinu, Sol. Energy Mater. Sol. Cells 183, 25 (2018)]

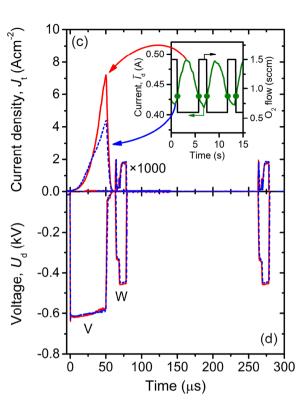
Thin Ag layers (low-emissivity glass, in itself widely used) can be combined with VO₂-based thermochomic layers


Thin Ag layers (low-emissivity glass, in itself widely used) can be combined with VO₂-based thermochomic layers

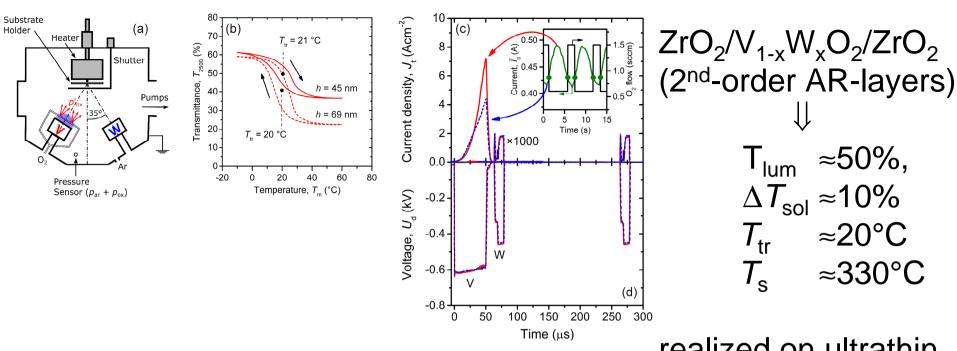

Few nm Ag: only slightly lower T_{lum} , even slightly higher ΔT_{sol} 13/15

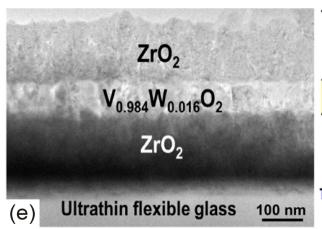
- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared


V. Sputtering of high-performance VO₂-based multilayers


VI. Summary and outlook

HiPIMS of V (13 Wcm⁻², 200 Hz, $t_{on} = 50\mu s$, 1% duty c.) complemented by pulsed dc sput. of W (33 mWcm⁻², 5 kHz, $t_{on} = 16\mu s$, 8% duty c.)





HiPIMS of V (13 Wcm⁻², 200 Hz, $t_{on} = 50\mu s$, 1% duty c.) complemented by pulsed dc sput. of W (33 mWcm⁻², 5 kHz, $t_{on} = 16\mu s$, 8% duty c.)

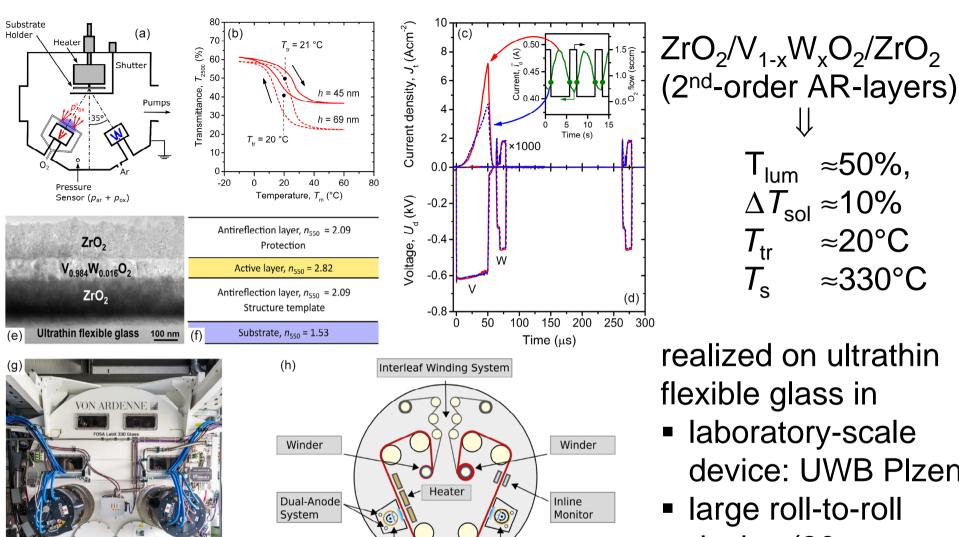
1.6-1.8 at.% W in the V sublattice ↓

 T_{tr} lowered to 20 °C at preserved T_{lum} & ΔT_{sol}

Antireflection layer, $n_{550} = 2.09$ Protection

Active layer, $n_{550} = 2.82$

Antireflection layer, $n_{550} = 2.09$ Structure template


Substrate, $n_{550} = 1.53$

[D. Kolenaty et al., Sci. Rep. 10, 11107 (2020)]

[T. Barta et al., Coatings 10, 1258 (2020)]

realized on ultrathin flexible glass in

laboratory-scale device: UWB Plzen

Rotatable Magnetron (V-W)

Rotatable Magnetron (ZrO₂)

[J. Rezek et al., Surf. Coat. Technol., in print (2022)]

flexible glass in

- laboratory-scale device: UWB Plzen
- large roll-to-roll device (30 cm × 20 m): collaborat. with FEP Dresden

- Introduction and background
- II. Quantities of interest and criteria of success
- III. Properties and sputtering of thermochromic VO₂
- IV. Ways to improve the coating characteristics
 - A. Suitable doping elements
 - B. Suitable materials of antireflection layers
 - C. Design of multilayers with optimized $\Delta T_{\rm sol}$ and $T_{\rm lum}$
 - D. Design of multilayers with optimized $\Delta T_{\rm sol}$ and color
 - E. Designs based on layers containing VO₂ nanoparticles
 - F. Decreasing the coating emissivity in the infrared
- V. Sputtering of high-performance VO₂-based multilayers

VI. Summary and outlook

Summary and outlook [J. Houska, J. Appl. Phys. 131, 110901 (2022)]

Reactively sputtered VO₂-based thermochromic coatings

- very interesting from the perspective of fundamental research
- competitive performance (**UWB**: $T_{lum} \approx 50\%$, $\Delta T_{sol} \approx 10\%$, $T_{tr} \approx 20$ °C, $T_{s} \approx 330$ °C)
- can be prepared under industry-friendly conditions
- show an enormous potential for near future applications

Summary and outlook [J. Houska, J. Appl. Phys. 131, 110901 (2022)]

Reactively sputtered VO₂-based thermochromic coatings

- very interesting from the perspective of fundamental research
- competitive performance (**UWB**: $T_{lum} \approx 50\%$, $\Delta T_{sol} \approx 10\%$, $T_{tr} \approx 20$ °C, $T_{s} \approx 330$ °C)
- can be prepared under industry-friendly conditions
- show an enormous potential for near future applications

The following is recommended to be kept in mind

- all main quantities should be optimized in parallel (energy saving windows: T_{lum} , ΔT_{sol} , T_{tr} , T_{s})
- increasing importance of color, shape of hysteresis loop, environmental stability, emissivity, realistic beam angles, absorption in realistic substrates
- each improvement should be explained: distinguish reproducible benefits of an innovative coating design from e.g. slight compositional changes.

Summary and outlook [J. Houska, J. Appl. Phys. 131, 110901 (2022)]

Reactively sputtered VO₂-based thermochromic coatings

- very interesting from the perspective of fundamental research
- competitive performance (**UWB**: $T_{lum} \approx 50\%$, $\Delta T_{sol} \approx 10\%$, $T_{tr} \approx 20$ °C, $T_{s} \approx 330$ °C)
- can be prepared under industry-friendly conditions
- show an enormous potential for near future applications

The following is recommended to be kept in mind

- all main quantities should be optimized in parallel (energy saving windows: T_{lum} , ΔT_{sol} , T_{tr} , T_{s})
- increasing importance of color, shape of hysteresis loop, environmental stability, emissivity, realistic beam angles, absorption in realistic substrates
- each improvement should be explained: distinguish reproducible benefits of an innovative coating design from e.g. slight compositional changes.

Main ideas how to improve the coating properties

- energetic bombardment using controlled reactive HiPIMS
- doping (W, Mg, ...) using techniques which do not harm other properties
- $T(\lambda)$ modulation in the visible by slight changes of [V]/[O] ratio
- second order antireflection layers
- localized surface plasmon resonance