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ENGINEERING COUNCIL 
 

CERTIFICATE LEVEL 
 

THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 
 

TUTORIAL 7 – HYDROSTATICS 
 
 

 
Elements of this tutorial may be skipped if you are already familiar with the subject matter. 

 
 

On completion of this tutorial you should be able to do the following. 
 

• Define the main fundamental properties of liquids. 
 
• Explain Archimedes’s Principle 
 
• Calculate the pressure due to the depth of a liquid. 

 
• Calculate the total force on a vertical surface. 

 
• Define and calculate the position of the centre of pressure for various shapes. 

 
• Calculate the turning moments produced on vertically immersed surfaces. 

 
 
Before you start you should make sure that you fully understand first and second moments of area. 
If you are not familiar with this, you should do that tutorial before proceeding. Let’s start this 
tutorial by studying the fundamental properties of liquids. 
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1. SOME FUNDAMENTAL STUDIES 
 
1.1 IDEAL LIQUIDS 
 
An ideal liquid is defined as follows. 
 
It is INVISCID. This means that molecules require no force to separate them. The topic is covered 
in detail in chapter 3. 
 
It is INCOMPRESSIBLE. This means that it would require an infinite force to reduce the volume 
of the liquid. 
 
1.2 REAL LIQUIDS 
 
VISCOSITY 
 
Real liquids have VISCOSITY. This means that the molecules tend to stick to each other and to any 
surface with which they come into contact. This produces fluid friction and energy loss when the 
liquid flows over a surface. Viscosity defines how easily a liquid flows. The lower the viscosity, the 
easier it flows. 
 
BULK MODULUS 
 
Real liquids are compressible and this is governed by the BULK MODULUS K. This is defined as 
follows. 

K = V∆p/∆V 
∆p is the increase in pressure, ∆V is the reduction in volume and V is the original volume. 
 
DENSITY Density ρ relates the mass and volume such that ρ = m/V  kg/ m3

 
PRESSURE 
 
Pressure is the result of compacting the molecules of a fluid into a smaller space than it would 
otherwise occupy. Pressure is the force per unit area acting on a surface. The unit of pressure is the 
N/m2 and this is called a PASCAL. The Pascal is a small unit of pressure so higher multiples are 
common. 
 1 kPa = 103 N/m2

 1 MPa = 106 N/m2

 Another common unit of pressure is the bar but this is not an SI unit. 
 1 bar = 105 N/m2

 1 mb = 100 N/m2 

 
GAUGE AND ABSOLUTE PRESSURE 
 
Most pressure gauges are designed only to measure and indicate the pressure of a fluid above that 
of the surrounding atmosphere and indicate zero when connected to the atmosphere. These are 
called gauge pressures and are normally used. Sometimes it is necessary to add the atmospheric 
pressure onto the gauge reading in order to find the true or absolute pressure. 
 
Absolute pressure = gauge pressure + atmospheric pressure. 
 
Standard atmospheric pressure is 1.013 bar. 



2. HYDROSTATIC FORCES 
 
2.1 HYDROSTATIC PRESSURE 
 
2.1.1 PRESSURE INSIDE PIPES AND VESSELS 
 
Pressure results when a liquid is compacted into a 
volume. The pressure inside vessels and pipes 
produce stresses and strains as it tries to stretch the 
material. An example of this is a pipe with flanged 
joints. The pressure in the pipe tries to separate the 
flanges. The force is the product of the pressure and 
the bore area. 
 

Fig.1 
 

 
 WORKED EXAMPLE No. 1 
 
 Calculate the force trying to separate the flanges of a valve (Fig.1) when the pressure is 2 MPa 

and the pipe bore is 50 mm. 
 
 SOLUTION 
 
 Force = pressure x bore area 
 Bore area = πD2/4 = π x 0.052/4 = 1.963 x 10-3 m2

 Pressure = 2 x 106 Pa 
 Force = 2 x 106 x 1.963 x 10-3 = 3.927 x 103 N or 3.927 kN 
 
 
2.1.2 PRESSURE DUE TO THE WEIGHT OF A LIQUID 
 
Consider a tank full of liquid as shown. The liquid has a total 
weight W and this bears down on the bottom and produces a 
pressure p. Pascal showed that the pressure in a liquid always acts 
normal (at 90o) to the surface of contact so the pressure pushes 
down onto the bottom of the tank. He also showed that the pressure 
at a given point acts equally in all directions so the pressure also 
pushes up on the liquid above it and sideways against the walls. 
 
The volume of the liquid is  V = A h   m3

The mass of liquid is hence m = ρV = ρAh  kg 
The weight is obtained by multiplying by the gravitational constant g.  Fig. 2 
W = mg = ρAhg  Newton 
The pressure on the bottom is the weight per unit area  p = W/A   N/m2

It follows that the pressure at a depth h in a liquid is given by the following equation. 
 

p = ρgh 
 
The unit of pressure is the N/m2 and this is called a PASCAL. The Pascal is a small unit of pressure 
so higher multiples are common. 
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 WORKED EXAMPLE 2 
 
 Calculate the pressure and force on an inspection hatch 0.75 m diameter located on the bottom 

of a tank when it is filled with oil of density 875 kg/m3 to a depth of 7 m. 
 
 SOLUTION 
 
 The pressure on the bottom of the tank is found as follows.    p = ρ g h 
 ρ =  875 kg/m3

 g = 9.81 m/s2 
 h = 7 m 
 p = 875 x 9.81 x 7 = 60086 N/m2 or 60.086 kPa 
 The force is the product of pressure and area. 
 A = πD2/4 = π x 0.752/4 = 0.442 m2

 F = p A = 60.086 x 103 x 0.442 = 26.55 x 103 N or 26.55 Kn 
 
 
2.1.3 PRESSURE HEAD 
 
When h is made the subject of the formula, it is called the 
pressure head. h = p/ρg 
  
Pressure is often measured by using a column of liquid. Consider 
a pipe carrying liquid at pressure p. If a small vertical pipe is 
attached to it, the liquid will rise to a height h and at this height, 
the pressure at the foot of the column is equal to the pressure in 
the pipe. 

     Fig.3 
 

This principle is used in barometers to measure 
atmospheric pressure and manometers to measure gas 
pressure.  
 
In the manometer, the weight of the gas is negligible 
so the height h represents the difference in the 
pressures p1 and p2. 

p1 - p2 = ρ g h 
 
 
 

  Barometer                           Manometer 
  Fig.4 

 
In the case of the barometer, the column is closed at the top so that p2 = 0 and p1 = pa. The height h 
represents the atmospheric pressure. Mercury is used as the liquid because it does not evaporate 
easily at the near total vacuum on the top of the column. 
 

 Pa = ρ g h 
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 WORKED EXAMPLE No.3 
 
 A manometer (fig.4) is used to measure the pressure of gas in a container. One side is 

connected to the container and the other side is open to the atmosphere. The manometer 
contains oil of density 750 kg/m3 and the head is 50 mm. Calculate the gauge pressure of the 
gas in the container. 

 
 SOLUTION 
 
 p1 - p2 = ρ g h = 750 x 9.81 x 0.05 = 367.9 Pa 
 
 Since p2 is atmospheric pressure, this is the gauge pressure. p2 = 367.9 Pa (gauge) 
 
 
 
3. ARCHIMEDES’  PRINCIPLE 
 
Consider a cylinder floating in a liquid as shown. The 
pressure on the bottom is p = ρ g h 
 
The force pushing upwards is F = pA = ρghA and this 
must be equal to the weight of the cylinder. 
 
hA is the volume of the liquid that is displaced by the 
cylinder. 
 
ρghA is the weight of the liquid displaced by the 
cylinder. 
 
It follows that a floating body displaces its own weight of liquid. This is Archimedes’ principle. 
 
Since g is a constant it also follows that it follows that a floating body displaces its own mass of 
liquid. 
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 WORKED EXAMPLE No. 4 
 
 A ship is made from steel. It rests in a dry dock as shown. The dry dock is 80 m long and 40 m 

wide.  
 When seawater is allowed into the dry dock, it is found that the ship just starts to float when the 

level reaches 10 m from the bottom. The volume of water that was allowed in was estimated to 
be 20000 m3. Calculate: 
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 The mass of the ship. 
 The volume of steel used to make the ship. 
 The pressure on the bottom of the ship. 
 
 The density of sea water is 1036 kg/m3

 The density of steel is 7830 kg/m3

 
 SOLUTION 
 
 Volume of water without the ship = 80 x 40 x 10 = 32000 m3  Fig.5 
 
 Volume of water with ship = 20000 m3

 
 Volume displaced = 12 000 m3

 
 Mass of water displaced = 12 000 x 1036 = 1243200  kg 
 Mass of the ship is hence 1243200  kg 
 This is all steel so the volume of steel is V = Mass/density = 1243200 /7830 = 158.77 m3

 
 The pressure on the bottom = ρ g h = 1036 x 9.81 x 10 = 101.63 kPa 
 
 
 
 SELF ASSESSMENT EXERCISE No.1 
 
1. A mercury barometer gives a pressure head of 758 mm. The density is 13 600 kg/m3. Calculate 

the atmospheric pressure in bar. (1.0113 bar) 
 
2. A manometer (fig.4) is used to measure the pressure of gas in a container. One side is 

connected to the container and the other side is open to the atmosphere. The manometer 
contains water of density 1000 kg/m3 and the head is 250 mm. Calculate the gauge pressure of 
the gas in the container. (2.452.5 kPa) 

 
3. Calculate the pressure and force on a horizontal submarine hatch 1.2 m diameter when it is at a 

depth of 800 m in seawater of density 1030 kg/m3. (8.083 MPa and 9.142 MN) 
 



4. FORCES ON SUBMERGED SURFACES 
 
4.1 TOTAL FORCE 
 
Consider a vertical area submerged 
below the surface of liquid as shown. 

 
The area of the elementary strip is  
dA = B dy 
 
You should already know that the 
pressure at depth h in a liquid is 
given by the equation  p = ρgh where 
ρ is the density and h the depth. 
 
In this case, we are using y to denote 
depth so p = ρgy  
      Fig.6 
 
The force on the strip due to this pressure is dF = p dA =ρB gy dy 
 
The total force on the surface due to pressure is denoted R and it is obtained by integrating this 
expression between the limits of y1 and y2. 

It follows that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

2
yyρgBR

2
1

2
2  

This may be factorised. ( )( )
2

yyyyρgBR 1212 +−
=  

 
(y2 - y1) = D so B(y2 - y1) = BD =Area of the surface A  
 
(y2 + y1)/2 is the distance from the free surface to the centroid y . 
 
It follows that the total force is given by the expression  
    R = ρgA y  
 
The term Ay is the first moment of area and in general, the total force on a submerged surface is  
 

R = ρg   x  1st moment of area about the free surface. 
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4.2 CENTRE OF PRESSURE 
 

The centre of pressure is the point at which the total force may be assumed to act on a submerged 
surface. Consider the diagram again. The force on the strip is dF as before. This force produces a 
turning moment with respect to the free surface s – s. The turning moment due to dF is as follows. 
    dM = y dF = ρgBy2dy 
 
The total turning moment about the surface due to pressure is obtained by integrating this 
expression between the limits of y1 and y2. 

∫
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Hence  M = ρgIss 
 
This moment must also be given by the total force R multiplied by some distance h . The position at 
depth h is called the CENTRE OF PRESSURE. h  is found by equating the moments. 
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s - sabout  
area ofmoment  1
area ofmoment  2 h st

nd
=  

In order to be competent in this work, you should be familiar with the parallel axis theorem 
(covered in part 1) because you will need it to solve 2nd moments of area about the free surface. The 
rule is as follows.  
 Iss = Igg + A y 2 
 
Iss is the 2nd moment about the free surface and  Igg  is the 2nd moment about the centroid.  
 
You should be familiar with the following standard formulae for 2nd moments about the centroid. 
 
Rectangle   Igg = BD3/12 
 
Rectangle about its edge  I = BD3/3 
 
Circle   Igg =  πD4/64 
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 WORKED EXAMPLE No.5 
 
 Show that the centre of pressure on a vertical retaining wall is at 2/3 of the depth. Go on to 

show that the turning moment produced about the bottom of the wall is given by the expression 
ρgh3/6 for a unit width. 

 
Fig. 7 

 SOLUTION 
 
 For a given width B, the area is a rectangle with the free surface at the top edge. 
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 It follows that the centre of pressure is h/3 from the bottom. 
 
 The total force is R = ρgAy = ρgBh2/2  and for a unit width this is ρgh2/2   
 
 The moment bout the bottom is R x h/3 = (ρgh2/2) x h/3  = ρgh3/6 
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 SELF ASSESSMENT EXERCISE No.2 
 
1. A vertical retaining wall contains water to a depth of 20 metres. Calculate the turning moment 

about the bottom for a unit width. Take the density as 1000 kg/m3. 
 (13.08 MNm) 
 
2. A vertical wall separates seawater on one side from fresh water on the other side. The seawater 

is 3.5 m deep and has a density of 1030 kg/m3. The fresh water is 2 m deep and has a density of 
1000 kg/m3. Calculate the turning moment produced about the bottom for a unit width. 

 (59.12 kNm) 
 
3. The diagram shows an oil catchment boom. 
 
 Sketch the pressure distribution on the boom. The depth of oil is 0.3 m on top of the water.  
 Determine the horizontal force acting on the boom per metre length. 
 The density of water is 1000 kg/m3 and for oil 890 kg/m3. 
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 WORKED EXAMPLE No. 6 
 
 A concrete wall retains water and has a hatch blocking off an outflow tunnel as shown. Find the 

total force on the hatch and the position of the centre of pressure. Calculate the total moment 
about the bottom edge of the hatch. The water density is1000 kg/m3. 

 
 

Fig. 8 
 SOLUTION 
 
 Total force = R = ρ g A y  
 For the rectangle shown y  =  (1.5 + 3/2) = 3 m.  A = 2 x 3 = 6 m2. 
 
 R = 1000 x 9.81 x 6 x 3 = 176580 N or 176.58 kN 
 
 h  = 2nd mom. of Area/ 1st mom. of Area 
 
 1st  moment of Area  = A y  = 6 x 3 = 18 m3. 
 
 2nd mom of area = Iss = (BD3/12) + A y 2= (2 x 33/12) + (6 x 32) 
 
 Iss = 4.5 + 54 = 58.5 m4. 
 
 h  = 58.5/18 = 3.25 m 
 
 The distance from the bottom edge is x = 4.5 – 3.25 = 1.25 m 
 Moment about the bottom edge is  = Rx = 176.58 x 1.25 = 220.725 kNm. 
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 WORKED EXAMPLE No. 7 
 
 Find the force required at the top of the circular hatch shown in order to keep it closed against 

the water pressure outside.   The density of the water is 1030 kg/m3. 
 

 
Fig. 9 

 
 y  = 2 m from surface to middle of hatch. 
 
 Total Force = R = ρ g A y  = 1030 x 9.81 x (π x 22/4) x 2 = 63487 N or 63.487 kN 
 
 Centre of Pressure h  = 2nd  moment/1st moment 
 
 2nd  moment of area. 
 Iss = Igg + A y 2 =(π x 24/64) + (π x 22/4) x 22 
  Iss =13.3518 m4. 
 
 1st  moment of area 
 A y  = (π x 22/4) x 2 = 6.283 m3. 
 Centre of pressure. 
 h  = 13.3518/6.283 = 2.125 m 
 
 This is the depth at which, the total force may be assumed to act. Take moments about the 

hinge. 
 
 F = force at top. 
 
 R = force at centre of pressure which is 0.125 m below the hinge. 

 
Fig. 10 

 For equilibrium F x 1 = 63.487 x 0.125 
 
 F = 7.936 kN 
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 WORKED EXAMPLE No. 8 
 
 The diagram shows a hinged circular vertical hatch diameter D that flips open when the water 

level outside reaches a critical depth h. Show that for this to happen the hinge must be located 

at a position x from the bottom given by the formula 
⎭
⎬
⎫

⎩
⎨
⎧=

4D -8h 
5D -8h 

2
Dx  

 
 Given that the hatch is 0.6 m diameter, calculate the position of the hinge such that the hatch 

flips open when the depth reaches 4 metres. 

 
Fig.11 

 SOLUTION 
 
 The hatch will flip open as soon as the centre of pressure rises above the hinge creating a 

clockwise turning moment. When the centre of pressure is below the hinge, the turning moment 
is anticlockwise and the hatch is prevented from turning in that direction. We must make the 
centre of pressure at position x. 
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 Putting D = 0.6 and h = 4 we get x = 0.5 m 
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 SELF ASSESSMENT EXERCISE No.3 
 
1. A circular hatch is vertical and hinged at the bottom. It is 2 m diameter and the top edge is 2m 

below the free surface. Find the total force, the position of the centre of pressure and the force 
required at the top to keep it closed. The density of the water is 1000 kg/m3.  

 (92.469 kN, 3.08 m,42.5 kN) 
 
 
 
2. A large tank of sea water has a door in the side  1 m square. The top of the door is 5 m below 

the free surface. The door is hinged on the bottom edge. Calculate the force required at the top 
to keep it closed. The density of the sea water is 1036 kg/m3.  

 (27.11 N) 
 
 
3.  A culvert in the side of a reservoir is closed by a vertical rectangular gate 2m wide and 1 m 

deep as shown in fig. 11. The gate is hinged about a horizontal axis which passes through the 
centre of the gate. The free surface of water in the reservoir is 2.5 m above the axis of the 
hinge. The density of water is 1000 kg/m3. 

 
 Assuming that the hinges are frictionless and that the culvert is open to atmosphere, determine 
 
 (i) the force acting on the gate when closed due to the pressure of water. (55.897 kN) 
 
 (ii) the moment to be applied about the hinge axis to open the gate. (1635 Nm) 

 
Fig.12 
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4. The diagram shows a rectangular vertical hatch breadth B and depth D. The hatch flips open 

when the water level outside reaches a critical depth h. Show that for this to happen the hinge 
must be located at a position x from the bottom given by the formula 

 
⎭
⎬
⎫

⎩
⎨
⎧=

3D -6h 
4D -6h 

2
Dx  

 Given that the hatch is 1 m deep, calculate the position of the hinge such that the hatch flips 
open when the depth reaches 3 metres. (0.466 m) 

 
Fig.13 

 
5. Fig.13 shows an L shaped spill gate that operates by pivoting about hinge O when the water 

level in the channel rises to a certain height H above O. A counterweight W attached to the gate 
provides closure of the gate at low water levels. With the channel empty the force at sill S is 
1.635 kN. The distance l is 0.5m and the gate is 2 m wide. 

 
 Determine the magnitude of H. 
 
 (i) when the gate begins to open due to the hydrostatic load. (1 m) 
 (ii) when the force acting on the sill becomes a maximum. What is the magnitude of this force. 
 (0.5 m) 
 Assume the effects of friction are negligible. 

 
Fig.14 
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ENGINEERING COUNCIL 

 
CERTIFICATE LEVEL 

 
THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 

 
TUTORIAL 5 –THE VISCOUS NATURE OF FLUIDS 

 
 
On completion of this tutorial you should be able to do the following. 
 
• Define viscosity and its units. 
 
• Define a Newtonian fluid. 
 
• Describe a range of Viscometers 
 
Let's start by examining the meaning of viscosity. 
 



1.  VISCOSITY
 
1.1 BASIC THEORY 
 
Molecules of fluids exert forces of attraction on each other. In liquids this is strong 
enough to keep the mass together but not strong enough to keep it rigid. In gases these 
forces are very weak and cannot hold the mass together. 
 
When a fluid flows over a surface, the layer next to the surface may become attached to 
it (it wets the surface). The layers of fluid above the surface are moving so there must 
be shearing taking place between the layers of the fluid. 

Fig.2.1 
 
Let us suppose that the fluid is flowing over a flat surface in laminated layers from left 
to right as shown in figure 2.1. 
 
y is the distance above the solid surface (no slip surface) 
L is an arbitrary distance from a point upstream. 
dy is the thickness of each layer. 
dL is the length of the layer. 
dx is the distance moved by each layer relative to the one below in a corresponding time 
dt. 
u is the velocity of any layer. 
du is the increase in velocity between two adjacent layers. 
 
Each layer moves a distance dx in time dt relative to the layer below it. The ratio dx/dt 
must be the change in velocity between layers so du = dx/dt. 
 
When any material is deformed sideways by a (shear) force acting in the same direction, 
a shear stress τ is produced between the layers and a corresponding shear strain γ is 
produced. Shear strain is defined as follows. 
 

dy
dx

deformed beinglayer   theofheight 
ndeformatio sideways

==γ  

 
The rate of shear strain is defined as follows. 
 

dy
du

dy dt
dx

dt takentime
strainshear 

==
γ

==γ&  
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It is found that fluids such as water, oil and air, behave in such a manner that the shear 
stress between layers is directly proportional to the rate of shear strain. 
 

γ=τ & constant x  
 
Fluids that obey this law are called NEWTONIAN FLUIDS. 
 
It is the constant in this formula that we know as the dynamic viscosity of the fluid. 
 

  DYNAMIC VISCOSITY µ = 
du
dy

shear of rate 
stressshear 

τ=
γ
τ

=
&

 

 
 

FORCE BALANCE and VELOCITY DISTRIBUTION 
 
A shear stress τ exists between each layer and this increases by dτ over each layer. The 
pressure difference between the downstream end and the upstream end is dp. 
 
The pressure change is needed to overcome the shear stress. The total force on a layer 
must be zero so balancing forces on one layer (assumed 1 m wide) we get the following. 
 

dL
dp

dy
d

0dL d dy  dp

−=
τ

=τ+
 

 
It is normally assumed that the pressure declines uniformly with distance downstream 

so the pressure gradient  
dL
dp is assumed constant. The minus sign indicates that the 

pressure falls with distance. Integrating between the no slip surface (y = 0) and any 
height y we get 

 

)1.2....(..........
dy

ud
dL
dp

dy
dy
dud

dy
d
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2

2

µ=−

⎟⎟
⎠

⎞
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⎝

⎛
µ

=
τ

=−
 

 
 
Integrating twice to solve u we get the following. 

BAyu
dL
dp

2
y

A
dy
du

dL
dpy

2

++µ=−

+µ=−
 

 
A and B are constants of integration that should be solved based on the known 
conditions (boundary conditions). For the flat surface considered in figure 2.1 one 
boundary condition is that u = 0 when y = 0 (the no slip surface). Substitution reveals 
the following. 
 
0 = 0 +0 +B   hence B = 0 
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At some height δ above the surface, the velocity will reach the mainstream velocity uo. 
This gives us the second boundary condition u = uo when y = δ. Substituting we find the 
following. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

+
µ
δ

=

⎟
⎠
⎞

⎜
⎝
⎛
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−
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−+µ=−
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−
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−=
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−
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o

o

2

u
dL
dp

2
yu

y
u

dL
dp

2
u

dL
dp

2
y

hence    
u

dL
dp

2
A

Au
dL
dp

2

 

 
Plotting u against y gives figure 2.2. 
 
BOUNDARY LAYER. 
 
The velocity grows from zero at the surface to a maximum at height δ. In theory, the 
value of δ is infinity but in practice it is taken as the height needed to obtain 99% of the 
mainstream velocity. This layer is called the boundary layer and δ is the boundary layer 
thickness. It is a very important concept and is discussed more fully in chapter 3. The 
inverse gradient of the boundary layer is du/dy and this is the rate of shear strain γ. 

 
Fig.2.2 

1.2. UNITS of VISCOSITY 
 
1.2.1  DYNAMIC VISCOSITY µ 
 
The units of dynamic viscosity µ are N s/m2. It is normal in the international system 
(SI) to give a name to a compound unit. The old metric unit was a dyne.s/cm2 and this 
was called a POISE after Poiseuille. It follows that the SI unit is related to the Poise 
such that 10  Poise = 1 Ns/m2  
This  is  not  an  acceptable  multiple.  Since, however, 1 CentiPoise (1cP) is 0.001 N 
s/m2 then the cP is the accepted SI unit. 
 

1cP = 0.001 N s/m2. 
 

The symbol  η is also commonly used for dynamic viscosity. There are other ways of 
expressing viscosity and this is covered next. 
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1.2.2 KINEMATIC VISCOSITY ν 

ρ
µ

==ν
density

 viscositydynamicThis is defined as follows.  

The basic units are m2/s. The old metric unit was the cm2/s and this was called the 
STOKE after the British scientist. It follows that 1 Stoke (St) = 0.0001 m2/s and this is 
not an acceptable SI multiple. The centiStoke (cSt) ,however, is 0.000001 m2/s and this 
is an acceptable multiple. 

1cSt = 0.000001 m2/s = 1 mm2/s 
1.2.3 OTHER UNITS 
 
Other units of viscosity have come about because of the way viscosity is measured. For 
example REDWOOD SECONDS comes from the name of the Redwood viscometer. 
Other units are Engler Degrees, SAE numbers and so on. Conversion charts and 
formulae are available to convert them into useable engineering or SI units. 
 
1.2.4 VISCOMETERS
 
The measurement of viscosity is a large and complicated subject. The principles rely on 
the resistance to flow or the resistance to motion through a fluid. Many of these are 
covered in British Standards 188. The following is a brief description of some types. 
 
 U TUBE VISCOMETER
 

The fluid is drawn up into a reservoir and allowed to 
run through a capillary tube to another reservoir in the 
other limb of the U tube.  
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The time taken for the level to fall between the marks is 
converted into cSt by  multiplying the time by the 
viscometer constant.  

ν = ct 
 
The constant c should be accurately obtained by 
calibrating the viscometer against a master viscometer 
from a standards laboratory. 
 

 Fig.2.3 
 

 
REDWOOD VISCOMETER 
 

This works on the principle of allowing the 
fluid to run through an orifice of very accurate 
size in an agate block.  
 
50 ml of fluid are allowed to empty from the 
level indicator into a measuring flask. The time 
taken is the viscosity in Redwood seconds. 
There are two sizes giving Redwood No.1 or 
No.2 seconds. These units are converted into 
engineering units with tables.  
 
 
 Fig.2.4 



FALLING SPHERE VISCOMETER 
 

 

This viscometer is covered in BS188 and is based on measuring 
the time for a small sphere to fall in a viscous fluid from one 
level to another. The buoyant weight of the sphere is balanced 
by the fluid resistance and the sphere falls with a constant 
velocity. The theory is based on Stoke’s Law and is only valid 
for very slow velocities. The theory is covered later in the 
section on laminar flow where it is shown that the terminal 
velocity (u) of the sphere is related to the dynamic viscosity (µ) 
and the density of the fluid and sphere (ρf and ρs) by the 
formula 

µ = F  gd2(ρs -ρf)/18u 
 Fig.2.5 
 
F is a correction factor called the Faxen correction factor, which takes into account a 
reduction in the velocity due to the effect of the fluid being constrained to flow between 
the wall of the tube and the sphere. 
 
ROTATIONAL TYPES 
 
There are many types of viscometers, which use the principle that it requires a torque to 
rotate or oscillate a disc or cylinder in a fluid. The torque is related to the viscosity. 
Modern instruments consist of a small electric motor, which spins a disc or cylinder in 
the fluid. The torsion of the connecting shaft is measured and processed into a digital 
readout of the viscosity in engineering units. 
 
You should now find out more details about viscometers by reading BS188, suitable 
textbooks or literature from oil companies. 
 
 
 SELF ASSESSMENT EXERCISE No. 2.1 
 
 1. Describe the principle of operation of the following types of viscometers. 
 
 a.  Redwood Viscometers. 
 
 b.  British Standard 188  glass U tube viscometer. 
  
 c.  British Standard 188  Falling Sphere Viscometer. 
 
 d.  Any form of Rotational Viscometer 
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ENGINEERING COUNCIL 
 

CERTIFICATE LEVEL 
 

THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 
 

TUTORIAL 9 –  FLOW THROUGH PIPES 
 
 

 
On completion of this outcome you should be able to do the following. 
 

 Derive Bernoulli's equation for liquids. 
 

 Define and explain laminar and turbulent flow. 
 

 Find the pressure losses in piped systems due to fluid friction. 
 

 Find the minor frictional losses in piped systems. 
 

 
 
 
 
Let's start by revising basics. The flow of a fluid in a pipe depends upon two 
fundamental laws, the conservation of mass and energy. 
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PIPE FLOW 
 
The solution of pipe flow problems requires the applications of two principles, the law of 
conservation of mass (continuity equation) and the law of conservation of energy (Bernoulli’s 
equation) 
 
 
CONSERVATION OF MASS 
 
When a fluid flows at a constant rate in a pipe or duct, the mass flow rate must be the same at all 
points along the length. Consider a liquid being pumped into a tank as shown (fig.3.1). 
 
The mass flow rate at any section is m = ρAum 
 
   ρ = density (kg/m3) 
   um  = mean velocity (m/s) 
   A = Cross Sectional Area (m2) 

 
Fig.1 

 
 For the system shown the mass flow rate at (1), (2) and (3) must be the same so 
 

ρ1A1u1 = ρ2A2u2 = ρ3A3u3 
 

In the case of liquids the density is equal and cancels so  
 

A1u1 = A2u2 = A3u3 = Q 
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CONSERVATION OF ENERGY 
 
ENERGY FORMS 
 
 
FLOW ENERGY 
This is the energy a fluid possesses by virtue of its pressure. 
 The formula is F.E. = pQ Joules 
 
 p is the pressure (Pascals) 
 Q is volume rate (m3) 
 
POTENTIAL OR GRAVITATIONAL ENERGY 
This is the energy a fluid possesses by virtue of its altitude relative to a datum level. 
 The formula is P.E. = mgz Joules 
 
 m is mass (kg) 
 z is altitude (m) 
 
KINETIC ENERGY   
This is the energy a fluid possesses by virtue of its velocity. 
 The formula is  K.E. = ½ mum2 Joules 
 
 um is mean velocity (m/s) 
 
INTERNAL ENERGY 
This is the energy a fluid possesses by virtue of its temperature. It is usually expressed relative to 
0oC. 
 The formula is U = mcθ 
 
 c is the specific heat capacity (J/kg oC) 
 θ is the temperature in oC 
 
In the following work, internal energy is not considered in the energy balance. 
 
SPECIFIC ENERGY 
Specific energy is the energy per kg so the three energy forms as specific energy are as follows. 
 
F.E./m = pQ/m = p/ρ Joules/kg 
P.E/m. = gz Joules/kg 
K.E./m = ½ u2 Joules/kg  
 
ENERGY HEAD 
If the energy terms are divided by the weight mg, the result is energy per Newton. Examining the 
units closely we have J/N = N m/N = metres. 
 
It is normal to refer to the energy in this form as the energy head. The three energy terms expressed 
this way are as follows. 
 
F.E./mg = p/ρg = h 
P.E./mg = z    
K.E./mg = u2 /2g 
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The flow energy term is called the pressure head and this follows since earlier it was shown p/ρg  = 
h. This is the height that the liquid would rise to in a vertical pipe connected to the system. 
 
The potential energy term is the actual altitude relative to a datum. 
 
The term u2/2g is called the kinetic head and this is the pressure head that would result if the 
velocity is converted into pressure. 
 
BERNOULLI’S EQUATION 
 
Bernoulli’s equation is based on the conservation of energy. If no energy is added to the system as 
work or heat then the total energy of the fluid is conserved. Remember that internal (thermal 
energy) has not been included. 
 
The total energy ET at (1) and (2) on the diagram (fig.3.1) must be equal so : 

 2
ummgzQp

2
ummgzQpE

2
2

222

2
1

111T ++=++=  

Dividing by mass gives the specific energy form  

 2
ugzp

2
ugzp

m
E 2

2
2

2

2
2
1

1
1

1T ++
ρ

=++
ρ

=  

Dividing by g gives the energy terms per unit weight 

 g2
uz

g
p

g2
uz

g
p

mg
E 2

2
2

2

2
2
1

1
1

1T ++
ρ

=++
ρ

=  

Since p/ρg = pressure head h then the total head is given by the following. 

 g2
u

zh
g2

u
zhh

2
2

22

2
1

11T ++=++=  

This is the head form of the equation in which each term is an energy head in metres. z is the 
potential or gravitational head and u2/2g is the kinetic or velocity head. 
 
For liquids the density is the same at both points so multiplying by ρg gives the pressure form. The 
total pressure is as follows. 

 2
ugzp

2
ugzpp

2
2

22

2
1

11T
ρ

+ρ+=
ρ

+ρ+=  

In real systems there is friction in the pipe and elsewhere. This produces heat that is absorbed by the 
liquid causing a rise in the internal energy and hence the temperature. In fact the temperature rise 
will be very small except in extreme cases because it takes a lot of energy to raise the temperature. 
If the pipe is long, the energy might be lost as heat transfer to the surroundings. Since the equations 
did not include internal energy, the balance is lost and we need to add an extra term to the right side 
of the equation to maintain the balance. This term is either the head lost to friction hL or the 
pressure loss pL. 

 L

2
2

22

2
1

11 h
g2

uzh
g2

uzh +++=++  

The pressure form of the equation is as follows. 

 L

2
2

22

2
1

11 p
2
ugzp

2
ugzp +

ρ
+ρ+=

ρ
+ρ+  

The total energy of the fluid (excluding internal energy) is no longer constant. 
 
Note that if one of the points is a free surface the pressure is normally atmospheric but if gauge 
pressures are used, the pressure and pressure head becomes zero. Also, if the surface area is large 
(say a large tank), the velocity of the surface is small and when squared becomes negligible so the 
kinetic energy term is neglected (made zero). 
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 WORKED EXAMPLE No. 1 
 
 The diagram shows a pump delivering water through as pipe 30 mm bore to a tank. Find the 

pressure at point (1) when the flow rate is 1.4 dm3/s. The density of water is 1000 kg/m3. The 
loss of pressure due to friction is 50 kPa. 

 
Fig. 2 

 SOLUTION 
 
 Area of bore   A =  π x 0.032/4 = 706.8 x 10-6 m2. 
 Flow rate   Q = 1.4 dm3/s = 0.0014 m3/s 
 Mean velocity in pipe = Q/A = 1.98 m/s 
 Apply Bernoulli between point (1) and the surface of the tank. 
 

  L

2
2

22

2
1

11 p
2
ρuρgzp

2
ρuρgzp +++=++  

 Make the low level the datum level and z1 = 0  and z2  = 25. 
 
 The pressure on the surface is zero gauge pressure. PL = 50 000 Pa 
  
 The velocity at (1) is 1.98 m/s and at the surface it is zero. 
 

  
pressure gauge  293.29kPap

50000051000x9.9120
2

1000x1.980p

1

2

1

=

+++=++
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 WORKED EXAMPLE 2 
 
 The diagram shows a tank that is drained by a horizontal pipe. Calculate the pressure head at 

point (2) when the valve is partly closed so that the flow rate is reduced to 20 dm3/s. The 
pressure loss is equal to 2 m head. 

 
Fig. 3 

 SOLUTION 
 
 Since point (1) is a free surface, h1 = 0 and u1 is assumed negligible. 
 
 The datum level is point (2) so z1 = 15 and z2 = 0. Q = 0.02 m3/s 
 A2 = πd2/4 = π x (0.052)/4 = 1.963 x 10-3 m2. 
 u2 = Q/A = 0.02/1.963 x 10-3 = 10.18 m/s 
 Bernoulli’s equation in head form is as follows. 

   

7.72mh      2
9.81 x 2

10.180h0150

h
2g
uzh

2g
uzh

2

2

2

L

2
2

22

2
1

11

=+++=++

+++=++
  

 
 
 
 WORKED EXAMPLE 3 
 
 The diagram shows a horizontal nozzle discharging into the atmosphere. The inlet has a bore 

area of 600 mm2 and the exit has a bore area of 200 mm2. Calculate the flow rate when the inlet 
pressure is 400 Pa. Assume there is no energy loss. 

 

 
Fig. 4 

 SOLUTION 
 
 Apply Bernoulli between (1) and (2) 

 L

2
2

22

2
1

11 p
2
ρuρgzp

2
ρuρgzp +++=++  

 Using gauge pressure, p2 = 0 and being horizontal the potential terms cancel. The loss term is 
zero so the equation simplifies to the following. 
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 2
ρu

2
ρup

2
2

2
1

1 =+  

 From the continuity equation we have 

 
Q 000 5

10 x 200
Q

A
Qu
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Q
A
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 Putting this into Bernoulli’s equation we have the following. 

 

( ) ( )

/scm 189.7or  /sm 10 x 7.189Q

 x1036
 x1011.11
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Q x10.1111400
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2
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2

1666.7Q x1000400
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9
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2
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HYDRAULIC GRADIENT 
 
Consider a tank draining into another tank at a lower level as shown. There are small vertical tubes 
at points along the length to indicate the pressure head (h). Relative to a datum, the total energy 
head is hT = h + z + u2/2g and this is shown as line A. 
 
The hydraulic grade line is the line joining the free surfaces in the tubes and represents the sum of h 
and z only. This is shown as line B and it is always below the line of hT by the velocity head u2/2g. 
Note that at exit from the pipe, the velocity head is not recovered but lost as friction as the emerging 
jet collides with the static liquid. The free surface of the tank does not rise. 
 
The only reason why the hydraulic grade line is not horizontal is because there is a frictional loss hf. 
The actual gradient of the line at any point is the rate of change with length i = δhf/δL 

 
 

Fig. 5 
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 SELF ASSESSMENT EXERCISE No.1 
 
1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe 

reduces to 60 mm bore diameter and rises 120 m in altitude. The pressure at this point is 
atmospheric (zero gauge). Assuming no frictional losses, determine: 

 
 i. The volume/s  (4.44 dm3/s) 
 ii. The velocity at each section (0.566 m/s and 1.57 m/s) 
 iii. The pressure at the lower end. (1.06 MPa) 
 
 
2.  A pipe 120 mm bore diameter carries water with a head of 3 m. The pipe descends 12 m in 

altitude and reduces to 80 mm bore diameter. The pressure head at this point is 13 m. The 
density is 1000 kg/m3. Assuming no losses, determine 

 
 i. The velocity in the small pipe (7 m/s) 
 ii. The volume flow rate. (35 dm3/s) 
 
3.  A horizontal nozzle reduces from 100 mm bore diameter at inlet to 50 mm at exit. It carries 

liquid of density 1000 kg/m3 at a rate of 0.05 m3/s. The pressure at the wide end is 500 kPa 
(gauge). Calculate the pressure at the narrow end neglecting friction. (196 kPa) 

 
 
4. A pipe carries oil of density 800 kg/m3. At a given point (1) the pipe has a bore area of 0.005 

m2 and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa. Point (2) 
is further along the pipe and there the bore area is 0.002 m2 and the level is 50 m above point 
(1). Calculate the pressure at this point (2). Neglect friction. (374 kPa) 

 
5. A horizontal nozzle has an inlet velocity u1 and an outlet velocity u2 and discharges into the 

atmosphere. Show that the velocity at exit is given by the following formulae. 
   u2 ={2∆p/ρ + u1

2}½  
 and  u2 ={2g∆h + u1

2}½ 
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LAMINAR  and TURBULENT FLOW 
 
The following work only applies to Newtonian fluids 
 
LAMINAR FLOW 
 
A stream line is an imaginary line with no flow normal to it, only along it. When the flow is 
laminar, the streamlines are parallel and for flow between two parallel surfaces we may consider the 
flow as made up of parallel laminar layers. In a pipe these laminar layers are cylindrical and may be 
called stream tubes. In laminar flow, no mixing occurs between adjacent layers and it occurs at low 
average velocities. 
 
TURBULENT FLOW 
 
The shearing process causes energy loss and heating of the fluid. This increases with mean velocity. 
When a certain critical velocity is exceeded, the streamlines break up and mixing of the fluid 
occurs. The diagram illustrates Reynolds coloured ribbon experiment. Coloured dye is injected into 
a horizontal flow. When the flow is laminar the dye passes along without mixing with the water. 
When the speed of the flow is increased turbulence sets in and the dye mixes with the surrounding 
water. One explanation of this transition is that it is necessary to change the pressure loss into other 
forms of energy such as angular kinetic energy as indicated by small eddies in the flow.  

Fig. 6 
 
 
LAMINAR AND TURBULENT BOUNDARY LAYERS 
 
In chapter 2 it was explained that a boundary layer is the layer in which the velocity grows from 
zero at the wall (no slip surface) to 99% of the maximum and the thickness of the layer is denoted δ. 
When the flow within the boundary layer becomes turbulent, the shape of the boundary layers 
waivers and when diagrams are drawn of turbulent boundary layers, the mean shape is usually 
shown. Comparing a laminar and turbulent boundary layer reveals that the turbulent layer is thinner 
than the laminar layer. 

Fig. 7 
   
 



© D.J.Dunn  freestudy.co.uk  10 

CRITICAL VELOCITY - REYNOLDS NUMBER 
 
When a fluid flows in a pipe at a volumetric flow rate Q m3/s the average velocity is defined 

A
Qu m =   A is the cross sectional area. 

The Reynolds number is defined as 
ν

=
µ

ρ
=

DuDuR mm
e  

If you check the units of Re you will see that there are none and that it is a dimensionless number. 
You will learn more about such numbers in section ….?. 
 
Reynolds discovered that it was possible to predict the velocity or flow rate at which the transition 
from laminar to turbulent flow occurred for any Newtonian fluid in any pipe. He also discovered 
that the critical velocity at which it changed back again was different. He found that when the flow 
was gradually increased, the change from laminar to turbulent always occurred at a Reynolds 
number of 2500 and when the flow was gradually reduced it changed back again at a Reynolds 
number of 2000. Normally, 2000 is taken as the critical value. 
 
 
 WORKED EXAMPLE No. 4 
 
 Oil of density 860 kg/m3 has a kinematic viscosity of 40 cSt. Calculate the critical velocity 

when it flows in a pipe 50 mm bore diameter. 
 
 SOLUTION 
 

 
m/s 1.6

0.05
2000x40x10

D
νR

u

ν
DuR

6
e

m

m
e

===

=

−
 

 
 
DERIVATION OF POISEUILLE'S EQUATION for LAMINAR FLOW 
 
Poiseuille did the original derivation shown below which relates pressure loss in a pipe to the 
velocity and viscosity for LAMINAR FLOW. His equation is the basis for measurement of 
viscosity hence his name has been used for the unit of viscosity. Consider a pipe with laminar flow 
in it. Consider a stream tube of length ∆L at radius r and thickness dr. 
 

 
Fig. 8 
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y is the distance from the pipe wall.   
dr
du

dy
dudr     dyr       Ry −=−=−=  

The shear stress on the outside of the stream tube is τ. The force (Fs) acting from right to left is due 
to the shear stress and is found by multiplying τ by the surface area. 
 
Fs = τ x 2πr ∆L 

For a Newtonian fluid ,
dr
duµ

dy
duµτ −== . Substituting for τ we get the following. 

dr
duLr2- Fs µ∆π=  

The pressure difference between the left end and the right end of the section is ∆p. The force due to 
this (Fp) is ∆p x circular area of radius r. 
 
Fp = ∆p x πr2 

rdr
∆L2µµ

∆pdu

  π ∆p
dr
du∆Lµ r   π2-  have  weforces Equating 2

−=

=
 

In order to obtain the velocity of the streamline at any radius r we must integrate between the limits 
u = 0  when r = R and u = u when r = r. 

( )

( )22

22

r

R

u

0

rR
µL 4
∆pu

Rr
µ∆L 4
∆pu

rdr
µ∆L 2
∆p-du

−=

−−=

= ∫∫

 

This is the equation of a Parabola so if the equation is plotted to show the boundary layer, it is seen 
to extend from zero at the edge to a maximum at the middle. 

  
Fig. 9 

For maximum velocity put r = 0 and we get  
µ∆L 4

∆pRu
2

1 =  

The average height of a parabola is half the maximum value so the average velocity is  

 
µ∆L 8

∆pRu
2

m =  
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Often we wish to calculate the pressure drop in terms of diameter D. Substitute R=D/2 and 
rearrange. 

    2
m

D
u ∆Lµ  32∆p =  

The volume flow rate is average velocity x cross sectional area. 

    
µ∆L 128
∆pπD

µ∆L 8
∆pπR

µ∆L 8
∆pRπRQ

4422
===   

This is often changed to give the pressure drop as a friction head. 

The friction head for a length L is found from hf =∆p/ρg  2
m

f ρgD
µLu 32h =  

This is Poiseuille's equation that applies only to laminar flow. 
 
 
 WORKED EXAMPLE No. 5 
 
 A capillary tube is 30 mm long and 1 mm bore. The head required to produce a flow rate of      

8 mm3/s is 30 mm. The fluid density is 800 kg/m3. 
 
 Calculate the dynamic and kinematic viscosity of the oil. 
 
 
 SOLUTION 
 
 Rearranging Poiseuille's equation we get  

 

cSt 30.11or   /sm10 x 30.11
800

0.0241
ρ
µν

cP 24.1or  s/m N 0.0241
0.01018 x 0.03 x 32

0.001 x 9.81 x 800 x 0.03µ         mm/s 10.18
0.785

8
A
Qu

mm 0.785
4
1 x π

4
πdA                 

32Lu
ρgDhµ

26-

2

m

2
22

m

2
f

===

=====

====

 

  
 
 
 WORKED EXAMPLE No. 6 
 
 Oil flows in a pipe 100 mm bore with a Reynolds number of 250. The dynamic viscosity is 

0.018 Ns/m2. The density is 900 kg/m3. 
 Determine the pressure drop per metre length, the average velocity and the radius at which it 

occurs. 
 
 SOLUTION 
 
 Re =ρum D/µ. Hence   um  = Re µ/ ρDum = (250 x 0.018)/(900 x 0.1) = 0.05 m/s 
 
 ∆p =  32µL um /D2 = 32 x 0.018 x 1 x 0.05/0.12 
 ∆p= 2.88 Pascals. 
 
  u = {∆p/4Lµ}(R2 - r2)   which is made equal to the average velocity 0.05 m/s 
 
 0.05 = (2.88/4 x 1 x 0.018)(0.052 - r2) r = 0.035 m or 35.3 mm. 
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 SELF ASSESSMENT EXERCISE No. 2 
 
1. Oil flows in a pipe 80 mm bore diameter with a mean velocity of 0.4 m/s. The density is 890 

kg/m3 and the viscosity is 0.075 Ns/m2.  
 
 Show that the flow is laminar and hence deduce the pressure loss per metre length. (150 Pa) 
 
2 Calculate the maximum velocity of water that can flow in laminar form in a pipe 20 m long and 

60 mm bore. Determine the pressure loss in this condition. The   density    is   1000   kg/m3 and 
the   dynamic   viscosity is   0.001 N s/m2.  (0.0333 m/s and 5.92 Pa) 

 
3 Oil flow in a pipe 100 mm bore diameter with a Reynolds Number of 500. The density is 800 

kg/m3. The dynamic viscosity µ = 0.08 Ns/m2. 
 
 Calculate the velocity of a streamline at a radius of 40 mm.    (0.36 m/s) 
 
4a When a viscous fluid is subjected to an applied pressure it flows through a narrow horizontal 

passage as shown below.  By considering the forces acting on the fluid element and assuming 
steady fully developed laminar flow, show that the velocity distribution is given by 

    2

2

dy
udµ

dx
dp

=−  

b.  Using the above equation show that for flow between two flat parallel horizontal surfaces 
distance t apart the velocity at any point is given by the following formula. 

 
   u = (1/2µ)(dp/dx)(y2 - ty) 
 
c. Carry on the derivation and show that the volume flow rate through a gap of height ‘t’ and 

width ‘B’ is given by 
µ

−=
12
t

dx
dpBQ

3

. 

d. Show that the mean velocity ‘um’ through the gap is given by 2
m t

dx
dp

12
1u
µ

−=  

 
5 The volumetric flow rate of glycerine between two flat parallel horizontal surfaces 1 mm apart 

and 10 cm wide is 2 cm3/s. Determine the following. 
 
 i. the applied pressure gradient dp/dx. (240 kPa per metre) 
 
 ii. the maximum velocity. (0.06 m/s) 
  
 For glycerine assume that µ= 1.0 Ns/m2 and the density is 1260 kg/m3. 

 
Fig. 10 
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FRICTION COEFFICIENT 
 
The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a pipe. 
It is defined as follows. 

  
Pressure Dynamic

StressShear  WallCf =  

 
DYNAMIC PRESSURE 
 
Consider a fluid flowing with mean velocity um. If the kinetic energy of the fluid is converted into 
flow or fluid energy, the pressure would increase. The pressure rise due to this conversion is called 
the dynamic pressure. 
 
KE = ½ mum

2 
 
Flow Energy = p Q  Q is the volume flow rate and ρ = m/Q 
 
Equating   ½ mum

2 = p Q p = mu2/2Q   =  ½ ρ um
2 

 
WALL SHEAR STRESS     τo 
 
The wall shear stress is the shear stress in the layer of fluid next to the wall of the pipe. 

Fig. 11 

The shear stress in the layer next to the wall is 
wall

o dy
duµτ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

The shear force resisting flow is πLDτF os =  

The resulting pressure drop produces a force of 
4

D  π∆pF
2

p =   

Equating forces gives 
4L
∆p Dτo =   

 
FRICTION COEFFICIENT for LAMINAR FLOW 
  

2
m

f uL4
pD2

Pressure Dynamic
StressShear  WallC

ρ
∆

==  

From Poiseuille’s equation 2
m

D
Lu32p µ

=∆  Hence 
e

2
m

22
m

f R
16

Du
16

D
Lu32

uL4
D2C =

ρ
µ

=⎟
⎠
⎞

⎜
⎝
⎛ µ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

=   
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DARCY FORMULA  
 
This formula is mainly used for calculating the pressure loss in a pipe due to turbulent flow but it 
can be used for laminar flow also. 
 
Turbulent flow in pipes occurs when the Reynolds Number exceeds 2500 but this is not a clear 
point so 3000 is used to be sure. In order to calculate the frictional losses we use the concept of 
friction coefficient symbol Cf. This was defined as follows.  
 

2
m

f uL4
pD2

Pressure Dynamic
StressShear  WallC

ρ
∆

==  

Rearranging equation to make ∆p the subject  

  
D2

uLC4p
2
mf ρ

=∆  

This is often expressed as a friction head  hf 

  
gD2
LuC4

g
ph

2
mf

f =
ρ
∆

=  

This is the Darcy formula. In the case of laminar flow, Darcy's and Poiseuille's equations must give 
the same result so equating them gives 

  

em
f

2
m

2
mf

R
16

Du
16C

gD
Lu32

gD2
LuC4

=
ρ

µ
=

ρ
µ

=
   

This is the same result as before for laminar flow. 
 

FLUID RESISTANCE 
 
The above equations may be expressed in terms of flow rate Q by substituting u = Q/A 
 

2

2
f

2
mf

f gDA2
LQC4

gD2
LuC4h ==  Substituting A =πD2/4 we get the following. 

 
2

52

2
f

f RQ
Dg
LQC32h =

π
=   R is the fluid resistance or restriction. 52

2
f

Dg
LC32R

π
=  

 
If we want pressure loss instead of head loss the equations are as follows. 
 

2
52

2
f

ff RQ
D
LQC32ghp =

π
ρ

=ρ=   R is the fluid resistance or restriction. 52

2
f

D
LC32R

π
ρ

=  

 
It should be noted that R contains the friction coefficient and this is a variable with velocity and 
surface roughness so R should be used with care. 
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MOODY DIAGRAM AND RELATIVE SURFACE ROUGHNESS 
 
In general the friction head is some function of um such that hf = φumn. Clearly for laminar flow, n 
=1 but for turbulent flow n is between 1 and 2 and its precise value depends upon the roughness of 
the pipe surface. Surface roughness promotes turbulence and the effect is shown in the following 
work. 
 
Relative surface roughness is defined as ε = k/D where k is the mean surface roughness and D the 
bore diameter.  
 
An American Engineer called Moody conducted exhaustive experiments and came up with the 
Moody Chart. The chart is a plot of Cf vertically against Re horizontally for various values of ε. In 
order to use this chart you must know two of the three co-ordinates in order to pick out the point on 
the chart and hence pick out the unknown third co-ordinate. For smooth pipes, (the bottom curve on 
the diagram), various formulae have been derived such as those by Blasius and Lee. 
 
 BLASIUS Cf = 0.0791 Re

0.25 
 
 LEE Cf = 0.0018 + 0.152 Re

0.35. 
 
The Moody diagram shows that the friction coefficient reduces with Reynolds number but at a 
certain point, it becomes constant. When this point is reached, the flow is said to be fully developed 
turbulent flow. This point occurs at lower Reynolds numbers for rough pipes. 
  
A formula that gives an approximate answer for any surface roughness is that given by Haaland. 
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Fig. 12  CHART 
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 WORKED EXAMPLE No.7 
 
 Determine the friction coefficient for a pipe 100 mm bore with a mean surface roughness of 

0.06 mm when a fluid flows through it with a Reynolds number of 20 000. 
 
 SOLUTION 
 
 The mean surface roughness ε = k/d = 0.06/100 = 0.0006 
 Locate the line for ε = k/d = 0.0006. 
 Trace the line until it meets  the  vertical line at  Re = 20 000. Read of the value of Cf  

horizontally on the left.  Answer Cf = 0.0067 
  
 Check using the formula from Haaland. 
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 WORKED EXAMPLE No. 8 
 
 Oil flows in a pipe 80 mm bore with a mean velocity of 4 m/s. The mean surface roughness is 

0.02 mm and the length is 60 m. The dynamic viscosity is 0.005 N s/m2 and the density is 900 
kg/m3.  Determine the pressure loss. 

 
 SOLUTION 
 
 Re = ρud/µ = (900 x 4 x 0.08)/0.005 = 57600 
 
 ε= k/d = 0.02/80 = 0.00025 
 
 From the chart Cf = 0.0052 
 
 hf = 4CfLu2/2dg =  (4 x 0.0052 x 60 x 42)/(2 x 9.81 x 0.08) = 12.72 m 
 
 ∆p = ρghf = 900 x 9.81 x 12.72 = 112.32 kPa. 
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 SELF ASSESSMENT EXERCISE No.3 
 
1. A pipe is 25 km long and 80 mm bore diameter. The mean surface roughness is 0.03 mm.  It 

caries oil of density 825 kg/m3 at a rate of 10 kg/s.  The dynamic viscosity is 0.025 N s/m2. 
 
 Determine the friction coefficient using the Moody Chart and calculate the friction head. (Ans. 

3075 m.) 
 
 
 
2. Water flows in a pipe at 0.015 m3/s. The pipe is 50 mm bore diameter. The pressure drop is 13 

420 Pa   per   metre  length.    The   density    is   1000   kg/m3  and  the   dynamic   viscosity is   
0.001 N s/m2. 

 
 Determine the following. 
  i. The wall shear stress (167.75 Pa) 
  ii. The dynamic pressures (29180 Pa). 
  iii. The friction coefficient (0.00575) 
 iv. The mean surface roughness (0.0875 mm) 
 
3.  Explain briefly what is meant by fully developed laminar flow. The velocity u at any radius r in 

fully developed laminar flow through a straight horizontal pipe of internal radius ro is given by 
 

u = (1/4µ)(ro2 - r2)dp/dx 
 
 dp/dx is the pressure gradient in the direction of flow and  µ is the dynamic   viscosity. The 

wall skin friction coefficient is defined as Cf = 2τo/( ρum2). 
 
 Show that Cf= 16/Re where Re = ρumD/µ an ρ is the density, um is the mean velocity and τo is 

the wall shear stress. 
 
4. Oil with viscosity 2 x 10-2 Ns/m2 and density 850 kg/m3 is pumped along a straight horizontal 

pipe with a flow rate of 5 dm3/s. The static pressure difference between two tapping points 10 
m apart is 80 N/m2. Assuming laminar flow determine the following. 

 
  i. The pipe diameter. 
  ii. The Reynolds number. 
 
 Comment on the validity of the assumption that the flow is laminar. 
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MINOR LOSSES 
 
Minor losses occur in the following circumstances. 
 

i. Exit from a pipe into a tank. 
ii. Entry to a pipe from a tank. 
iii. Sudden enlargement in a pipe. 
iv. Sudden contraction in a pipe. 
v. Bends in a pipe. 
vi. Any other source of restriction such as pipe fittings and valves. 
 

Fig. 13 
 
In general, minor losses are neglected when the pipe friction is large in comparison but for short 
pipe systems with bends, fittings and changes in section, the minor losses is the dominant factor. 
 
In general, the minor losses are expressed as a fraction of the kinetic head or dynamic pressure in 
the smaller pipe. 
 
Minor head loss = k u2/2g Minor pressure loss = ½ kρu2 
 
Values of k can be derived for standard cases but for items like elbows and valves in a pipeline, it is 
determined by experimental methods. 
 
Minor losses can also be expressed in terms of fluid resistance R as follows. 
 

2
42

2

2

22

L RQ
D

Q8k
A2

Qk
2

ukh =
π

===   Hence 42D
k8R

π
=  

 
2

42

2

L RQ
D

gQ8kp =
π
ρ

=  hence 42D
gk8R

π
ρ

=  

 
Before you go on to look at the derivations, you must first learn about the coefficients of 
contraction and velocity. 
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COEFFICIENT  OF CONTRACTION Cc 
 
The fluid approaches the entrance from all directions and the radial velocity causes the jet to 
contract just inside the pipe. The jet then spreads out to fill the pipe. The point where the jet is 
smallest is called the VENA CONTRACTA. 

 
Fig. 14 

 
The coefficient of contraction Cc is defined as  Cc = Aj/Ao  
 
Aj is the cross sectional area of the jet and Ao is the c.s.a. of the pipe. For a round pipe this 
becomes   Cc = dj2/do2. 

 
COEFFICIENT OF VELOCITY Cv 
 
The coefficient of velocity is defined as  Cv = actual velocity/theoretical velocity 
 
In this instance it refers to the velocity at the vena-contracta but as you will see later on, it applies to 
other situations also. 
 
EXIT FROM A PIPE INTO A TANK. 
 
The liquid emerges from the pipe and collides with stationary liquid causing it to swirl about before 
finally coming to rest. All the kinetic energy is dissipated by friction. It follows that all the kinetic 
head is lost so k = 1.0 

Fig. 15 
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ENTRY TO A PIPE FROM A TANK 
 
The value of k varies from 0.78 to 0.04 depending on the shape of the inlet. A good rounded inlet 
has a low value but the case shown is the worst. 

Fig.16 
 

SUDDEN ENLARGEMENT 
 
This is similar to a pipe discharging into a tank but this time it does not collide with static fluid but 
with slower moving fluid in the large pipe. The resulting loss coefficient is given by the following 
expression. 

   

22

2

1

d
d1k

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

Fig. 17 
 
SUDDEN CONTRACTION 
 
This is similar to the entry to a pipe from a tank. The best case gives k = 0 and the worse case is for 
a sharp corner which gives k = 0.5. 

 
Fig. 18 

BENDS AND FITTINGS 
 
The k value for bends depends upon the radius of the bend and the diameter of the pipe. The k value 
for bends and the other cases is on various data sheets. For fittings, the manufacturer usually gives 
the k value. Often instead of a k value, the loss is expressed as an equivalent length of straight pipe 
that is to be added to L in the Darcy formula. 
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 WORKED EXAMPLE No. 9 
 
 A tank of water empties by gravity through a horizontal pipe into another tank. There is a 

sudden enlargement in the pipe as shown. At a certain time, the difference in levels is 3 m. 
Each pipe is 2 m long and has a friction coefficient Cf = 0.005. The inlet loss constant is K = 
0.3.  

 Calculate the volume flow rate at this point. 

 
Fig. 19 

 SOLUTION 
 
 There are five different sources of pressure loss in the system and these may be expressed in 

terms of the fluid resistance as follows. 
 The head loss is made up of five different parts. It is usual to express each as a fraction of the 

kinetic head as follows. 

 Resistance pipe A  526
2525

A

f
1 ms10 x 0328.1

0.02 x g
 2 x 0.005 x 32

gD
LC32R −=

π
=

π
=  

 Resistance in pipe B  523
2525

B

f
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0.06 x g
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gD
LC32R −=

π
=

π
=  

 Loss at entry K=0.3  52
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A
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   52
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A
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8x0.79
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 Loss at exit K=1  52
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B
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 Total losses.   
26
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2
5

2
4
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3

2
2

2
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)QRRRR(Rh

QRQRQRQRQRh

=
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 BERNOULLI’S EQUATION 
 Apply Bernoulli between the free surfaces (1) and (2) 

 L

2
2

22

2
1

11 h
g2

uzh
g2

uzh +++=++  

 On the free surface the velocities are small and about equal and the pressures are both 
atmospheric so the equation reduces to the following. 

 
 z1 - z2 = hL = 3 3 = 1.101 x 106 Q2 Q2 = 2.724 x 10-6     Q = 1.65 x 10-3 m3/s 
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MOMENTUM and PRESSURE FORCES 
 
Changes in velocities mean changes in momentum and Newton's second law tells us that this is 
accompanied by a force such that 
   Force = rate of change of momentum. 
 
Pressure changes in the fluid must also be considered as these also produce a force. Translated into 
a form that helps us solve the force produced on devices such as those considered here, we use the 
equation      F = ∆(pA) + m ∆u. 
 
When dealing with devices that produce a change in direction, such as pipe bends, this has to be 
considered more carefully and this is covered in chapter 4. In the case of sudden changes in section, 
we may apply the formula 
   F = (p1A1 + mu1)- (p2 A2 + mu2) 
point 1 is upstream and point 2 is downstream. 
 
 
 WORKED EXAMPLE No. 10 

 
 A pipe carrying water experiences a sudden reduction in area as shown. The area at point (1) is 

0.002 m2 and at point (2) it is 0.001 m2. The pressure at point (2) is 500 kPa and the velocity is 
8 m/s. The loss coefficient K is 0.4. The density of water is 1000 kg/m3. Calculate the 
following. 

 
i. The mass flow rate. 
ii. The pressure at point (1) 
iii. The force acting on the section. 

 
Fig. 20 

 SOLUTION 
 
 u1 = u2A2/A1 = (8 x 0.001)/0.002 = 4 m/s 
 m = ρA1u1 = 1000 x 0.002 x 4 = 8 kg/s.   Q = A1u1 = 0.002 x 4 = 0.008 m3/s 
 Pressure loss at contraction = ½ ρku1

2 = ½ x 1000 x 0.4 x 42 = 3200 Pa 
 Apply Bernoulli between (1) and (2) 

 
kPa 527.2 p            3200

2
8 x 100010 x 500

2
4 x 1000 p

p
2
ρup

2
ρup

1

2
3

2

1

L

2
2

2

2
1

1

=++=+

++=+
 

 F = (p1A1 + mu1)- (p2 A2 + mu2) 
 
 F = [(527.2 x 103 x 0.002) + (8 x 4)] – [500 x 103 x 0.001) + (8 x 8)] 
 
 F = 1054.4 +32 – 500 – 64 = 522.4 N 
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 SELF ASSESSMENT EXERCISE No. 4 
 
1. A pipe carries oil at a mean velocity of 6 m/s. The pipe is 5 km long and 1.5 m diameter. The 

surface roughness is 0.8 mm. The density is 890 kg/m3 and the dynamic viscosity is 0.014 N 
s/m2.  Determine the friction coefficient from the Moody chart and go on to calculate the 
friction head hf.   

 (Ans. Cf = 0.0045     hf = 110.1 m) 
 
2. The diagram shows a tank draining into another lower tank through a pipe. Note the velocity 

and pressure is both zero on the surface on a large tank.  Calculate the flow rate using the data 
given on the diagram. (Ans. 7.16 dm3/s) 

 
Fig. 21 

 
3. Water flows through the sudden pipe expansion shown below at a flow rate of 3 dm3/s. 

Upstream of the expansion the pipe diameter is 25 mm and downstream the diameter is 40 mm. 
There are pressure tappings at section (1), about half a diameter upstream, and at section (2), 
about 5 diameters downstream. At section (1) the gauge pressure is 0.3 bar. 

 
 Evaluate the following. 
  (i) The gauge pressure at section (2)  (0.387 bar) 
  (ii) The total force exerted by the fluid on the expansion. (-23 N) 

 
Fig. 22 

4. A domestic water supply consists of a large tank with a loss free-inlet to a 10 mm diameter pipe 
of length 20 m, that contains 9 right angles bends. The pipe discharges to atmosphere 8.0 m 
below the free surface level of the water in the tank. 

 
 Evaluate the flow rate of water assuming that there is a loss of 0.75 velocity heads in each bend 

and that friction in the pipe is given by the Blasius equation Cf=0.079(Re)-0.25 (0.118 dm3/s). 
 
 The dynamic viscosity is 0.89 x 10-3 and the density is 997 kg/m3. 
  
  



ENGINEERING COUNCIL 
 

CERTIFICATE LEVEL 
 

THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 
 

TUTORIAL 5 - DRAG 
 
When you have completed this tutorial you should be able to explain how fluids exert a drag force 
on a body. The tutorial covers more than enough for the Syllabus and the student should concentrate 
on the descriptive parts and do the calculations only if they wish to have a deeper understanding of 
the topic. 
 
1. DRAG
 
When a fluid flows around the outside of a body, it produces a force that tends to drag the body in 
the direction of the flow. The drag acting on a moving object such as a ship or an aeroplane must be 
overcome by the propulsion system. Drag takes two forms, skin friction drag and form drag. 
 
1.1 SKIN FRICTION DRAG 

 
Skin friction drag is due to the viscous shearing that takes place between the surface and the layer of 
fluid immediately above it. This occurs on surfaces of objects that are long in the direction of flow 
compared to their height. Such bodies are called STREAMLINED. When a fluid flows over a solid 
surface, the layer next to the surface may become attached to it 
(it wets the surface). This is called the ‘no slip condition’. The 
layers of fluid above the surface are moving so there must be 
shearing taking place between the layers of the fluid. The shear 
stress acting between the wall and the first moving layer next to 
it is called the wall shear stress and denoted τw. 
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The result is that the velocity of the fluid grows from zero at the 
surface to a maximum uo at some distance δ above it. This layer 
is called the BOUNDARY LAYER and δ is the boundary layer 
thickness. Fig. 1 Shows how the velocity "u" varies with height 
"y" for a typical boundary layer.        Fig. 1 
 
In a pipe, this is the only form of drag and it results in a pressure and energy lost along the length. A 
thin flat plate is an example of a streamlined object. Consider a stream of fluid flowing with a 
uniform velocity uo. When the stream is interrupted by the plate (fig. 2), the boundary layer forms 
on both sides. The diagram shows what happens on one side only. 

 
Fig. 2 



The boundary layer thickness δ grows with distance from the leading edge. At some distance from 
the leading edge, it reaches a constant thickness. It is then called a FULLY DEVELOPED 
BOUNDARY LAYER. 

The Reynolds number for these cases is defined as:  
µ

xρu)(R o
xe =  

x is the distance from the leading edge. At low Reynolds numbers, the boundary layer may be 
laminar throughout the entire thickness. At higher Reynolds numbers, it is turbulent. This means 
that at some distance from the leading edge the flow within the boundary layer becomes turbulent. 
A turbulent boundary layer is very unsteady and the streamlines do not remain parallel. The 
boundary layer shape represents an average of the velocity at any height. There is a region between 
the laminar and turbulent section where transition takes place 
  
The turbulent boundary layer exists on top of a thin laminar layer called the LAMINAR SUB 
LAYER. The velocity gradient within this layer is linear as shown. A deeper analysis would reveal 
that for long surfaces, the boundary layer is turbulent over most of the length. Many equations have 
been developed to describe the shape of the laminar and turbulent boundary layers and these may be 
used to estimate the skin friction drag. 
 
Note that for this ideal example, it is assumed that the velocity is the undisturbed velocity uo 
everywhere outside the boundary layer and that there is no acceleration and hence no change in the 
static pressure acting on the surface. There is hence no drag force due to pressure changes. 
 
CALCULATING SKIN DRAG 
 
The skin drag is due to the wall shear stress τw and this acts on the surface area (wetted area).  
The drag force is hence: R = τw x wetted area. The dynamic pressure is the pressure resulting from 
the conversion of the kinetic energy of the stream into pressure and is defined by the expression 

2
ρu2

o .The drag coefficient is defined as  

  

 ρu
2τ

area  x wettedρu
2RC

area d   x wettepressure dynamic
force DragC

2
0

w
2
0

Df

Df

==

=

 

 
Note that this is the same definition for the pipe friction coefficient Cf and it is in fact the same 
thing. It is used in the Darcy formula to calculate the pressure lost in pipes due to friction. For a 
smooth surface, it can be shown that CDf = 0.074 (Re)x

-1/5  

(Re)l  is the Reynolds number based on the length.  
µ

Lρu)(R o
xe =  
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 WORKED EXAMPLE No.1 
 
 Calculate the drag force on each side of a thin smooth plate 2 m long and 1 m wide with the 

length parallel to a flow of fluid moving at 30 m/s. The density of the fluid is 800 kg/m3 and the 
dynamic viscosity is 8 cP. 

 
 SOLUTION 

N 2347.2  1 x 2 x 1173.6  Area  x Wetted τ R
Pa 1173.6 10 x 360 x 0.00326  pressure dynamic x C  τ

kPa 360 
2

30 x 800  
2
ρu  pressure Dynamic

0.00326  ) x10(6 x 0.074 C

10 x 6 
0.008

2 x 30  x 800 
µ

Lρu)(R

w

3
Dfw

22
0

5
1

6
Df

6o
xe

===
===

===

==

===

−

  

 
 
On a small area the drag is dR = τw dA. If the body is not a thin plate and has an area inclined at an 
angle θ to the flow direction, the drag force in the direction of flow is τw dA cosθ. 

Fig.3 
 
The drag force acting on the entire surface area is found by integrating over the entire area. 

∫ θτ= dA cosR w  

Solving this equation requires more advanced studies concerning the boundary layer and students 
should refer to the classic textbooks on this subject. 
 
 
 SELF ASSESSMENT EXERCISE No.1 
 
1. A smooth thin plate 5 m long and 1 m wide is placed in an air stream moving at 3 m/s with its 

length parallel with the flow. Calculate the drag force on each side of the plate. The density of 
the air is 1.2 kg/m3 and the kinematic viscosity is 1.6 x 10-5 m2/s. (0.128 N) 

 
2. A pipe bore diameter D and length L has fully developed laminar flow throughout the entire 

length with a centre line velocity uo. Given that the drag coefficient is given as CDf = 16/Re 

where 
µ

ρ
=

Du
Re o , show that the drag force on the inside of the pipe is given as R=8πµuoL and 

hence the pressure loss in the pipe due to skin friction is pL = 32µ uo L/D2 
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1.2 FORM DRAG and WAKES
 
Form or pressure drag applies to bodies that are tall in comparison to the length in the direction of 
flow. Such bodies are called BLUFF BODIES. 
 
Consider the case below that could for example, be the pier of a bridge in a river. The water speeds 
up around the leading edges and the boundary layer quickly breaks away from the surface. Water is 
sucked in from behind the pier in the opposite direction. The total effect is to produce eddy currents 
or whirl pools that are shed in the wake. There is a build up of positive pressure on the front and a 
negative pressure at the back. The pressure force resulting is the form drag. When the breakaway or 
separation point is at the front corner, the drag is almost entirely due to this effect but if the 
separation point moves along the side towards the back, then a boundary layer forms and skin 
friction drag is also produced. In reality, the drag is always a combination of skin friction and form 
drag. The degree of each depends upon the shape of the body. 

Fig. 4 
 
The next diagram typifies what happens when fluid flows around a bluff object. The fluid speeds up 
around the front edge. Remember that the closer the streamlines, the faster the velocity. The line 
representing the maximum velocity is shown but also remember that this is the maximum at any 
point and this maximum value also increases as the stream lines get closer together.  
 

 
Fig. 5 
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Two important effects affect the drag. 
  
Outside the boundary layer, the velocity increases up to point 2 so the pressure acting on the 
surface goes down. The boundary layer thickness δ gets smaller until at point S it is reduced to zero 
and the flow separates from the surface. At point 3, the pressure is negative. This change in 
pressure is responsible for the form drag. 
 
Inside the boundary layer, the velocity is reduced from umax to zero and skin friction drag results. 

 
Fig. 6 

 
In problems involving liquids with a free surface, a negative pressure shows up as a drop in level 
and the pressure build up on the front shows as a rise in level. If the object is totally immersed, the 
pressure on the front rises and a vacuum is formed at the back. This results in a pressure force 
opposing movement (form drag). The swirling flow forms vortices and the wake is an area of great 
turbulence behind the object that takes some distance to settle down and revert to the normal flow 
condition. 
 
Here is an outline of the mathematical approach needed to solve the form drag. 
 
Form drag is due to pressure changes only. The drag coefficient due to pressure only is denoted CDp 
and defined as 

    

area projected x ρu
2RC

area projected   x pressure dynamic
force DragC

2
0

Dp

Dp

=

=

 

 
The projected area is the area of the outline of the shape projected at right angles to the flow. The 
pressure acting at any point on the surface is p. The force exerted by the pressure on a small surface 
area is p dA. If the surface is inclined at an angle θ to the general direction of flow, the force is p 
cosθ dA. The total force is found by integrating all over the surface. 

∫= dA pcosθR  
The pressure distribution over the surface is often expressed in the form of a pressure coefficient 
defined as follows. 

   2
o

o
p ρu

)p - 2(pC =  

po is the static pressure of the undisturbed fluid, uo is the velocity of the undisturbed fluid and 

2
ρu2

o is the dynamic pressure of the stream. 
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Consider any streamline that is affected by the surface. Applying Bernoulli between an undisturbed 
point and another point on the surface, we have the following. 

2
o

2

2
o

22
o

2
o

22
o

2
o

o
p

22
oo

22
o

0

u
u1

u
)u - (u

ρu

)u - (u
2
ρ2

ρu
)p - 2(pC

)u - (u
2
ρ  p - p             

2
ρu  p  

2
ρu  p

−==
⎟
⎠
⎞

⎜
⎝
⎛

==

=+=+

 

In order to calculate the drag force, further knowledge about the velocity distribution over the object 
would be needed and students are again recommended to study the classic textbooks on this subject. 
The equation shows that if u<uo then the pressure is positive and if u>uo the pressure is negative. 
  
1.3 TOTAL DRAG  
 
It has been explained that a body usually experiences both skin friction drag and form drag. The 
total drag is the sum of both. This applies to aeroplanes and ships as well as bluff objects such as 
cylinders and spheres. The drag force on a body is very hard to predict by purely theoretical 
methods. Much of the data about drag forces is based on experimental data and the concept of a 
drag coefficient is widely used.  
 
The DRAG COEFFICIENT is denoted CD and is defined by the following expression. 
 

Area projected x pressure Dynamic
force ResistanceCD =

   Area projected x ρu
2RC 2

o
D =

 
 
 
 WORKED EXAMPLE No.2 
 
 A cylinder 80 mm diameter and 200 mm long is placed in a stream of fluid moving at 0.5 m/s. 

The axis of the cylinder is normal to the direction of flow. The density of the fluid is 800 kg/m3. 
The drag force is measured and found to be 30 N.  

 Calculate the drag coefficient. 
 At a point on the surface, the pressure is measured as 96 Pa above ambient.  
 Calculate the velocity at this point. 
 
 SOLUTION 
 
 Projected area = 0.08 x 0.2 = 0.016 m2 R = 30 N, uo = 0.5 m/s  ρ = 800 kg/m3  
 Dynamic pressure = ρu2/2 = 800 x 0.52/2 = 100 Pa 
 

 
18.75

0.016 x 100
30 

Area projected x pressure Dynamic
force ResistanceCD ===

 
 

 
m/s1.0u               0.01u          u - 0.25 0.24

)u (0.5  
800

2 x 96          )u (0.5
2

800  96          )u - (u
2
ρ  p - p

22

222222
oo

===

−=−==
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1.4 APPLICATION TO A CYLINDER 
 

The drag coefficient is defined as :   
Area projected x ρu

2RC 2
o

D = The projected Area is LD where L 

is the length and D the diameter. The drag around long cylinders is more predictable than for short 
cylinders and the following applies to long cylinders. Much research has been carried out into the 

relationship between drag and Reynolds number. 
µ

ρ
=

du
Re o and d is the diameter of the cylinder. At 

very small velocities, (Re <0.5) the fluid sticks to the cylinder all the way round and never separates 
from the cylinder. This produces a streamline pattern similar to that of an ideal fluid. The drag 
coefficient is at its highest and is mainly due to skin friction. The pressure distribution shows that 
the dynamic pressure is achieved at the front stagnation point and vacuum equal to three dynamic 
pressures exists at the top and bottom where the velocity is at its greatest. 

 
Fig. 7 

 
As the velocity increases the boundary layer breaks away and 
eddies are formed behind. The drag becomes increasingly due to 
the pressure build up at the front and pressure drop at the back. 
 
 
 

   Fig. 8 
 
Further increases in the velocity cause the eddies to elongate and the drag coefficient becomes 
nearly constant. The pressure distribution shows that ambient pressure exists at the rear of the 
cylinder. 

 
Fig. 9 
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At a Reynolds number of around 90 the vortices break away alternatively from the top and bottom 
of the cylinder producing a vortex street in the wake. The pressure distribution shows a vacuum at 
the rear. 

 
Fig.10 

 
Up to a Reynolds number of about 2 x 105, the drag coefficient is constant with a value of 
approximately 1. The drag is now almost entirely due to pressure. Up to this velocity, the boundary 
layer has remained laminar but at higher velocities, flow within the boundary layer becomes 
turbulent. The point of separation moves back producing a narrow wake and a pronounced drop in 
the drag coefficient. 
 
When the wake contains vortices shed alternately from the top and bottom, they produce alternating 
forces on the structure. If the structure resonates with the frequency of the vortex shedding, it may 
oscillate and produce catastrophic damage. This is a problem with tall chimneys and suspension 
bridges. The vortex shedding may produce audible sound. 
 
Fig. 12 shows an approximate relationship between CD and Re for a cylinder and a sphere. 
  
 
 SELF ASSESSMENT EXERCISE No.2 
 
1. Calculate the drag force for a cylindrical chimney 0.9 m diameter and 50 m tall in a wind 

blowing at 30 m/s given that the drag coefficient is 0.8. The density of the air is 1.2 kg/m3. 
(19.44 N) 

 
2. Using the graph (fig.12) to find the drag coefficient, determine the drag force per metre length 

acting on an overhead power line 30 mm diameter when the wind blows at 8 m/s. The density 
of air may be taken as 1.25 kg/m3 and the kinematic viscosity as 1.5 x 10-5 m2/s. (1.8 N). 
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1.5 APPLICATION TO SPHERES 
 
The relationship between drag and Reynolds number is roughly the same as for a cylinder but it is 

more predictable. The Reynolds number is 
µ

dρuRe o=  where d is the diameter of the sphere. The 

projected area of a sphere of diameter d is ¼ πd2. In this case, the expression for the drag coefficient 

is as follows. 22D  x πxρu
8RC =

.
 

 At very small Reynolds numbers (less than 0.2) the flow stays attached to the sphere all the way 
around and this is called Stokes flow. The drag is at its highest in this region. 
 
As the velocity increases, the boundary layer separates at the rear stagnation point and moves 

forward. A toroidal vortex is formed. For 0.2<Re<500 the flow is called Allen flow. 
Fig.11 

 
The breakaway or separation point reaches a stable position approximately 80o from the front 
stagnation point and this happens when Re is about 1000. For 500<Re the flow is called Newton 
flow. The drag coefficient remains constant at about 0.4. Depending on various factors, when Re 
reaches 105 or larger, the boundary layer becomes totally turbulent and the separation point moves 
back again forming a smaller wake and a sudden drop in the drag coefficient to about 0.3. An 
empirical formula that covers the range 0.2 < Re < 105 is as follows. 

0.4
R1

6
R
24C

ee
D +

+
+=

 
Fig. 12 shows this approximate relationship between CD and Re. 

Fig.12 
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 WORKED EXAMPLE No.3 
 
 A sphere diameter 40 mm moves through a fluid of density 750 kg/m3 and dynamic viscosity 50 

cP with a velocity of 0.6 m/s. Note 1 cP = 0.001 Ns/m2. 
 Calculate the drag on the sphere. 
 Use the graph to obtain the drag coefficient. 
 SOLUTION 
 

 

N 0.136  
2

 10 x 1.2566x 0.6 x 750 x 0.8 
2

A ρuC  R

m10 x 1.2566  
4

0.04  π
4

d π area Projected          
Area projected x ρu

2RC

0.8Cgraph   thefrom

360 
0.05

0.04 x 0.6 x 750
µ
ρudRe

3-22
D

23-
22

2D

D

===

====

=

===

 

 
 
1.6 TERMINAL VELOCITY
 
When a body falls under the action of gravity, a point is reached, where the drag force is equal and 
opposite to the force of gravity. When this condition is reached, the body stops accelerating and the 
terminal velocity reached. Small particles settling in a liquid are usually modelled as small spheres 
and the preceding work may be used to calculate the terminal velocity of small bodies settling in a 
liquid. A good application of this is the falling sphere viscometer described in chapter one. 
 
For a body immersed in a liquid, the buoyant weight is W and this is equal to the viscous resistance 
R when the terminal velocity is reached. 

R = W = volume x gravity x density difference ( )
6

gd fs
3 ρ−ρπ

=  

ρs = density of the sphere material 
ρf = density of fluid 
d =  sphere diameter 
 
STOKES’ FLOW
 
For Re<0.2 the flow is called Stokes flow and Stokes showed that R = 3πdµut
For a falling sphere viscometer, Stokes flow applies. Equating the drag force and the buoyant 
weight we get 

( ) ( )
t

fs
2

fs
3

t 18u
ρρgdµ      

6
ρρgπdµu d  π3 −

=
−

=  

The terminal velocity for Stokes flow is ( )
18µ

ρρgdu fs
2

t
−

=  

This formula assumes a fluid of infinite width but in a falling sphere viscometer, the liquid is 
squeezed between the sphere and the tube walls and additional viscous resistance is produced. The 
Faxen correction factor F is used to correct the result. 
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 WORKED EXAMPLE No.4 
 
 The terminal velocity of a steel sphere falling in a liquid is 0.03 m/s. The sphere is 1 mm 

diameter and the density of the steel is 7830 kg/m3. The density of the liquid is 800 kg/m3. 
Calculate the dynamic and kinematic viscosity of the liquid. 

 
 SOLUTION 
 
 Assuming Stokes’ flow the viscosity is found from the following equation. 

 

( )

cSt 159.6  /sm 0.0001596
800

0.1277
ρ
µν

cP 127.7Ns/m 0.1277 
0.03 x 18

800) - (7830 x 9.81 x  0.001
18u

ρρgdµ

2

s

2
2

t

fs
2

====

===
−

=
 

 Check the Reynolds number. 0.188 
0.0547

0.001 x 0.03 x 800
µ
udρR f

e ===  

 As this is smaller than 0.2 the assumption of Stokes’ flow is correct. 
 
 
ALLEN FLOW

 
For 0.2 < Re < 500 the flow is called Allen flow and the following expression gives the empirical 
relationship between drag and Reynolds number. CD=18.5Re

-0.6

 

Equating for CD gives the following result. 0.6
e22

tf
D 18.5R

  π uρ
8RC −==  

Substitute ( )
6

ρρgπdR fs
3 −

=
 

( )

( ) 0.6
tf

2
tf

fs

0.6
tf0.6

e2
tf

fs
D

µ
duρ18.5

u6ρ
ρρ8dg

µ
duρ18.518.5R

u6ρ
ρρ8dgC

−

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

−
=

 

From this equation the velocity ut may be found. 
 
NEWTON FLOW 
 
For 500 < Re < 105 CD takes on a constant value of 0.44. 
 

Equating for CD gives the following. 0.44
  π uρ

8RC 22
tf

D ==  

Substitute ( )
6

ρρgπdR fs
3 −

=  

( ) ( )
f

fs
t2

tf

fs

ρ
ρρ29.73dgu       0.44

u6ρ
ρρ8dg −

==
−

 
 
When solving the terminal velocity, you should always check the value of the Reynolds number to 
see if the criterion used is valid. 
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 WORKED EXAMPLE No.5 
 
 Small glass spheres are suspended in an up wards flow of water moving with a mean velocity of 

1 m/s. Calculate the diameter of the spheres. The density of glass is 2630 kg/m3. The density of 
water is 1000 kg/m3 and the dynamic viscosity is 1 cP. 

 
 SOLUTION 
 
 First, try the Newton flow equation. This is the easiest. 

 

( )

( ) ( ) mm 2.1or    m 0.0021 
1000 - 2630 x 9.81 x 29.73

1000 x 1
ρρg 29.73

ρud

ρ
ρρg 29.73du

2

fs

f
2
t

f

fs
t

==
−

=

−
=

 

 Check the Reynolds number. 

 2103 
0.001

0.0021 x 1 x 1000
µ

duρR tf
e ===  

 The assumption of Newton flow was correct so the answer is valid. 
 
 
 
 WORKED EXAMPLE No.6 
 
 Repeat the last question but this time with a velocity of 0.05 m/s. Determine the type of flow 

that exists. 
 
 SOLUTION 

 If no assumptions are made, we should use the general formula 0.4
R1

6
R
24C

ee
D +

+
+=  

 
0.4

223.6d1
60.00048d0.4

50000d1
6

50000d
240.4

R1
6

R
24C

000d 50 
0.001

d x 0.05 x 1000
µ

duρR

0.5
1

ee
D

tf
e

+
+

+=+
+

+=+
+

+=

===

−
 

 

 

( )

0.4
223.6d1

60.00048d  8528.16d

8528.16d 
0.05 x 1000 x 6

1000)- (2630 x 9.81 x 8d
u6ρ
ρρ8dgC

0.5
1

22
f

fs
D

+
+

+=

==
−

=

−

 

 
 This should be solved by any method known to you such as plotting two functions and finding 

the point of interception.  

 
0.4

223.6d1
60.00048d  f2(d)

                     8528.16d  f1(d)

0.5
1 +

+
+=

=

−  

 
 The graph below gives an answer of d = 0.35 mm. 
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Fig. 13 

 

Checking the Reynolds’ number  17.5 
0.001

0.00035 x 0.05 x 1000
µ

duρR tf
e ===  

This puts the flow in the Allen's flow section. 
 
 
 
  SELF ASSESSMENT EXERCISE No.3 
 
1. a. Explain the term Stokes flow and terminal velocity. 
 
b. Show that the terminal velocity of a spherical particle with Stokes flow is given by the formula

 u = d2g(ρs - ρf)/18µ 
 
 Go on to show that CD=24/Re 
 
2. Calculate the largest diameter sphere that can be lifted upwards by a vertical flow of water 

moving at 1 m/s. The sphere is made of glass with a density of 2630 kg/m3. The water has a 
density of 998 kg/m3 and a dynamic viscosity of 1 cP. (20.7 mm) 

 
3. Using the same data for the sphere and water as in Q2, calculate the diameter of the largest 

sphere that can be lifted upwards by a vertical flow of water moving at 0.5 m/s. (5.95 mm). 
 
4. Using the graph (fig. 12) to obtain the drag coefficient of a sphere, determine the drag on a 

totally immersed sphere 0.2 m diameter moving at 0.3 m/s in sea water. The density of the 
water is 1025 kg/m3 and the dynamic viscosity is 1.05 x 10-3 Ns/m2. (0.639 N). 

   
5. A glass sphere of diameter 1.5 mm and density 2 500 kg/m3 is allowed to fall through water 

under the action of gravity. The density of the water is 1000 kg/m3 and  the dynamic viscosity is 
1 cP. 

 
 Calculate the terminal velocity assuming the drag coefficient is 
 CD = 24 Re -1 (1+ 0.15Re 0.687)  (Ans. 0.215 m/s 
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