2. A vertical wall acts as a dam between fresh water (density $1000 \mathrm{~kg} / \mathrm{m}^{3}$) and sea water (density $1030 \mathrm{~kg} / \mathrm{m}^{3}$) on the other side. The depths are 2 m and 3.5 m respectively. Calculate the resultant force and resultant turning moment about the base for a init width.

FRESH WATER

$\mathrm{R}=\rho \mathrm{gA} \overline{\mathrm{y}}$ and $\overline{\mathrm{y}}=\mathrm{h} / 2=2 / 2=1$
$\mathrm{R}=1000 \times 9.81 \times 2 \times 1=19620 \mathrm{~N}$
$\mathrm{M}=\mathrm{R} A \quad \mathrm{~A}=(2-\overline{\mathrm{h}})$ In this case $\overline{\mathrm{h}}=2 \mathrm{~h} / 3$
$\mathrm{M}=19620(2 / 3)=13080 \mathrm{Nm}$

SALT WATER
$\mathrm{R}=\rho \mathrm{gA} \overline{\mathrm{y}}$ and $\overline{\mathrm{y}}=\mathrm{h} / 2=3.5 / 2=1.75$
$\mathrm{R}=1030 \times 9.81 \times 3.5 \times 1.75=61889 \mathrm{~N}$
$\mathrm{M}=\mathrm{R} \mathrm{B} \quad \mathrm{B}=(3.5-\overline{\mathrm{h}})$ In this case $\overline{\mathrm{h}}=2 \mathrm{~h} / 3$
$\mathrm{M}=61889 \times 1.1667=72204 \mathrm{Nm}$
Resultant Force $=61889-19620=42269 \mathrm{~N}$ (acting right to left)
Resultant Moment $=72204-13080=59124$ Nm (acting anti clockwise)

SOLUTIONS C106 THERMODYNAMIC, FLUID AND PROCESS ENGINEERING
 Year 2004

Q7 A jet of water flows smoothly onto a stationary curved vane which turns it through an angle of 50° as shown. The jet flows onto the vane with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and a circular cross section of diameter 0.04 m . The water leaves the vane with a velocity of $36 \mathrm{~m} / \mathrm{s}$. Calculate the magnitude and direction of the force on the vane. Neglect gravitational effects.

The vector diagram is constructed as shown. Find the change in velocity Δv
$\mathrm{C}=36 \sin 50=27.577 \quad \mathrm{~A}=36 \cos 50=23.14$
$\mathrm{B}=40-\mathrm{A}=16.86 \quad \Delta \mathrm{~V}=\sqrt{ }\left(27.577^{2}+16.86^{2}\right)=32.32 \mathrm{~m} / \mathrm{s}$
Mass flow $=\rho \mathrm{Av}=1000 \times \pi \times 0.04^{2} / 4 \times 40=50.265 \mathrm{~kg} / \mathrm{s}$
$\mathrm{F}=\mathrm{m} \Delta \mathrm{v}=1625 \mathrm{~N}$
$\theta=\tan ^{-1}(27.577 / 16.86)=58.6^{\circ}$
The force on the vane is the opposite direction to $\Delta \mathrm{V}$

