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EDEXCEL HIGHER 
 

FLUID MECHANICS H1 UNIT 8 
 

NQF LEVEL 4 
 

OUTCOME 1 STATIC FLUID SYSTEMS 
 

TUTORIAL 1 - HYDROSTATICS 
 
 

1 Static fluid systems  

Immersed surfaces: rectangular and circular surfaces (eg retaining walls, tank sides, sluice gates, 
inspection covers, valve flanges)  

Centre of pressure: use of parallel axis theorem for immersed rectangular and circular immersed 
surfaces  

Devices: hydraulic presses; hydraulic jacks; hydraulic accumulators; braking systems; determine 
outputs for given inputs 

  

 
 
 
 

On completion of this tutorial you should be able to do the following. 
 
•  Define the main fundamental properties of liquids. 
 
•  Calculate the forces and moments on submerged surfaces. 
 
•  Explain and solve problems involving simple hydrostatic devices. 

 
Before you start you should make sure that you fully understand first and second moments of area. 
If you are not familiar with this, you should do that tutorial before proceeding. Let’s start this 
tutorial by studying the fundamental properties of liquids. 
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1. SOME FUNDAMENTAL STUDIES 
 
1.1 IDEAL LIQUIDS 
 
An ideal liquid is defined as follows. 
 
It is INVISCID. This means that molecules require no force to separate them. The topic is covered 
in detail in chapter 3. 
 
It is INCOMPRESSIBLE. This means that it would require an infinite force to reduce the volume 
of the liquid. 
 
1.2 REAL LIQUIDS 
 
VISCOSITY 
 
Real liquids have VISCOSITY. This means that the molecules tend to stick to each other and to any 
surface with which they come into contact. This produces fluid friction and energy loss when the 
liquid flows over a surface. Viscosity defines how easily a liquid flows. The lower the viscosity, the 
easier it flows. 
 
BULK MODULUS 
 
Real liquids are compressible and this is governed by the BULK MODULUS K. This is defined as 
follows. 

K = V∆p/∆V 
∆p is the increase in pressure, ∆V is the reduction in volume and V is the original volume. 
 
DENSITY Density ρ relates the mass and volume such that ρ = m/V  kg/ m3

 
PRESSURE 
 
Pressure is the result of compacting the molecules of a fluid into a smaller space than it would 
otherwise occupy. Pressure is the force per unit area acting on a surface. The unit of pressure is the 
N/m2 and this is called a PASCAL. The Pascal is a small unit of pressure so higher multiples are 
common. 
 1 kPa = 103 N/m2

 1 MPa = 106 N/m2

 Another common unit of pressure is the bar but this is not an SI unit. 
 1 bar = 105 N/m2

 1 mb = 100 N/m2 

 
GAUGE AND ABSOLUTE PRESSURE 
 
Most pressure gauges are designed only to measure and indicate the pressure of a fluid above that 
of the surrounding atmosphere and indicate zero when connected to the atmosphere. These are 
called gauge pressures and are normally used. Sometimes it is necessary to add the atmospheric 
pressure onto the gauge reading in order to find the true or absolute pressure. 
 
Absolute pressure = gauge pressure + atmospheric pressure. 
 
Standard atmospheric pressure is 1.013 bar. 



2. HYDROSTATIC FORCES 
 
 
When you have completed this section, you should be able to do the following. 
 
• Calculate the pressure due to the depth of a liquid. 
 
• Calculate the total force on a vertical surface. 
 
• Define and calculate the position of the centre of pressure for various shapes. 
 
• Calculate the turning moments produced on vertically immersed surfaces. 
 
• Explain the principles of simple hydraulic devices. 
 
• Calculate the force and movement produced by simple hydraulic equipment. 
 
2.1 HYDROSTATIC PRESSURE 
 
2.1.1 PRESSURE INSIDE PIPES AND VESSELS 
 
Pressure results when a liquid is compacted into a volume. The pressure inside vessels and pipes 
produce stresses and strains as it tries to stretch the material. An example of this is a pipe with 
flanged joints. The pressure in the pipe tries to separate the flanges. The force is the product of the 
pressure and the bore area. 
 

 
Fig.1 

 
 
 WORKED EXAMPLE No. 1 
 
 Calculate the force trying to separate the flanges of a valve (Fig.1) when the pressure is 2 MPa 

and the pipe bore is 50 mm. 
 
 SOLUTION 
 
 Force = pressure x bore area 
 Bore area = πD2/4 = π x 0.052/4 = 1.963 x 10-3 m2

 Pressure = 2 x 106 Pa 
 Force = 2 x 106 x 1.963 x 10-3 = 3.927 x 103 N or 3.927 kN 
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2.1.2 PRESSURE DUE TO THE WEIGHT OF A LIQUID 
 
Consider a tank full of liquid as shown. The liquid has a total weight W and this bears down on the 
bottom and produces a pressure p. Pascal showed that the pressure in a liquid always acts normal (at 
90o) to the surface of contact so the pressure pushes down onto the bottom of the tank. He also 
showed that the pressure at a given point acts equally in all directions so the pressure also pushes up 
on the liquid above it and sideways against the walls. 
 

 
Fig. 2 

The volume of the liquid is  V = A h   m3

 
The mass of liquid is hence m = ρV = ρAh  kg 
The weight is obtained by multiplying by the gravitational constant g. 
W = mg = ρAhg  Newton 
 
The pressure on the bottom is the weight per unit area  p = W/A   N/m2

 
It follows that the pressure at a depth h in a liquid is given by the following equation. 
 

p = ρgh 
 
The unit of pressure is the N/m2 and this is called a PASCAL. The Pascal is a small unit of pressure 
so higher multiples are common. 
 
 
 WORKED EXAMPLE 2 
 
 Calculate the pressure and force on an inspection hatch 0.75 m diameter located on the bottom 

of a tank when it is filled with oil of density 875 kg/m3 to a depth of 7 m. 
 
 SOLUTION 
 
 The pressure on the bottom of the tank is found as follows.    p = ρ g h 
 ρ =  875 kg/m3

 g = 9.81 m/s2 
 h = 7 m 
 p = 875 x 9.81 x 7 = 60086 N/m2 or 60.086 kPa 
 The force is the product of pressure and area. 
 A = πD2/4 = π x 0.752/4 = 0.442 m2

 F = p A = 60.086 x 103 x 0.442 = 26.55 x 103 N or 26.55 Kn 
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2.1.3 PRESSURE HEAD 
 
When h is made the subject of the formula, it is called the pressure head. h = p/ρg 
  
Pressure is often measured by using a column of liquid. Consider 
a pipe carrying liquid at pressure p. If a small vertical pipe is 
attached to it, the liquid will rise to a height h and at this height, 
the pressure at the foot of the column is equal to the pressure in 
the pipe. 

 
 Fig.3 

 
This principle is used in barometers to measure atmospheric pressure and manometers to measure 
gas pressure.  
 

 
Barometer                           Manometer 

Fig.4 
 

In the manometer, the weight of the gas is negligible so the height h represents the difference in the 
pressures p1 and p2. 

p1 - p2 = ρ g h 
 
In the case of the barometer, the column is closed at the top so that p2 = 0 and p1 = pa. The height h 
represents the atmospheric pressure. Mercury is used as the liquid because it does not evaporate 
easily at the near total vacuum on the top of the column. 
 

 Pa = ρ g h 
 

 
 WORKED EXAMPLE No.3 
 
 A manometer (fig.4) is used to measure the pressure of gas in a container. One side is 

connected to the container and the other side is open to the atmosphere. The manometer 
contains oil of density 750 kg/m3 and the head is 50 mm. Calculate the gauge pressure of the 
gas in the container. 

 
 SOLUTION 
 
 p1 - p2 = ρ g h = 750 x 9.81 x 0.05 = 367.9 Pa 
 
 Since p2 is atmospheric pressure, this is the gauge pressure. p2 = 367.9 Pa (gauge) 
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 SELF ASSESSMENT EXERCISE No.1 
 
1. A mercury barometer gives a pressure head of 758 mm. The density is 13 600 kg/m3. Calculate 

the atmospheric pressure in bar. (1.0113 bar) 
 
2. A manometer (fig.4) is used to measure the pressure of gas in a container. One side is 

connected to the container and the other side is open to the atmosphere. The manometer 
contains water of density 1000 kg/m3 and the head is 250 mm. Calculate the gauge pressure of 
the gas in the container. (2.452.5 kPa) 

 
3. Calculate the pressure and force on a horizontal submarine hatch 1.2 m diameter when it is at a 

depth of 800 m in seawater of density 1030 kg/m3. (8.083 MPa and 9.142 MN) 
 
 
3. FORCES ON SUBMERGED SURFACES 
 
3.1 TOTAL FORCE 
 
Consider a vertical area submerged 
below the surface of liquid as shown. 

 
The area of the elementary strip is  
dA = B dy 
 
You should already know that the 
pressure at depth h in a liquid is 
given by the equation  p = ρgh where 
ρ is the density and h the depth. 
 
In this case, we are using y to denote 
depth so p = ρgy  
      Fig.5 
 
The force on the strip due to this pressure is dF = p dA =ρB gy dy 
 
The total force on the surface due to pressure is denoted R and it is obtained by integrating this 
expression between the limits of y1 and y2. 

It follows that ⎟⎟
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(y2 - y1) = D so B(y2 - y1) = BD =Area of the surface A  
 
(y2 + y1)/2 is the distance from the free surface to the centroid y. 
 
It follows that the total force is given by the expression  
    R = ρgAy 
 
The term Ay is the first moment of area and in general, the total force on a submerged surface is  
 

R = ρg   x  1st moment of area about the free surface. 
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3.2 CENTRE OF PRESSURE 
 

The centre of pressure is the point at which the total force may be assumed to act on a submerged 
surface. Consider the diagram again. The force on the strip is dF as before. This force produces a 
turning moment with respect to the free surface s – s. The turning moment due to dF is as follows. 
    dM = y dF = ρgBy2dy 
 
The total turning moment about the surface due to pressure is obtained by integrating this 
expression between the limits of y1 and y2. 
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Hence  M = ρgIss 
 
This moment must also be given by the total force R multiplied by some distance h. The position at 
depth h is called the CENTRE OF PRESSURE. h is found by equating the moments. 
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In order to be competent in this work, you should be familiar with the parallel axis theorem 
(covered in part 1) because you will need it to solve 2nd moments of area about the free surface. The 
rule is as follows.  
 Iss = Igg + Ay2 
 
Iss is the 2nd moment about the free surface and  Igg  is the 2nd moment about the centroid.  
 
You should be familiar with the following standard formulae for 2nd moments about the centroid. 
 
Rectangle   Igg = BD3/12 
 
Rectangle about its edge  I = BD3/3 
 
Circle   Igg =  πD4/64 
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 WORKED EXAMPLE No.4 
 
 Show that the centre of pressure on a vertical retaining wall is at 2/3 of the depth. Go on to 

show that the turning moment produced about the bottom of the wall is given by the expression 
ρgh3/6 for a unit width. 

 
Fig.6 

 SOLUTION 
 
 For a given width B, the area is a rectangle with the free surface at the top edge. 
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 It follows that the centre of pressure is h/3 from the bottom. 
 
 The total force is R = ρgAy = ρgBh2/2  and for a unit width this is ρgh2/2   
 
 The moment bout the bottom is R x h/3 = (ρgh2/2) x h/3  = ρgh3/6 
 
 
 
 SELF ASSESSMENT EXERCISE No.2 
 
1. A vertical retaining wall contains water to a depth of 20 metres. Calculate the turning moment 

about the bottom for a unit width. Take the density as 1000 kg/m3. 
 (13.08 MNm) 
 
2. A vertical wall separates seawater on one side from fresh water on the other side. The seawater 

is 3.5 m deep and has a density of 1030 kg/m3. The fresh water is 2 m deep and has a density of 
1000 kg/m3. Calculate the turning moment produced about the bottom for a unit width. 

 (59.12 kNm) 
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 WORKED EXAMPLE No.5 
 
 A concrete wall retains water and has a hatch blocking off an outflow tunnel as shown. Find the 

total force on the hatch and the position of the centre of pressure. Calculate the total moment 
about the bottom edge of the hatch. The water density is1000 kg/m3. 

 
 

Fig.7 
 SOLUTION 
 
 Total force = R = ρ g A y  
 For the rectangle shown y =  (1.5 + 3/2) = 3 m.  A = 2 x 3 = 6 m2. 
 
 R = 1000 x 9.81 x 6 x 3 = 176580 N or 176.58 kN 
 
 h = 2nd mom. of Area/ 1st mom. of Area 
 
 1st  moment of Area  = Ay = 6 x 3 = 18 m3. 
 
 2nd mom of area = Iss = (BD3/12) + Ay2= (2 x 33/12) + (6 x 32) 
 
 Iss= 4.5 + 54 = 58.5 m4. 
 
 h = 58.5/18 = 3.25 m 
 
 The distance from the bottom edge is x = 4.5 – 3.25 = 1.25 m 
 Moment about the bottom edge is  = Rx = 176.58 x 1.25 = 220.725 kNm. 
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 WORKED EXAMPLE No.6 
 
 Find the force required at the top of the circular hatch shown in order to keep it closed against 

the water pressure outside.   The density of the water is 1030 kg/m3. 
 

 
Fig. 8 

 
 y = 2 m from surface to middle of hatch. 
 
 Total Force = R = ρ g A y = 1030 x 9.81 x (π x 22/4) x 2 = 63487 N or 63.487 kN 
 
 Centre of Pressure h = 2nd  moment/1st moment 
 
 2nd  moment of area. 
 Iss = Igg + Ay2 =(π x 24/64) + (π x 22/4) x 22 
  Iss =13.3518 m4. 
 
 1st  moment of area 
 Ay = (π x 22/4) x 2 = 6.283 m3. 
 Centre of pressure. 
 h = 13.3518/6.283 = 2.125 m 
 
 This is the depth at which, the total force may be assumed to act. Take moments about the 

hinge. 
 
 F = force at top. 
 
 R = force at centre of pressure which is 0.125 m below the hinge. 

 
Fig. 9 

 For equilibrium F x 1 = 63.487 x 0.125 
 
 F = 7.936 kN 
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 WORKED EXAMPLE No.7 
 
 The diagram shows a hinged circular vertical hatch diameter D that flips open when the water 

level outside reaches a critical depth h. Show that for this to happen the hinge must be located 

at a position x from the bottom given by the formula 
⎭
⎬
⎫

⎩
⎨
⎧=

4D -8h 
5D - h8

2
Dx  

 
 Given that the hatch is 0.6 m diameter, calculate the position of the hinge such that the hatch 

flips open when the depth reaches 4 metres. 

 
Fig.10 

 SOLUTION 
 
 The hatch will flip open as soon as the centre of pressure rises above the hinge creating a 

clockwise turning moment. When the centre of pressure is below the hinge, the turning moment 
is anticlockwise and the hatch is prevented from turning in that direction. We must make the 
centre of pressure at position x. 
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 Putting D = 0.6 and h = 4 we get x = 0.5 m 
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 SELF ASSESSMENT EXERCISE No.3 
 
1. A circular hatch is vertical and hinged at the bottom. It is 2 m diameter and the top edge is 2m 

below the free surface. Find the total force, the position of the centre of pressure and the force 
required at the top to keep it closed. The density of the water is 1000 kg/m3.  

 (92.469 kN, 3.08 m,42.5 kN) 
 
 
 
2. A large tank of sea water has a door in the side  1 m square. The top of the door is 5 m below 

the free surface. The door is hinged on the bottom edge. Calculate the force required at the top 
to keep it closed. The density of the sea water is 1036 kg/m3.  

 (27.11 N) 
 
 
3.  A culvert in the side of a reservoir is closed by a vertical rectangular gate 2m wide and 1 m 

deep as shown in fig. 11. The gate is hinged about a horizontal axis which passes through the 
centre of the gate. The free surface of water in the reservoir is 2.5 m above the axis of the 
hinge. The density of water is 1000 kg/m3. 

 
 Assuming that the hinges are frictionless and that the culvert is open to atmosphere, determine 
 
 (i) the force acting on the gate when closed due to the pressure of water. (55.897 kN) 
 
 (ii) the moment to be applied about the hinge axis to open the gate. (1635 Nm) 

 
Fig.11 
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4. The diagram shows a rectangular vertical hatch breadth B and depth D. The hatch flips open 

when the water level outside reaches a critical depth h. Show that for this to happen the hinge 
must be located at a position x from the bottom given by the formula 

 
⎭
⎬
⎫

⎩
⎨
⎧=

3D -6h 
4D -6h 

2
Dx  

 Given that the hatch is 1 m deep, calculate the position of the hinge such that the hatch flips 
open when the depth reaches 3 metres. (0.466 m) 

 
Fig.12 

 
5. Fig.13 shows an L shaped spill gate that operates by pivoting about hinge O when the water 

level in the channel rises to a certain height H above O. A counterweight W attached to the gate 
provides closure of the gate at low water levels. With the channel empty the force at sill S is 
1.635 kN. The distance l is 0.5m and the gate is 2 m wide. 

 
 Determine the magnitude of H. 
 
 (i) when the gate begins to open due to the hydrostatic load. (1 m) 
 (ii) when the force acting on the sill becomes a maximum. What is the magnitude of this force. 
 (0.5 m) 
 Assume the effects of friction are negligible. 

 
Fig.13 
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4 HYDROSTATIC DEVICES 
 
In this section, you will study the following. 
 
• Pascal’s Laws. 
 
• A simple hydraulic jack. 
 
• Basic power hydraulic system. 
 
4.1 PASCAL’S LAWS 
 
• Pressure always acts normal to the surface of contact. 

 
Fig.1.4 

 
• The force of the molecules pushing on neighbouring molecules is equal in all directions 
so long as the fluid is static (still). 
 
• The force produced by a given pressure in a static fluid is the same on all equal areas. 
 
These statements are the basis of PASCAL'S LAWS and the unit of pressure is named after Pascal. 
These principles are used in simple devices giving force amplification. 
 
4.2 CAR BRAKE 
 
A simple hydraulic braking system is shown in fig.15 
 

 
Fig.15 

 
The small force produced by pushing the small piston produces pressure in the oil. The pressure 
acts on the larger pistons in the brake cylinder and produces a large force on the pistons that move 
the brake pads or shoes. 
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4.3 SIMPLE HYDRAULIC JACK 
 
Fig. 16 shows the basis of a simple hydraulic jack. 

 
 

Fig.16 
 

The small force pushing on the small piston produces a pressure in the oil. This pressure acts on the 
large piston and produces a larger force. This principle is used in most hydraulic systems but many 
modifications are needed to produce a really useful machine. In both the above examples, force is 
amplified because the same pressure acts on different piston areas. In order to calculate the force 
ratio we use the formula p = F/A. 
 
FORCE RATIO 
 
Let the small piston have an area A1 and the large piston an area A2. The force on the small piston 
is F1 and on the large piston is F2. 
 
The pressure is the same for both pistons so p = F1/A1 = F2/A2 
 
From this the force amplification ratio is  F2/F1 = A2/A1 
 
Note   the area ratio is not the same as the diameter ratio. If the diameters are D1 and D2 then the 
ratio becomes F2/F1 = A2/A1 = D22/D12 
 
MOVEMENT RATIO 
 
The simple hydraulic jack produces force amplification but it is not possible to produce an increase 
in the energy, power or work. It follows that if no energy is lost nor gained, the large piston must 
move a smaller distance than the small piston. 
 
Remember that work done is force x distance moved.    W = F x 
 
Let the small piston move a distance x1 and the large piston x2. The work input at the small piston 
is equal to the work out at the large piston so 
 
F1x1 = F2x2    Substituting that  F1 = pA1 and  F2 = pA2 
 
pA1 x1 = pA2 x2  or  A1 x1 = A2 x2 
 
The movement of the small piston as a ratio to the movement of the large piston is then  x1/x2 = 
A2/A1 = area ratio 
 

© D.J.DUNN freestudy.co.uk 15 



4.4 PRACTICAL LIFTING JACK 
 
A practical hydraulic jack uses a small pumping piston as shown. When this moves forward, the 
non-return valve NRV1 opens and NRV2 closes. Oil is pushed under the load piston and moves it 
up. When the piston moves back, NRV1 closes and NRV2 opens and replenishes the pumping 
cylinder from the reservoir. Successive operations of the pump raises the load piston. The oil 
release valve , when open, allows the oil under the load cylinder to return to the reservoir and 
lowers the load. 

 
Fig.17 

 
 WORKED EXAMPLE No.8 
 
 A simple lifting jack has a pump piston 12 mm diameter and a load piston 60 mm diameter. 

Calculate the force needed on the pumping piston to raise a load of 8 kN. Calculate the pressure 
in the oil. 

 
 SOLUTION 
 
 Force Ratio = A2/A1 = D2

2/D1
2 = (60/12)2 = 25 

 
 Force on the pumping piston is 1/25 of the load. 
 
 F1 = 8 x 103/25 = 320 N 
 
 Pressure = Force/Area. Choosing the small piston 
 A1 = π D1

2/4 = π x 0.0122/4 =   113.1 x 10-6 m2

 p = F/A = 320 / 113.1 x 10-6 = 2.829 x 106 Pa or 2.829 MPa 
 
 Check using the large piston data. 
 
 F2 = 8 x 103 N 
 A2 = π D2

2/4 = π x 0.062/4 =   2.827 x 10-3 m2

 p = F/A =  8 x 103 / 2.827 x 10-3 = 2.829 x 106 Pa or 2.829 MPa 
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 SELF ASSESSMENT EXERCISE No.4 
 
1.  Calculate F1 and x2 for the case shown below. (83.3 N, 555 mm) 

 
Fig.18 

 
2.  Calculate F1 and x1 for the case shown below. (312.5 kN, 6.25 mm) 

 
Fig.19 

 
 
4.5 CYLINDERS 

 
Cylinders are linear actuators that 
convert fluid power into mechanical 
power. They are also known as 
JACKS or RAMS. Hydraulic 
cylinders are used at high pressures. 
They produce large forces with 
precise movement. They are 
constructed of strong materials such 
as steel and designed to withstand large forces.  Fig.20 

 
The diagram shows a double acting cylinder. Assume that the pressure on the other side of the 
piston is atmospheric. In this case, if we use gauge pressure, we need not worry about the 
atmospheric pressure.  A is the full area of the piston. If the pressure is acting on the rod side, then 
the area is (A - a) where a is the area of the rod. 
 
 F = pA    on the full area of piston. 
 F = p(A-a)  on the rod side. 
This force acting on the load is often less because of friction between the piston and piston rod and 
the seals. 
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 WORKED EXAMPLE No.9 
 
 A single rod hydraulic cylinder must pull with a force of 5 kN. The piston is 75 mm diameter 

and the rod is 30 mm diameter. Calculate the pressure required. 
 
 SOLUTION 
 
 The pressure is required on the annular face of the piston in order to pull. The area acted on by 

the pressure is A - a 
 
 A = π x 0.0752/4 = 4.418 x 10-3 m2

 
 a = π x 0.032/4 = 706.8 x 10-6 m2

 
 A – a = 3.711 x 10-3 m2

 
 p = F/( A – a) = 5 x 103 / 3.711 x 10-3 = 1.347 x 106 Pa or 1.347 MPa 
 
 
4.6 BASIC HYDRAULIC POWER SYSTEM 
 
The hand pump is replaced by a power driven pump. The load piston may be double acting so a 
directional valve is needed to direct the fluid from the pump to the top or bottom of the piston. The 
valve also allows the venting oil back to the reservoir. 

 
Fig.21 

 
4.7 ACCUMULATORS 
 
An accumulator is a device for storing pressurised liquid. One reason for this might be to act as an 
emergency power source when the pump fails. 
 
Originally, accumulators were made of long hydraulic cylinders mounted vertically with a load 
bearing down on them. If the hydraulic system failed, the load pushed the piston down and expelled 
the stored liquid  
 
Modern accumulators use high pressure gas (Nitrogen) and when the pump fails the gas expels the 
liquid. 
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 WORKED EXAMPLE No.10 
 
 A simple accumulator is shown in fig.22. The piston is 200 mm diameter and the pressure of 

the liquid must be maintained at 30 MPa. Calculate the mass needed to produce this pressure. 
 
 

 
Fig.22 

 SOLUTION 
 
 Weight = pressure x area 
 
 Area = πD2/4 = π x 0.22/4 = 0.0314 m2

 
 Weight = 30 x 106 x 0.0314 = 942.5 x 103 N or 942.5 kN 
 
 Mass = Weight/gravity = 942.5 x 103 /9.81 =  96.073 x 103 kg or 96.073 Tonne 
 
 
 
 SELF ASSESSMENT EXERCISE No.5 
 
1. A double acting hydraulic cylinder with a single rod must produce a thrust of 800 kN. The 

operating pressure is 100 bar gauge. Calculate the bore diameter required. (101.8 mm) 
 
2. The cylinder in question 1 has a rod diameter of  25 mm.  If the pressure is the same on the 

retraction (negative) stroke, what would be the force available? (795 kN) 
 
3. A single acting hydraulic cylinder has a piston 75 mm diameter and is supplied with oil at 100 

bar gauge.  Calculate the thrust. (44.18 kN) 
 
4. A vertical hydraulic cylinder (fig.22) is used to support a weight of 50 kN. The piston is 100 

mm diameter. Calculate the pressure required. (6.37 MPa) 
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EDEXCEL HIGHER 
 

FLUID MECHANICS H1 UNIT 8 
 

NQF LEVEL 4 
 

OUTCOME 2 VISCOSITY 
 

TUTORIAL 2 – THE VISCOUS NATURE OF FLUIDS 
 

 

2 Viscosity  

Viscosity: shear stress; shear rate; dynamic viscosity; kinematic viscosity  

Viscosity measurement: operating principles and limitations of viscosity measuring devices (eg 
falling sphere, capillary tube, rotational and orifice viscometers)  

Real fluids: Newtonian fluids; non-Newtonian fluids including pseudoplastic, Bingham plastic, 
Casson plastic and dilatent fluids 

  

 
On completion of chapter 2 you should be able to do the following. 
 

• Define viscosity and its units. 
 
• Define a Newtonian fluid. 
 
• Explain laminar flow. 
 
• Explain turbulent flow. 
 
• Explain fluid friction. 
 
• Solve problems involving all the above. 

 
Let's start by examining the meaning of viscosity. 
 



1.  VISCOSITY
 
1.1 BASIC THEORY 
 
Molecules of fluids exert forces of attraction on each other. In liquids this is strong enough to keep 
the mass together but not strong enough to keep it rigid. In gases these forces are very weak and 
cannot hold the mass together. 
 
When a fluid flows over a surface, the layer next to the surface may become attached to it (it wets 
the surface). The layers of fluid above the surface are moving so there must be shearing taking 
place between the layers of the fluid. 

Fig.2.1 
 
Let us suppose that the fluid is flowing over a flat surface in laminated layers from left to right as 
shown in figure 2.1. 
 
y is the distance above the solid surface (no slip surface) 
L is an arbitrary distance from a point upstream. 
dy is the thickness of each layer. 
dL is the length of the layer. 
dx is the distance moved by each layer relative to the one below in a corresponding time dt. 
u is the velocity of any layer. 
du is the increase in velocity between two adjacent layers. 
 
Each layer moves a distance dx in time dt relative to the layer below it. The ratio dx/dt must be the 
change in velocity between layers so du = dx/dt. 
 
When any material is deformed sideways by a (shear) force acting in the same direction, a shear 
stress τ is produced between the layers and a corresponding shear strain γ is produced. Shear strain 
is defined as follows. 
 

dy
dx

deformed beinglayer   theofheight 
ndeformatio sideways

==γ  

 
The rate of shear strain is defined as follows. 
 

dy
du

dy dt
dx

dt takentime
strainshear 

==
γ

==γ&  
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It is found that fluids such as water, oil and air, behave in such a manner that the shear stress 
between layers is directly proportional to the rate of shear strain. 
 

γ=τ & constant x  
 
Fluids that obey this law are called NEWTONIAN FLUIDS. 
 
It is the constant in this formula that we know as the dynamic viscosity of the fluid. 
 

  DYNAMIC VISCOSITY µ = 
du
dy

shear of rate 
stressshear 

τ=
γ
τ

=
&

 

 
 

FORCE BALANCE and VELOCITY DISTRIBUTION 
 
A shear stress τ exists between each layer and this increases by dτ over each layer. The pressure 
difference between the downstream end and the upstream end is dp. 
 
The pressure change is needed to overcome the shear stress. The total force on a layer must be zero 
so balancing forces on one layer (assumed 1 m wide) we get the following. 
 

dL
dp

dy
d

0dL d dy  dp

−=
τ

=τ+
 

 
It is normally assumed that the pressure declines uniformly with distance downstream so the 

pressure gradient  
dL
dp is assumed constant. The minus sign indicates that the pressure falls with 

distance. Integrating between the no slip surface (y = 0) and any height y we get 

 

)1.2....(..........
dy

ud
dL
dp

dy
dy
dud

dy
d

dL
dp

2

2

µ=−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ

=
τ

=−
 

 
 
Integrating twice to solve u we get the following. 

BAyu
dL
dp

2
y

A
dy
du

dL
dpy

2

++µ=−

+µ=−
 

 
A and B are constants of integration that should be solved based on the known conditions 
(boundary conditions). For the flat surface considered in figure 2.1 one boundary condition is that u 
= 0 when y = 0 (the no slip surface). Substitution reveals the following. 
 
0 = 0 +0 +B   hence B = 0 
 
At some height δ above the surface, the velocity will reach the mainstream velocity uo. This gives 
us the second boundary condition u = uo when y = δ. Substituting we find the following. 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

+
µ
δ

=

⎟
⎠
⎞

⎜
⎝
⎛

δ
µ

−
δ

−+µ=−

δ
µ

−
δ

−=

δ+µ=
δ

−

o

o
2

o

o

2

u
dL
dp

2
yu

y
u

dL
dp

2
u

dL
dp

2
y

hence    
u

dL
dp

2
A

Au
dL
dp

2

 

 
Plotting u against y gives figure 2.2. 
 
BOUNDARY LAYER. 
 
The velocity grows from zero at the surface to a maximum at height δ. In theory, the value of δ is 
infinity but in practice it is taken as the height needed to obtain 99% of the mainstream velocity. 
This layer is called the boundary layer and δ is the boundary layer thickness. It is a very important 
concept and is discussed more fully in chapter 3. The inverse gradient of the boundary layer is 
du/dy and this is the rate of shear strain γ. 

 
Fig.2.2 

1.2. UNITS of VISCOSITY 
 
1.2.1  DYNAMIC VISCOSITY µ 
 
The units of dynamic viscosity µ are N s/m2. It is normal in the international system (SI) to give a 
name to a compound unit. The old metric unit was a dyne.s/cm2 and this was called a POISE after 
Poiseuille. It follows that the SI unit is related to the Poise such that 10  Poise = 1 Ns/m2  
This  is  not  an  acceptable  multiple.  Since, however, 1 CentiPoise (1cP) is 0.001 N s/m2 then the 
cP is the accepted SI unit. 
 

1cP = 0.001 N s/m2. 
 

The symbol  η is also commonly used for dynamic viscosity. 
 
There are other ways of expressing viscosity and this is covered next. 
 

© D.J.DUNN  FREESTUDY.CO.UK  4 



1.2.2 KINEMATIC VISCOSITY ν 

ρ
µ

==
density

 viscositydynamicThis is defined as follows.ν  

The basic units are m2/s. The old metric unit was the cm2/s and this was called the STOKE after 
the British scientist. It follows that 1 Stoke (St) = 0.0001 m2/s and this is not an acceptable SI 
multiple. The centiStoke (cSt) ,however, is 0.000001 m2/s and this is an acceptable multiple. 
 

1cSt = 0.000001 m2/s = 1 mm2/s 
1.2.3 OTHER UNITS 
 
Other units of viscosity have come about because of the way viscosity is measured. For example 
REDWOOD SECONDS comes from the name of the Redwood viscometer. Other units are Engler 
Degrees, SAE numbers and so on. Conversion charts and formulae are available to convert them 
into useable engineering or SI units. 
 
1.2.4 VISCOMETERS
 
The measurement of viscosity is a large and complicated subject. The principles rely on the 
resistance to flow or the resistance to motion through a fluid. Many of these are covered in British 
Standards 188. The following is a brief description of some types. 
 
 U TUBE VISCOMETER
 

The fluid is drawn up into a reservoir and allowed to run through a 
capillary tube to another reservoir in the other limb of the U tube.  
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The time taken for the level to fall between the marks is converted 
into cSt by  multiplying the time by the viscometer constant.  

ν = ct 
 
The constant c should be accurately obtained by calibrating the 
viscometer against a master viscometer from a standards 
laboratory. 
 
 
 

 Fig.2.3 
 

 
REDWOOD VISCOMETER 
 

This works on the principle of allowing the fluid to run 
through an orifice of very accurate size in an agate block.  

 

 
50 ml of fluid are allowed to empty from the level 
indicator into a measuring flask. The time taken is the 
viscosity in Redwood seconds. There are two sizes giving 
Redwood No.1 or No.2 seconds. These units are converted 
into engineering units with tables.  
 
 
 
 
 Fig.2.4 



FALLING SPHERE VISCOMETER 
 

 

This viscometer is covered in BS188 and is based on measuring the 
time for a small sphere to fall in a viscous fluid from one level to 
another. The buoyant weight of the sphere is balanced by the fluid 
resistance and the sphere falls with a constant velocity. The theory is 
based on Stoke’s Law and is only valid for very slow velocities. The 
theory is covered later in the section on laminar flow where it is 
shown that the terminal velocity (u) of the sphere is related to the 
dynamic viscosity (µ) and the density of the fluid and sphere (ρf and 
ρs) by the formula 

µ = F  gd2(ρs -ρf)/18u 
 Fig.2.5 

 
F is a correction factor called the Faxen correction factor, which takes into account a reduction in 
the velocity due to the effect of the fluid being constrained to flow between the wall of the tube and 
the sphere. 
 
ROTATIONAL TYPES 
 
There are many types of viscometers, which use the principle that it requires a torque to rotate or 
oscillate a disc or cylinder in a fluid. The torque is related to the viscosity. Modern instruments 
consist of a small electric motor, which spins a disc or cylinder in the fluid. The torsion of the 
connecting shaft is measured and processed into a digital readout of the viscosity in engineering 
units. 
 
You should now find out more details about viscometers by reading BS188, suitable textbooks or 
literature from oil companies. 
 
 
 SELF ASSESSMENT EXERCISE No. No. 1 
 
1. Describe the principle of operation of the following types of viscometers. 
 
 a. Redwood Viscometers. 
 
 b. British Standard 188  glass U tube viscometer. 
  
 c. British Standard 188  Falling Sphere Viscometer. 
 
 d. Any form of Rotational Viscometer 
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2. NON-NEWTONIAN FLUIDS 
 
Consider figure 2.6. This shows the relationship between shear stress τ and rate of shear strain γ. 
 
Graph A shows an ideal fluid that has no viscosity and hence has no shear stress at any point. This 
is often used in theoretical models of fluid flow. 
 
Graph B shows a Newtonian Fluid. This is the type of fluid with which this book is mostly 
concerned, fluids such as water and oil. A Newtonian fluid obeys the rule τ = µ du/dy = µ γ. The 
graph is hence a straight line and the gradient is the viscosity µ. 
 
There is a range of other liquid or semi-liquid materials that do not obey this law and produce 
strange flow characteristics. Such materials include various foodstuffs, paints, cements and so on. 
Many of these are in fact solid particles suspended in a liquid with various concentrations.  
 
Graph C shows the relationship for a Dilatent fluid. The gradient and hence viscosity increases 
with γ and such fluids are also called shear-thickening. This phenomenon occurs with some 
solutions of sugar and starches. 
 
Graph D shows the relationship for a Pseudo-plastic. The gradient and hence viscosity reduces 
with γ and they are called shear-thinning. Most foodstuffs are like this as well as clay and liquid 
cement..  
 
Other fluids behave like a plastic and require a minimum stress before it shears τy. This is plastic 
behaviour but unlike plastics, there may be no elasticity prior to shearing. 
 
Graph E shows the relationship for a Bingham plastic. This is the special case where the 
behaviour is the same as a Newtonian fluid except for the existence of the yield stress. Foodstuffs 
containing high level of fats approximate to this model (butter, margarine, chocolate and 
Mayonnaise). 
 
Graph F shows the relationship for a plastic fluid that exhibits shear thickening characteristics. 
 
Graph G shows the relationship for a Casson fluid. This is a plastic fluid that exhibits shear-
thinning characteristics. This model was developed for fluids containing rod like solids and is often 
applied to molten chocolate and blood. 

 
 

Fig.2.6 
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MATHEMATICAL MODELS 
 
The graphs that relate shear stress τ and rate of shear strain γ are based on models or equations. 
Most are mathematical equations created to represent empirical data. 
 
Hirschel and Bulkeley developed the power law for non-Newtonian equations.This is as follows. 

n
y Kγ+τ=τ &   K is called the consistency coefficient and n is a power.  

 
In the case of a Newtonian fluid n = 1 and τy = 0 and K = µ  (the dynamic viscosity)   γµ=τ &

 
For a Bingham plastic, n = 1 and K is also called the plastic viscosity µp. The relationship reduces 
to    γµ+τ=τ &py  
 
For a dilatent fluid, τy = 0 and n>1  
 
For a pseudo-plastic,  τy = 0 and n<1 
 
The model for both is  nKγ=τ &

 
The Herchel-Bulkeley model is as follows.  n

y Kγ+τ=τ &

 
This may be developed as follows. 
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The Casson fluid model is quite different in form from the others and is as follows. 

  2
1

2
1

y
2
1

Kγ+τ=τ &  
 
Note that fluids with a shear yield stress will flow in a pipe as a plug. Within a certain radius, the 
shear stress will be insufficient to produce shearing so inside that radius the fluid flows as a solid 
plug. 
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 WORKED EXAMPLE  No. 1 
 
 The Herchel-Bulkeley model for a non-Newtonian fluid is as follows. .  n

y Kγ+τ=τ &

 Derive an equation for the minimum pressure required drop per metre length in a straight 
horizontal pipe that will produce flow. 

 Given that the pressure drop per metre length in the pipe is 60 Pa/m and the yield shear stress is 
0.2 Pa, calculate the radius of the slug sliding through the middle. 

 
 SOLUTION

 
Fig. 2.7 

 
 The pressure difference p acting on the cross sectional area must produce sufficient force to 

overcome the shear stress τ acting on the surface area of the cylindrical slug. For the slug to 
move, the shear stress must be at least equal to the yield value τy. Balancing the forces gives 
the following. 

 
 p x πr2 = τy x 2πrL 
  p/L = 2τy /r 
 60 = 2 x 0.2/r r = 0.4/60 = 0.0066 m or 6.6 mm 
 
 
 
 WORKED EXAMPLE No. 2 
 
 A Bingham plastic flows in a pipe and it is observed that the central plug is 30 mm diameter 

when the pressure drop is 100 Pa/m. 
 
 Calculate the yield shear stress. 
 
 Given that at a larger radius the rate of shear strain is 20 s-1 and the consistency coefficient is  

0.6  Pa s, calculate the shear stress. 
 
 SOLUTION
  
 For a Bingham plastic, the same theory as in the last example applies. 
 p/L = 2τy /r 100 = 2 τy/0.015 τy = 100 x 0.015/2 = 0.75 Pa 
 
 A mathematical model for a Bingham plastic is  
 γ+τ=τ &Ky  = 0.75 + 0.6 x 20 = 12.75 Pa 
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 WORKED EXAMPLE No. 3 
 
 Research has shown that tomato ketchup has the following viscous properties at 25oC. 
 
 Consistency coefficient  K = 18.7 Pa sn

 Power n = 0.27 
 Shear yield stress = 32 Pa 
 
 Calculate the apparent viscosity when the rate of shear is 1, 10, 100 and 1000 s-1 and conclude 

on the effect of the shear rate on the apparent viscosity. 
 
 SOLUTION 
 
 This fluid should obey the Herchel-Bulkeley equation so 

  
127.0

app

1ny
app

7.1832

K

−

−

γ+
γ

=µ

γ+
γ

τ
=µ

&
&

&
&

 

 
 Evaluating at the various strain rates we get. 
 
 γ = 1      µapp = 18.8 
 γ = 10    µapp = 3.482 
 γ = 100   µapp = 0.648 
 γ = 1000 µapp = 0.12 
 
 The apparent viscosity reduces as the shear rate increases. 
 
 
 
 SELF ASSESSMENT EXERCISE No. 2 
 
 
 Find examples of the following non- Newtonian fluids by searching the web. 
 
 Pseudo Plastic 
 
 Bingham’s Plastic 
 
 Casson Plastic 
 
 Dilatent Fluid 
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EDEXCEL HIGHER 
 

FLUID MECHANICS H1 UNIT 8 
 

NQF LEVEL 4 
 

OUTCOME 3 - THE FLOW OF REAL FLUIDS 
 

TUTORIAL 3  
 
 

3 Flow of real fluids  

Head losses: head loss in pipes by Darcy’s formula; Moody diagram; head loss due to sudden 
enlargement and contraction of pipe diameter; head loss at entrance to a pipe; head loss in valves; 
flow between reservoirs due to gravity; hydraulic gradient; siphons; hammer blow in pipes  

Reynolds’ number: inertia and viscous resistance forces; laminar and turbulent flow; critical 
velocities  

Viscous drag: dynamic pressure; form drag; skin friction drag; drag coefficient  

Dimensional analysis: checking validity of equations such as those for pressure at depth; thrust on 
immersed surfaces and impact of a jet; forecasting the form of possible equations such as those for 
Darcy’s formula and critical velocity in pipes 

  

 
 
On completion of this outcome you should be able to do the following. 
 

• Derive Bernoulli's equation for liquids. 
 

• Define and explain laminar and turbulent flow. 
 

• Find the pressure losses in piped systems due to fluid friction. 
 

• Find the minor frictional losses in piped systems. 
 

• Describe and calculate the effect of hammer blow in pipes. 
 

• Derive the basic relationship between pressure, velocity and force. 
 
This is a very large outcome requiring a lot of study time. The tutorial may contain more material 
than needed by those who have already studied the appropriate pre-requisite material. 
 
Let's start by revising basics. The flow of a fluid in a pipe depends upon two fundamental laws, the 
conservation of mass and energy. 
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3.1 PIPE FLOW 
 
The solution of pipe flow problems requires the applications of two principles, the law of 
conservation of mass (continuity equation) and the law of conservation of energy (Bernoulli’s 
equation) 
 
3.1.1 CONSERVATION OF MASS 
 
When a fluid flows at a constant rate in a pipe or duct, the mass flow rate must be the same at all 
points along the length. Consider a liquid being pumped into a tank as shown (fig.3.1). 
 
The mass flow rate at any section is m = ρAum 
 
ρ = density (kg/m3) um  = mean velocity (m/s) A = Cross Sectional Area (m2) 

 
Fig.3.1 

 
 For the system shown the mass flow rate at (1), (2) and (3) must be the same so 
 

ρ1A1u1 = ρ2A2u2 = ρ3A3u3 
 

In the case of liquids the density is equal and cancels so  
 

A1u1 = A2u2 = A3u3 = Q 
 

3.1.2 CONSERVATION OF ENERGY 
 
ENERGY FORMS 
 
FLOW ENERGY 
This is the energy a fluid possesses by virtue of its pressure. 
 The formula is F.E. = pQ Joules 
 
 p is the pressure (Pascals) 
 Q is volume rate (m3) 
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POTENTIAL OR GRAVITATIONAL ENERGY 
This is the energy a fluid possesses by virtue of its altitude relative to a datum level. 
 The formula is P.E. = mgz Joules 
 
 m is mass (kg) 
 z is altitude (m) 
 
KINETIC ENERGY   
This is the energy a fluid possesses by virtue of its velocity. 
 The formula is  K.E. = ½ mum2 Joules 
 
 um is mean velocity (m/s) 
 
INTERNAL ENERGY 
This is the energy a fluid possesses by virtue of its temperature. It is usually expressed relative to 
0oC. 
 The formula is U = mcθ 
 
 c is the specific heat capacity (J/kg oC) 
 θ is the temperature in oC 
 
In the following work, internal energy is not considered in the energy balance. 
 
SPECIFIC ENERGY 
Specific energy is the energy per kg so the three energy forms as specific energy are as follows. 
 
F.E./m = pQ/m = p/ρ Joules/kg 
P.E/m. = gz Joules/kg 
K.E./m = ½ u2 Joules/kg  
 
ENERGY HEAD 
If the energy terms are divided by the weight mg, the result is energy per Newton. Examining the 
units closely we have J/N = N m/N = metres. 
 
It is normal to refer to the energy in this form as the energy head. The three energy terms expressed 
this way are as follows. 
 
F.E./mg = p/ρg = h 
P.E./mg = z    
K.E./mg = u2 /2g 
 
The flow energy term is called the pressure head and this follows since earlier it was shown p/ρg  = 
h. This is the height that the liquid would rise to in a vertical pipe connected to the system. 
 
The potential energy term is the actual altitude relative to a datum. 
 
The term u2/2g is called the kinetic head and this is the pressure head that would result if the 
velocity is converted into pressure. 
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3.1.3 BERNOULLI’S EQUATION 
 
Bernoulli’s equation is based on the conservation of energy. If no energy is added to the system as 
work or heat then the total energy of the fluid is conserved. Remember that internal (thermal 
energy) has not been included. 
 
The total energy ET at (1) and (2) on the diagram (fig.3.1) must be equal so : 

 2
ummgzQp

2
ummgzQpE

2
2

222

2
1

111T ++=++=  

Dividing by mass gives the specific energy form  

 2
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Dividing by g gives the energy terms per unit weight 
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Since p/ρg = pressure head h then the total head is given by the following. 

 g2
uzh

g2
uzhh

2
2

22

2
1

11T ++=++=  

This is the head form of the equation in which each term is an energy head in metres. z is the 
potential or gravitational head and u2/2g is the kinetic or velocity head. 
 
For liquids the density is the same at both points so multiplying by ρg gives the pressure form. The 
total pressure is as follows. 

 2
ugzp

2
ugzpp

2
2

22

2
1

11T
ρ

+ρ+=
ρ

+ρ+=  

In real systems there is friction in the pipe and elsewhere. This produces heat that is absorbed by the 
liquid causing a rise in the internal energy and hence the temperature. In fact the temperature rise 
will be very small except in extreme cases because it takes a lot of energy to raise the temperature. 
If the pipe is long, the energy might be lost as heat transfer to the surroundings. Since the equations 
did not include internal energy, the balance is lost and we need to add an extra term to the right side 
of the equation to maintain the balance. This term is either the head lost to friction hL or the 
pressure loss pL. 

 L
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22
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The pressure form of the equation is as follows. 

 L

2
2

22

2
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11 p
2
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2
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ρ
+ρ+=

ρ
+ρ+  

The total energy of the fluid (excluding internal energy) is no longer constant. 
 
 
Note that if one of the points is a free surface the pressure is normally atmospheric but if gauge 
pressures are used, the pressure and pressure head becomes zero. Also, if the surface area is large 
(say a large tank), the velocity of the surface is small and when squared becomes negligible so the 
kinetic energy term is neglected (made zero). 
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 WORKED EXAMPLE No. 3.1 
 
 The diagram shows a pump delivering 

water through as pipe 30 mm bore to a 
tank. Find the pressure at point (1) when 
the flow rate is 1.4 dm3/s. The density 
of water is 1000 kg/m3. The loss of 
pressure due to friction is 50 kPa. 

 
Fig.3.2 

  
 SOLUTION 
 
 Area of bore   A =  π x 0.032/4 = 706.8 x 10-6 m2. 
 Flow rate   Q = 1.4 dm3/s = 0.0014 m3/s 
 Mean velocity in pipe = Q/A = 1.98 m/s 
 Apply Bernoulli between point (1) and the surface of the tank. 

  Lpugzpugzp +++=++
22

2
2

22

2
1

11
ρ

ρ
ρ

ρ  

 Make the low level the datum level and z1 = 0  and z2  = 25. 
 The pressure on the surface is zero gauge pressure. PL = 50 000 Pa 
  The velocity at (1) is 1.98 m/s and at the surface it is zero. 

 pressure gauge  293.29kPap      50000051000x9.9120
2

1000x1.980p 1

2

1 =+++=++  

 
 WORKED EXAMPLE 3.2 
 
 The diagram shows a tank that is drained by a 

horizontal pipe. Calculate the pressure head at point 
(2) when the valve is partly closed so that the flow 
rate is reduced to 20 dm3/s. The pressure loss is 
equal to 2 m head. 

 
 

      Fig.3.3 
  
 SOLUTION 
 
  Since point (1) is a free surface, h1 = 0 and u1 is assumed negligible. 
  The datum level is point (2) so z1 = 15 and z2 = 0. 
  Q = 0.02 m3/s 
  A2 = πd2/4 = π x (0.052)/4 = 1.963 x 10-3 m2. 
  u2 = Q/A = 0.02/1.963 x 10-3 = 10.18 m/s 
 
  Bernoulli’s equation in head form is as follows. 
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© D.J.Dunn www.freestudy.co.uk   6 

 
 WORKED EXAMPLE 3.3 
 
  
 The diagram shows a horizontal nozzle 

discharging into the atmosphere. The inlet has a 
bore area of 600 mm2 and the exit has a bore area 
of 200 mm2. Calculate the flow rate when the 
inlet pressure is 400 Pa. Assume there is no 
energy loss. 

       Fig. 3.4 
 SOLUTION 
 
 Apply Bernoulli between (1) and (2) 

 L
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2
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2
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 Using gauge pressure, p2 = 0 and being horizontal the potential terms cancel. The loss term is 
zero so the equation simplifies to the following. 
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 From the continuity equation we have 

 
Q 000 5

10 x 200
Q

A
Qu

666.7Q 1
10 x 600

Q
A
Qu

6-
2

2

6-
1

1

===

===

 

 Putting this into Bernoulli’s equation we have the following. 

 

( ) ( )

/scm 189.7or  /sm 10 x 7.189Q

 x1036
 x1011.11

400Q

Q x10.1111400

Q10 x 52.1Q x10389.1400
2

5000Q x1000
2

1666.7Q x1000400

336-

9
9

2

29

2929

22

=

==

=

=+

=+

−

 

 
3.1.4 HYDRAULIC GRADIENT 
 
Consider a tank draining into another tank 
at a lower level as shown. There are small 
vertical tubes at points along the length to 
indicate the pressure head (h). Relative to 
a datum, the total energy head is  
hT = h + z + u2/2g  
 
This is shown as line A. 
 
 
 
      Fig.3.5 
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The hydraulic grade line is the line joining the free surfaces in the tubes and represents the sum of h 
and z only. This is shown as line B and it is always below the line of hT by the velocity head u2/2g. 
Note that at exit from the pipe, the velocity head is not recovered but lost as friction as the emerging 
jet collides with the static liquid. The free surface of the tank does not rise. 
 
The only reason why the hydraulic grade line is not horizontal is because there is a frictional loss hf. 
The actual gradient of the line at any point is the rate of change with length i = δhf/δL 
 
 
 SELF ASSESSMENT EXERCISE 3.1 
 
1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe 

reduces to 60 mm bore diameter and rises 120 m in altitude. The pressure at this point is 
atmospheric (zero gauge). Assuming no frictional losses, determine: 

 
 i. The volume/s  (4.44 dm3/s) 
 ii. The velocity at each section (0.566 m/s and 1.57 m/s) 
 iii. The pressure at the lower end. (1.06 MPa) 
 
 
2.  A pipe 120 mm bore diameter carries water with a head of 3 m. The pipe descends 12 m in 

altitude and reduces to 80 mm bore diameter. The pressure head at this point is 13 m. The 
density is 1000 kg/m3. Assuming no losses, determine 

 
 i. The velocity in the small pipe (7 m/s) 
 ii. The volume flow rate. (35 dm3/s) 
 
3.  A horizontal nozzle reduces from 100 mm bore diameter at inlet to 50 mm at exit. It carries 

liquid of density 1000 kg/m3 at a rate of 0.05 m3/s. The pressure at the wide end is 500 kPa 
(gauge). Calculate the pressure at the narrow end neglecting friction. (196 kPa) 

 
 
4. A pipe carries oil of density 800 kg/m3. At a given point (1) the pipe has a bore area of 0.005 

m2 and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa. Point (2) 
is further along the pipe and there the bore area is 0.002 m2 and the level is 50 m above point 
(1). Calculate the pressure at this point (2). Neglect friction. (374 kPa) 

 
5. A horizontal nozzle has an inlet velocity u1 and an outlet velocity u2 and discharges into the 

atmosphere. Show that the velocity at exit is given by the following formulae. 
   u2 ={2∆p/ρ + u1

2}½  
 and  u2 ={2g∆h + u1

2}½ 
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3.2 LAMINAR  and TURBULENT FLOW 
 
The following work only applies to Newtonian fluids (chapter 2). 
 
3.2.1 LAMINAR FLOW 
 
A stream line is an imaginary line with no flow normal to it, only along it. When the flow is 
laminar, the streamlines are parallel and for flow between two parallel surfaces we may consider the 
flow as made up of parallel laminar layers. In a pipe these laminar layers are cylindrical and may be 
called stream tubes. In laminar flow, no mixing occurs between adjacent layers and it occurs at low 
average velocities. 
 
3.2.2 TURBULENT FLOW 
 
The shearing process causes energy loss and heating of the fluid. This increases with mean velocity. 
When a certain critical velocity is exceeded, the streamlines break up and mixing of the fluid 
occurs. The diagram illustrates Reynolds coloured ribbon experiment. Coloured dye is injected into 
a horizontal flow. When the flow is laminar the dye passes along without mixing with the water. 
When the speed of the flow is increased turbulence sets in and the dye mixes with the surrounding 
water. One explanation of this transition is that it is necessary to change the pressure loss into other 
forms of energy such as angular kinetic energy as indicated by small eddies in the flow.  

Fig.3.6 
 
 
3.2.3 LAMINAR AND TURBULENT BOUNDARY LAYERS 
 
In chapter 2 it was explained that a boundary layer is the layer in which the velocity grows from 
zero at the wall (no slip surface) to 99% of the maximum and the thickness of the layer is denoted δ. 
When the flow within the boundary layer becomes turbulent, the shape of the boundary layers 
waivers and when diagrams are drawn of turbulent boundary layers, the mean shape is usually 
shown. Comparing a laminar and turbulent boundary layer reveals that the turbulent layer is thinner 
than the laminar layer. 

Fig.3.7 
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3.2.4 CRITICAL VELOCITY - REYNOLDS NUMBER 
 
When a fluid flows in a pipe at a volumetric flow rate Q m3/s the average velocity is defined 

A
Qu m =   A is the cross sectional area. 

The Reynolds number is defined as 
ν

=
µ

ρ
=

DuDuR mm
e  

If you check the units of Re you will see that there are none and that it is a dimensionless number. 
You will learn more about such numbers in section ….?. 
 
Reynolds discovered that it was possible to predict the velocity or flow rate at which the transition 
from laminar to turbulent flow occurred for any Newtonian fluid in any pipe. He also discovered 
that the critical velocity at which it changed back again was different. He found that when the flow 
was gradually increased, the change from laminar to turbulent always occurred at a Reynolds 
number of 2500 and when the flow was gradually reduced it changed back again at a Reynolds 
number of 2000. Normally, 2000 is taken as the critical value. 
 
 WORKED EXAMPLE 3.4 
 
 Oil of density 860 kg/m3 has a kinematic viscosity of 40 cSt. Calculate the critical velocity when 

it flows in a pipe 50 mm bore diameter. 
 
 SOLUTION 
 

 
m/s 1.6

0.05
2000x40x10

D
νR

u

ν
DuR

6
e

m

m
e

===

=

−
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3.3 DERIVATION OF POISEUILLE'S EQUATION for LAMINAR FLOW 
 
Poiseuille did the original derivation shown below which relates pressure loss in a pipe to the 
velocity and viscosity for LAMINAR FLOW. His equation is the basis for measurement of 
viscosity hence his name has been used for the unit of viscosity. Consider a pipe with laminar flow 
in it. Consider a stream tube of length ∆L at radius r and thickness dr. 
 

 
Fig.3.8 

 

y is the distance from the pipe wall.   
dr
du

−=−=−=
dy
dudr     dyr       Ry  

The shear stress on the outside of the stream tube is τ. The force (Fs) acting from right to left is due 
to the shear stress and is found by multiplying τ by the surface area. 
 
Fs = τ x 2πr ∆L 

For a Newtonian fluid ,
dr
du

dy
du

µ−=µ=τ . Substituting for τ we get the following. 

dr
duLr2- Fs µ∆π=  

The pressure difference between the left end and the right end of the section is ∆p. The force due to 
this (Fp) is ∆p x circular area of radius r. 
 
Fp = ∆p x πr2 

rdr
∆Lµ  2

∆pdu

r  π∆p
dr
du∆Lµ r   π2-  have  weforces Equating 2

−=

=
 

In order to obtain the velocity of the streamline at any radius r we must integrate between the limits 
u = 0  when r = R and u = u when r = r. 

( )

( )22

22

r

R

u

0

rR
Lµ  4

∆pu

Rr
∆Lµ  4

∆pu

rdr
∆Lµ  2

∆p-du

−=

−−=

= ∫∫
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This is the equation of a Parabola so if the equation is plotted to show the boundary layer, it is seen 
to extend from zero at the edge to a maximum at the middle. 

  
Fig.3.9 

For maximum velocity put r = 0 and we get  
∆Lµ  4
R ∆pu

2

1 =  

The average height of a parabola is half the maximum value so the average velocity is  

 
∆Lµ  8
R ∆pu

2

m =  

Often we wish to calculate the pressure drop in terms of diameter D. Substitute R=D/2 and 
rearrange. 

    2
m

D
u ∆Lµ  32∆p =  

The volume flow rate is average velocity x cross sectional area. 
 

    
∆Lµ  128
∆pD π

∆Lµ  8
∆pR π

∆Lµ  8
R ∆pR πQ

4422
===   

This is often changed to give the pressure drop as a friction head. 
 

The friction head for a length L is found from hf =∆p/ρg   2
m

f gD ρ
u Lµ  32h =  

 
This is Poiseuille's equation that applies only to laminar flow. 
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 WORKED EXAMPLE 3.5 
 
 A capillary tube is 30 mm long and 1 mm bore. The head required to produce a flow rate of 8 

mm3/s is 30 mm. The fluid density is 800 kg/m3. 
 
 Calculate the dynamic and kinematic viscosity of the oil. 
 
 
 SOLUTION 
 
 Rearranging Poiseuille's equation we get  

 

cSt 30.11or   s/m10 x 11.30
800
0241.0

cP 24.1or  s/m N 0241.0
0.01018 x 0.03 x 32

0.001 x 9.81 x 800 x 0.03

mm/s 18.10
785.0
8

A
Qu

mm 785.0
4
1 x 

4
dA

Lu32
gDh

26-

2

m

2
22

m

2
f

==
ρ
µ

=ν

==µ

===

=
π

=
π

=

ρ
=µ

 

  
 
 
 WORKED EXAMPLE No.3.6 
 
 Oil flows in a pipe 100 mm bore with a Reynolds number of 250. The dynamic viscosity is 

0.018 Ns/m2. The density is 900 kg/m3. 
 
 Determine the pressure drop per metre length, the average velocity and the radius at which it 

occurs. 
 
 SOLUTION 
 
 Re=ρum D/µ. 
 
 Hence 
  um  = Re µ/ ρD 
  um = (250 x 0.018)/(900 x 0.1) = 0.05 m/s 
 
 ∆p =  32µL um /D2 
 ∆p = 32 x 0.018 x 1 x 0.05/0.12 
 ∆p= 2.88 Pascals. 
 
  u = {∆p/4Lµ}(R2 - r2)   which is made equal to the average velocity 0.05 m/s 
 
 0.05 = (2.88/4 x 1 x 0.018)(0.052 - r2) 
 
 r = 0.035 m or 35.3 mm. 
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 SELF ASSESSMENT EXERCISE 3.2 
 
1. Oil flows in a pipe 80 mm bore diameter with a mean velocity of 0.4 m/s. The density is 890 

kg/m3 and the viscosity is 0.075 Ns/m2.  
 
 Show that the flow is laminar and hence deduce the pressure loss per metre length. (150 Pa) 
 
2 Calculate the maximum velocity of water that can flow in laminar form in a pipe 20 m long and 

60 mm bore. Determine the pressure loss in this condition. The   density    is   1000   kg/m3 and 
the   dynamic   viscosity is   0.001 N s/m2.  (0.0333 m/s and 5.92 Pa) 

 
3. Oil flow in a pipe 100 mm bore diameter with a Reynolds Number of 500. The density is 800 

kg/m3. The dynamic viscosity µ = 0.08 Ns/m2. 
 
 Calculate the velocity of a streamline at a radius of 40 mm.    (0.36 m/s) 
 

2

2

dy
udµ

dx
dp

=− 4a 

 When a viscous fluid is subjected to an applied pressure it flows through a narrow horizontal 
passage as shown below.  By considering the forces acting on the fluid element and assuming 
steady fully developed laminar flow, show that the velocity distribution is given by 

b.  Using the above equation show that for flow between two flat parallel horizontal surfaces 
distance t apart the velocity at any point is given by the following formula. 

 
u = (1/2µ)(dp/dx)(y2 - ty) 

 
c. Carry on the derivation and show that the volume flow rate through a gap of height ‘t’ and 

width ‘B’ is given by 
µ

−=
12
t

dx
dpBQ

3

. 

d. Show that the mean velocity ‘um’ through the gap is given by 2
m t

dx
dp

12
1u
µ

−=  

 
5 The volumetric flow rate of glycerine between two flat parallel horizontal surfaces 1 mm apart 

and 10 cm wide is 2 cm3/s. Determine the following. 
 
 i. the applied pressure gradient dp/dx. (240 kPa per metre) 
 ii. the maximum velocity. (0.06 m/s)  
 
 For glycerine assume that µ= 1.0 Ns/m2 and the density is 1260 kg/m3. 
 

 
Fig.3.10 
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3.4 FRICTION COEFFICIENT 
 
The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a pipe. 
It is defined as follows. 

  
Pressure Dynamic

StressShear  WallCf =  

 
3.4.1 DYNAMIC PRESSURE 
 
Consider a fluid flowing with mean velocity um. If the kinetic energy of the fluid is converted into 
flow or fluid energy, the pressure would increase. The pressure rise due to this conversion is called 
the dynamic pressure. 
 
KE = ½ mum

2 
 
Flow Energy = p Q  Q is the volume flow rate and ρ = m/Q 
 
Equating   ½ mum

2 = p Q p = mu2/2Q   =  ½ ρ um
2 

 
3.4.2 WALL SHEAR STRESS     τo 
 
The wall shear stress is the shear stress in the layer of fluid next to the wall of the pipe. 

Fig.3.11 

The shear stress in the layer next to the wall is 
wall

o dy
duµτ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

The shear force resisting flow is πLDτF os =  

The resulting pressure drop produces a force of 
4

∆pπDF
2

p =   

Equating forces gives 
4L
∆p Dτo =   

 
3.4.3 FRICTION COEFFICIENT for LAMINAR FLOW 

  

2
m

f uL4
pD2

Pressure Dynamic
StressShear  WallC

ρ
∆

==  

From Poiseuille’s equation 2
m

D
Lu32p µ

=∆  Hence 
e

2
m

22
m

f R
16

Du
16

D
Lu32

uL4
D2C =

ρ
µ

=⎟
⎠
⎞

⎜
⎝
⎛ µ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

=   
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3.5 DARCY FORMULA  
 
This formula is mainly used for calculating the pressure loss in a pipe due to turbulent flow but it 
can be used for laminar flow also. 
 
Turbulent flow in pipes occurs when the Reynolds Number exceeds 2500 but this is not a clear 
point so 3000 is used to be sure. In order to calculate the frictional losses we use the concept of 
friction coefficient symbol Cf. This was defined as follows.  
 

2
m

f uL4
pD2

Pressure Dynamic
StressShear  WallC

ρ
∆

==  

Rearranging equation to make ∆p the subject  

  
D2

uLC4p
2
mf ρ

=∆  

This is often expressed as a friction head  hf 

  
gD2
LuC4

g
ph

2
mf

f =
ρ
∆

=  

This is the Darcy formula. In the case of laminar flow, Darcy's and Poiseuille's equations must give 
the same result so equating them gives 

  

em
f

2
m

2
mf

R
16

Du
16C

gD
Lu32

gD2
LuC4

=
ρ

µ
=

ρ
µ

=
   

This is the same result as before for laminar flow. 
 

3.5.1 FLUID RESISTANCE 
 
The above equations may be expressed in terms of flow rate Q by substituting u = Q/A 
 

2

2
f

2
mf

f gDA2
LQC4

gD2
LuC4h ==  Substituting A =πD2/4 we get the following. 

 
2

52

2
f

f RQ
Dg
LQC32h =

π
=   R is the fluid resistance or restriction. 52

f

D  πg
L C 32R =  

 
If we want pressure loss instead of head loss the equations are as follows. 
 

2
52

2
f

ff RQ
D
LQC32ghp =

π
ρ

=ρ=   R is the fluid resistance or restriction. 52
f

D π
LC ρ 32R =  

 
It should be noted that R contains the friction coefficient and this is a variable with velocity and 
surface roughness so R should be used with care. 
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3.5.2 MOODY DIAGRAM AND RELATIVE SURFACE ROUGHNESS 
 
In general the friction head is some function of um such that hf = φumn. Clearly for laminar flow, n 
=1 but for turbulent flow n is between 1 and 2 and its precise value depends upon the roughness of 
the pipe surface. Surface roughness promotes turbulence and the effect is shown in the following 
work. 
 
Relative surface roughness is defined as ε = k/D where k is the mean surface roughness and D the 
bore diameter.  
 
An American Engineer called Moody conducted exhaustive experiments and came up with the 
Moody Chart. The chart is a plot of Cf vertically against Re horizontally for various values of ε. In 
order to use this chart you must know two of the three co-ordinates in order to pick out the point on 
the chart and hence pick out the unknown third co-ordinate. For smooth pipes, (the bottom curve on 
the diagram), various formulae have been derived such as those by Blasius and Lee. 
 
 BLASIUS Cf = 0.0791 Re

0.25 
 
 LEE Cf = 0.0018 + 0.152 Re

0.35. 
 
The Moody diagram shows that the friction coefficient reduces with Reynolds number but at a 
certain point, it becomes constant. When this point is reached, the flow is said to be fully developed 
turbulent flow. This point occurs at lower Reynolds numbers for rough pipes. 
  
A formula that gives an approximate answer for any surface roughness is that given by Haaland. 
 

  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ε

+−=
11.1

e
10

f 71.3R
9.6log6.3

C
1  

  

 
Fig.3.12  CHART 
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 WORKED EXAMPLE 3.7 
 
 Determine the friction coefficient for a pipe 100 mm bore with a mean surface roughness of 

0.06 mm when a fluid flows through it with a Reynolds number of 20 000. 
 
 SOLUTION 
 
 The mean surface roughness ε = k/d = 0.06/100 = 0.0006 
 Locate the line for ε = k/d = 0.0006. 
 Trace the line until it meets  the  vertical line at  Re = 20 000. Read of the value of Cf  

horizontally on the left.  Answer Cf = 0.0067 
  
 Check using the formula from Haaland. 
 

 

0067.0C

206.12
C
1

71.3
0006.0

20000
9.6log6.3

C
1

71.3
0006.0

20000
9.6log6.3

C
1

71.3R
9.6log6.3

C
1

f

f

11.1

10
f

11.1

10
f

11.1

e
10

f

=

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ε

+−=

 

 
 
 WORKED EXAMPLE 3.8 
 
 Oil flows in a pipe 80 mm bore with a mean velocity of 4 m/s. The mean surface roughness is 

0.02 mm and the length is 60 m. The dynamic viscosity is 0.005 N s/m2 and the density is 900 
kg/m3.  Determine the pressure loss. 

 
 SOLUTION 
 
 Re = ρud/µ = (900 x 4 x 0.08)/0.005 = 57600 
 
 ε= k/d = 0.02/80 = 0.00025 
 
 From the chart Cf = 0.0052 
 
 hf = 4CfLu2/2dg =  (4 x 0.0052 x 60 x 42)/(2 x 9.81 x 0.08) = 12.72 m 
 
 ∆p = ρghf = 900 x 9.81 x 12.72 = 112.32 kPa. 
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 SELF ASSESSMENT EXERCISE 3.3 
 
1. A pipe is 25 km long and 80 mm bore diameter. The mean surface roughness is 0.03 mm.  It 

caries oil of density 825 kg/m3 at a rate of 10 kg/s.  The dynamic viscosity is 0.025 N s/m2. 
 
 Determine the friction coefficient using the Moody Chart and calculate the friction head. (Ans. 

3075 m.) 
 
 
 
2. Water flows in a pipe at 0.015 m3/s. The pipe is 50 mm bore diameter. The pressure drop is 13 

420 Pa   per   metre  length.    The   density    is   1000   kg/m3  and  the   dynamic   viscosity is   
0.001 N s/m2. 

 
 Determine the following. 
  i. The wall shear stress (167.75 Pa) 
  ii. The dynamic pressures (29180 Pa). 
  iii. The friction coefficient (0.00575) 
 iv. The mean surface roughness (0.0875 mm) 
 
3.  Explain briefly what is meant by fully developed laminar flow. The velocity u at any radius r in 

fully developed laminar flow through a straight horizontal pipe of internal radius ro is given by 
 

u = (1/4µ)(ro2 - r2)dp/dx 
 
 dp/dx is the pressure gradient in the direction of flow and  µ is the dynamic   viscosity. The 

wall skin friction coefficient is defined as Cf = 2τo/( ρum2). 
 
 Show that Cf= 16/Re where Re = ρumD/µ an ρ is the density, um is the mean velocity and τo is 

the wall shear stress. 
 
4. Oil with viscosity 2 x 10-2 Ns/m2 and density 850 kg/m3 is pumped along a straight horizontal 

pipe with a flow rate of 5 dm3/s. The static pressure difference between two tapping points 10 
m apart is 80 N/m2. Assuming laminar flow determine the following. 

 
  i. The pipe diameter. 
  ii. The Reynolds number. 
 
 Comment on the validity of the assumption that the flow is laminar. 
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3.6 MINOR LOSSES 
 
Minor losses occur in the following circumstances. 
 

i. Exit from a pipe into a tank. 
ii. Entry to a pipe from a tank. 
iii. Sudden enlargement in a pipe. 
iv. Sudden contraction in a pipe. 
v. Bends in a pipe. 
vi. Any other source of restriction such as pipe fittings and valves. 
 

Fig.3.13 
 
In general, minor losses are neglected when the pipe friction is large in comparison but for short 
pipe systems with bends, fittings and changes in section, the minor losses is the dominant factor. 
 
In general, the minor losses are expressed as a fraction of the kinetic head or dynamic pressure in 
the smaller pipe. 
 
Minor head loss = k u2/2g Minor pressure loss = ½ kρu2 
 
Values of k can be derived for standard cases but for items like elbows and valves in a pipeline, it is 
determined by experimental methods. 
 
Minor losses can also be expressed in terms of fluid resistance R as follows. 
 

2
42

2

2

22

L RQ
D

Q8k
A2

Qk
2

ukh =
π

===   Hence 42D
k8R

π
=  

 
2

42

2

L RQ
D

gQ8kp =
π
ρ

=  hence 42D
gk8R

π
ρ

=  

 
Before you go on to look at the derivations, you must first learn about the coefficients of 
contraction and velocity. 
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3.6.1 COEFFICIENT  OF CONTRACTION Cc 
 
The fluid approaches the entrance from all directions and the radial velocity causes the jet to 
contract just inside the pipe. The jet then spreads out to fill the pipe. The point where the jet is 
smallest is called the VENA CONTRACTA. 

 
Fig.3.14 

 
The coefficient of contraction Cc is defined as  Cc = Aj/Ao  
 
Aj is the cross sectional area of the jet and Ao is the c.s.a. of the pipe. For a round pipe this 
becomes   Cc = dj2/do2. 

 
3.6.2 COEFFICIENT OF VELOCITY Cv 
 
The coefficient of velocity is defined as  Cv = actual velocity/theoretical velocity 
 
In this instance it refers to the velocity at the vena-contracta but as you will see later on, it applies to 
other situations also. 
 
3.6.3 EXIT FROM A PIPE INTO A TANK. 
 
The liquid emerges from the pipe and collides with stationary liquid causing it to swirl about before 
finally coming to rest. All the kinetic energy is dissipated by friction. It follows that all the kinetic 
head is lost so k = 1.0 

Fig.3.15 
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3.6.4 ENTRY TO A PIPE FROM A TANK 
 
The value of k varies from 0.78 to 0.04 depending on the shape of the inlet. A good rounded inlet 
has a low value but the case shown is the worst. 

Fig.3.16 
 

3.6.5 SUDDEN ENLARGEMENT 
 
This is similar to a pipe discharging into a tank but this time it does not collide with static fluid but 
with slower moving fluid in the large pipe. The resulting loss coefficient is given by the following 
expression. 

   

22

2

11
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

d
dk  

Fig.3.17 
 
3.6.6 SUDDEN CONTRACTION 
 
This is similar to the entry to a pipe from a tank. The best case gives k = 0 and the worse case is for 
a sharp corner which gives k = 0.5. 

 
Fig.3.18 

3.6.7 BENDS AND FITTINGS 
 
The k value for bends depends upon the radius of the bend and the diameter of the pipe. The k value 
for bends and the other cases is on various data sheets. For fittings, the manufacturer usually gives 
the k value. Often instead of a k value, the loss is expressed as an equivalent length of straight pipe 
that is to be added to L in the Darcy formula. 
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WORKED EXAMPLE 3.9 
 
A tank of water empties by gravity through a horizontal pipe into another tank. There is a sudden 
enlargement in the pipe as shown. At a certain time, the difference in levels is 3 m. Each pipe is 2 m 
long and has a friction coefficient Cf = 0.005. The inlet loss constant is K = 0.3.  
 
Calculate the volume flow rate at this point. 

Fig.3.19 
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SOLUTION 
 
There are five different sources of pressure loss in the system and these may be expressed in terms 
of the fluid resistance as follows. 
 
The head loss is made up of five different parts. It is usual to express each as a fraction of the 
kinetic head as follows. 

Resistance pipe A  526
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BERNOULLI’S EQUATION 
 
Apply Bernoulli between the free surfaces (1) and (2) 

L

2
2

22

2
1

11 h
g2

uzh
g2

uzh +++=++  

On the free surface the velocities are small and about equal and the pressures are both atmospheric 
so the equation reduces to the following. 
 
z1 - z2 = hL = 3 3 = 1.101 x 106 Q2 
 
Q2 = 2.724 x 10-6 Q = 1.65 x 10-3 m3/s 
  
 
3.7 SIPHONS 
 
Liquid will siphon from a tank to a lower level even if the pipe 
connecting them rises above the level of both tanks as shown in the 
diagram. Calculation will reveal that the pressure at point (2) is 
lower than atmospheric pressure (a vacuum) and there is a limit to 
this pressure when the liquid starts to turn into vapour. For water 
about 8 metres is the practical limit that it can be sucked (8 m 
water head of vacuum). 

  Fig.3.20 
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 WORKED EXAMPLE 3.10 
 
 A tank of water empties by gravity through a siphon. The difference in levels is 3 m and the 

highest point of the siphon is 2 m above the top surface level and the length of pipe from inlet 
to the highest point is 2.5 m. The pipe has a bore of 25 mm and length 6 m.  The friction 
coefficient for the pipe is 0.007.The inlet loss coefficient K is 0.7. 

 
 Calculate the volume flow rate and the pressure at the highest point in the pipe. 
 
 SOLUTION 
 
 There are three different sources of pressure loss in the system and these may be expressed in 

terms of the fluid resistance as follows. 
 

 Pipe Resistance  526
2525

f
1 ms 10 x 1.422

π0.025 x g
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πgD
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π
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π
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 Total Resistance  RT = R1 + R2 + R3 = 1.458 x 106 s2 m-5 
 
 Apply Bernoulli between the free surfaces (1) and (3) 
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 Bore Area A=πD2/4 = π x 0.0252/4 = 490.87 x 10-6 m2 
 Velocity in Pipe  u = Q/A = 1.434  x 10-3/490.87 x 10-6  = 2.922 m/s 
 Apply Bernoulli between the free surfaces (1) and (2) 
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Calculate the losses between (1) and (2) 
 
Pipe friction Resistance is proportionally smaller by the length ratio. 
 
 R1 = (2.5/6) x1.422 x 106 = 0.593 x 106 
 
Entry Resistance  R2 = 15.1 x 103   as before 
 
Total resistance   RT = 608.1 x 103 
 
Head loss  hL = RT Q2  = 1.245m 
 
The pressure head at point (2) is hence h2 = -2.435 -1.245 = -3.68 m head  
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3.8 MOMENTUM and PRESSURE FORCES 
 
Changes in velocities mean changes in momentum and Newton's second law tells us that this is 
accompanied by a force such that 
 
 Force = rate of change of momentum. 
 
Pressure changes in the fluid must also be considered as these also produce a force. Translated into 
a form that helps us solve the force produced on devices such as those considered here, we use the 
equation      F = ∆(pA) + m ∆u. 
 
When dealing with devices that produce a change in direction, such as pipe bends, this has to be 
considered more carefully and this is covered in chapter 4. In the case of sudden changes in section, 
we may apply the formula 
 
F = (p1A1 + mu1)- (p2 A2 + mu2) point 1 is upstream and point 2 is downstream. 
 
 WORKED EXAMPLE 3.11 

 
 A pipe carrying water experiences a sudden reduction in area as shown. The area at point (1) is 

0.002 m2 and at point (2) it is 0.001 m2. The pressure at point (2) is 500 kPa and the velocity is 
8 m/s. The loss coefficient K is 0.4. The density of water is 1000 kg/m3. Calculate the 
following. 

 
i. The mass flow rate. 
ii. The pressure at point (1) 
iii. The force acting on the section. 

 
      Fig.3.21 

SOLUTION 
 
u1 = u2A2/A1 = (8 x 0.001)/0.002 = 4 m/s 
m = ρA1u1 = 1000 x 0.002 x 4 = 8 kg/s. 
Q = A1u1 = 0.002 x 4 = 0.008 m3/s 
Pressure loss at contraction = ½ ρku1

2 = ½ x 1000 x 0.4 x 42 = 3200 Pa 
Apply Bernoulli between (1) and (2) 
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F = (p1A1 + mu1)- (p2 A2 + mu2) 
 
F = [(527.2 x 103 x 0.002) + (8 x 4)] – [500 x 103 x 0.001) + (8 x 8)] 
 
F = 1054.4 +32 – 500 – 64 
 
F = 522.4 N 
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 SELF ASSESSMENT EXERCISE 3.4 
 
1. A pipe carries oil at a mean velocity of 6 m/s. The pipe is 5 km long and 1.5 m diameter. The 

surface roughness is 0.8 mm. The density is 890 kg/m3 and the dynamic viscosity is 0.014 N 
s/m2.  Determine the friction coefficient from the Moody chart and go on to calculate the 
friction head hf.   (Ans. Cf = 0.0045     hf = 110.1 m) 

 
2. The diagram shows a tank draining into another lower tank through a pipe. Note the velocity 

and pressure is both zero on the surface on a large tank.  Calculate the flow rate using the data 
given on the diagram. (Ans. 7.16 dm3/s) 

 
Fig.3.22 

 
3. Water flows through the sudden pipe expansion shown below at a flow rate of 3 dm3/s. 

Upstream of the expansion the pipe diameter is 25 mm and downstream the diameter is 40 mm. 
There are pressure tappings at section (1), about half a diameter upstream, and at section (2), 
about 5 diameters downstream. At section (1) the gauge pressure is 0.3 bar. 

 Evaluate the following. 
  (i) The gauge pressure at section (2)  (0.387 bar) 
  (ii) The total force exerted by the fluid on the expansion. (-23 N) 

 
Fig.3.23 

 
4. A domestic water supply consists of a large tank with a loss free-inlet to a 10 mm diameter pipe 

of length 20 m, that contains 9 right angles bends. The pipe discharges to atmosphere 8.0 m 
below the free surface level of the water in the tank. 

 
 Evaluate the flow rate of water assuming that there is a loss of 0.75 velocity heads in each bend 

and that friction in the pipe is given by the Blasius equation Cf=0.079(Re)-0.25 (0.118 dm3/s). 
 The dynamic viscosity is 0.89 x 10-3 and the density is 997 kg/m3. 
  
5. A tank of water empties by gravity through a siphon into a lower tank. The difference in levels 

is 6 m and the highest point of the siphon is 2 m above the top surface level. The length of pipe 
from the inlet to the highest point is 3 m. The pipe has a bore of 30 mm and length 11 m.  The 
friction coefficient for the pipe is 0.006.The inlet loss coefficient K is 0.6. 

 
 Calculate the volume flow rate and the pressure at the highest point in the pipe. 
 (Answers 2.378 dm3/s and –4.31 m) 
 



© D.J.Dunn www.freestudy.co.uk   27 

3.10.1 WATER HAMMER 
 
In this section, we will examine the causes of water hammer. The sudden acceleration or 
deceleration of fluids in pipes is accompanied by corresponding changes in pressure that can be 
extremely large. In the extreme, the pressure surge can split the pipe. The phenomenon is often 
accompanied by load hammer noises, hence the name. 
 
First, we must examine the Bulk Modulus (K) and the derivation of the acoustic velocity in an 
elastic fluid. 
 
3.10.1 BULK MODULUS ( K) 
 
Bulk modulus was discussed in Chapter 1 and defined as 
follows. 

 
V
pV

V
pV

strain Volumetric
pressurein  ChangeK

δ
δ

=
∆
∆

==  

 
V is volume and p is pressure. The following work shows 
how this may be changed to the form K = ρdp/dρ 
 
     Fig.3.24 

 
Consider a volume V1 that is compressed to volume V2 by a small increase in pressure δp.  The 
reduction in volume is δV. The initial density is ρ and this increases by δρ 
 
The mass of δV is  δm = ρ δV  .....................(3.10.1) 
The initial mass of V2 is m1 = ρ V2 .....................(3.10.2) 
The final mass of V2 is  m2 = (ρ + δρ) V2..............(3.10.3) 
  
The increase in mass is due to the mass of δV being compressed into the volume V2.  Hence 
(3.10.1) = (3.10.3) - (3.10.2) 
 
  ρ δV = (ρ + δρ) V2 - ρV2 = ρ V2+ δρ V2 - ρV2 

  ρ δV = δρ V2 = δρ (V1- δV) = V1δρ - δρ δV 
The product of two small quantities (δρ δV) is infinitesimally small so it may be ignored.  
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In the limit as δV → 0, we may revert to calculus notation. 
 
Hence  K = ρdp/dρ 
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3.10.2 SPEED OF SOUND IN AN ELASTIC MEDIUM 
 
Most students don’t need to know the derivation of the formula for the speed of sound but for those 
who are interested, here it is. 
 
Consider a pipe of cross sectional area A full of fluid. Suppose a piston is pushed into the end with 
a velocity u m/s. Due to the compressibility of the fluid, further along the pipe at distance L, the 
fluid is still stationary. It has taken t seconds to achieve this position. The velocity of the interface is 
hence a = L/t m/s. In the same time the piston has moved x metres so u = x/t. 

 
Fig. 3.25 

 
The moving fluid has been accelerated from rest to velocity a. The inertia force needed to do this is 
in the form of pressure so the moving fluid is at a higher pressure than the static fluid and the 
interface is hence a pressure wave travelling along the pipe at velocity a. 
 
The volume Ax has been compacted into the length L. The initial density of the fluid is ρ.  
The mass compacted into length L  is  dm = ρAx. 
substitute x = ut   dm = ρ A u t .........(3.10.4) 
The density of the compacted fluid has increased  by dρ so the mass in the length L  has increased 
by    dm = A L dρ 
 
Substitute L = at  dm = A a t dρ......(3.10.5) 
Equate (3.10. 4) and (3.10.5)  ρ A u t= A a t dρ 
    a = u ρ/dρ............(3.10.6) 
The force to accelerate the fluid from rest to a m/s is given by Newton's 2nd law 
   F = mass x acceleration = A dp 
   mass = ρAL acceleration = u/t 
   A dp = ρ A L u/t dp = ρ L u/t 
Substitute L = at then dp = ρ a u  a = (dp/uρ) ...................(3.10.7) 
 
The velocity of the pressure wave a is by definition the acoustic velocity. Multiplying (3.10.8) by 
(3.11.7) gives a2. 
 
Hence    a2=(uρ/dρ)(dp/uρ)  a = (dp/dρ)½ ............(3.10.9) 
 
Previously it was shown that K =ρ dp/dρ a =(K/ρ)½  
 
Students who have studied fundamental thermodynamics will understand the following extension of 
the theory to gases. The following section is not needed by those following the basic module. 
Two important gas constants are the adiabatic index γ and the characteristic gas constant R. For a 
gas, the pressure change is adiabatic and if dp is small then the adiabatic law applies.  
pVγ = Constant 
Dividing through by mγ we get p(V/m)γ = constant/mγ = constant p/ργ = C 
Differentiating we get  dp/dρ = C (γργ-1) dp/dρ = (p/ργ)(γργ-1)  dp/dρ = pγ/ρ 
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from (3.8) it follows that  a =(pγ/ρ)½  
 
from the gas law we have  pV = mRT 
    p = (m/V)RT 
    p = ρRT  
 
The velocity of a sound wave is that of a weak pressure wave. If the pressure change is large then 
dp/dρ is not a constant and the velocity would be that of a shock wave which is larger than the 
acoustic velocity. 
 
For air γ = 1.4 and R = 287 J/kg K. Hence at 20oC (293 K) the acoustic velocity in air is as follows. 
 
a = (γRT)1/2 = (1.4 x 287 x 293)½  =  343 m/s 
 
3.10.3 PRESSURE SURGES DUE TO  GRADUAL VALVE CLOSURE 
 
Consider a pipe line with a fluid flowing at a steady velocity of u m/s. A stop valve is gradually 
closed thus decelerating the fluid uniformly from u to zero in t seconds. 

 
Fig.3.26 

 
 Volume of fluid = AL Mass of fluid = ρAL Deceleration = u/t 
 Inertia force required F = mass x deceleration = ρAL u/t 
 
To provide this force the pressure of the fluid rises by ∆p and the force is A ∆p.  
 
Equating forces we have A ∆p = ρAL u/t ∆p = ρL u/t 
 
3.10.4 PRESSURE SURGES DUE TO  SUDDEN VALVE CLOSURE 
 
If the valve is closed suddenly then as t is very small the pressure rise is very large. In reality, a 
valve cannot close instantly but very rapid closure produces very large pressures. When this occurs, 
the compressibility of the fluid and the elasticity of the pipe is an important factor in reducing the 
rise in pressure. First, we will consider the pipe as rigid. 
 
When the fluid stops suddenly at the valve, the fluid further up the pipe is still moving and 
compacting into the static fluid. An interface between moving and static fluid (a shock wave) 
travels up the pipe at the acoustic velocity. This is given by the equation : 
 
  a= (K/ρ)½   K = Vdp/dV 
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If we assume that the change in volume is directly proportional to the change in pressure then we 
may change this to finite changes such that 
 
  K = V δp/δV  δV= Vδp/K 
 
The mean pressure rise is δp/2 
The strain energy stored by the compression =  δp δV/2 
The change in kinetic energy = ½ mu2 
 
Equating for energy conservation we get 
 
 Mu2/ = δp δV/2= (δp)V(δp)/2K  
 mu2 = V(δp) 2/K  
 mKu2/V = (δp) 2 
 (δp) 2 = (m/V)K u2 
 (δp) 2 = ρ K u2 
 δp = u(Kρ)½  
 
Since  a2 = K/ρ then K = a2ρ 
 δp = u(a2ρ2)½ 
Then δp = u a ρ 
 
For a large finite change, this becomes  ∆p = a u ρ 
 
 WORKED EXAMPLE 3.10 
 
 A pipe 500 m long carries water at 2 m/s. Calculate the pressure rise produced when  
 

a) the valve is closed uniformly in 5 seconds. 
b) when it is shut suddenly. 
 

 The density of water is 1000 kg/m3 and the bulk modulus is 4 GPa throughout. 
 
 SOLUTION 
 
 Uniform closure.  ∆p = ρ L u/t = 1000 x 500 x 2/5 = 200 kPa 
 
 Sudden closure  a = (K/ρ) ½ = (4 x 109/1000) ½ = 2 000 m/s  
   ∆p = a u ρ = 2000 x 2 x 1000 = 4 MPa 
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  SELF ASSESSMENT EXERCISE 3.5 
 
 The density of water is 1000 kg/m3 and the bulk modulus is 4 GPa throughout. 
 
1. A pipe 50 m long carries water at 1.5 m/s. Calculate the pressure rise produced when  
 
 a) the valve is closed uniformly in 3 seconds. (25 kPa) 
 
 b) when it is shut suddenly. (3 MPa) 
 
 
2. A pipe 2000 m long carries water at 0.8 m/s. A valve is closed. Calculate the pressure rise 

when 
 
 a) it is closed uniformly in 10 seconds. (160 kPa) 
 
 b) it is suddenly closed. (1.6 MPa) 
 
 
3.10.5 THE EFFECT OF ELASTICITY IN THE PIPE 
 
A pressure surge in an elastic pipe will cause the pipe to swell and some of the energy will be 
absorbed by straining the pipe wall. This reduces the rise in pressure. The more elastic the wall is, 
the less the pressure rise will be. Consider the case shown. 

 
Fig.3.27 

Kinetic Energy lost by fluid = ½ mu2  
The mass of fluid is ρAL so substituting  K.E. = ½ ρALu2 
 
Strain Energy of fluid  = ∆p2AL/2K   (from last 
section) 
 
Now consider the strain energy of the pipe wall. The 
strain energy of an elastic material with a direct stress 
σ is given by 
 
S.E. = (σ2/2E) x volume of material   Fig.3.28 
The pipe may be regarded as a thin cylinder and suitable references will show that stress stretching 
it around the circumference is given by the following formula. 
      σ = ∆pD/2t    

Volume of metal = πDtL Hence ( )
2tE
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Equating KE lost to the total S.E. gained yields 
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The solution is usually given in terms of the effective bulk modulus K' which is defined as follows. 
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The pressure rise is then given by ∆p = u[ρ/K']½  
 
The acoustic velocity in an elastic pipe becomes a' and is given as a' = (K'/ρ)½  
 
Hence ∆p = ρ u a' 
 
 WORKED EXAMPLE 3.11 
  
 A steel pipe carries water at 2 m/s. The pipe is 0.8 m bore diameter and has a wall 5 mm thick. 

Calculate the pressure rise produced when the flow is suddenly interrupted. The density of 
water is 1000 kg/m3 and the bulk modulus is 4 GPa. The modulus of elasticity for steel E is 
200 Gpa. 

 
 SOLUTION 
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 Sudden closure 
 a' = (K'/ρ) ½ = (952.4 x 106/1000) ½ = 976 m/s  
 ∆p = a' u ρ = 976 x 2 x 1000 = 1.95 MPa 
 
3.10.6 DAMPING OUT PRESSURE SURGES 
 
Pressure surges or water hammer occurs whenever there is a change in flow rate.  There are many 
causes for this besides the opening and closing of valves. Changes in pump speeds may cause the 
same effect. Piston pumps in particular cause rapid acceleration and deceleration of the fluid. In 
power hydraulics, changes in the velocity of the ram cause the same effect. The problem occurs 
both on large scale plant such as hydroelectric pipelines and on small plant such as power hydraulic 
systems. The principles behind reduction of the pressure surges are the same for each, only the scale 
of the equipment is different. 
 
For example, on power hydraulic systems, 
accumulators are used. These are vessels 
filled with both liquid and gas. On piston 
pumps, air vessels attached to the pipe are 
used. In both cases, a sudden rise in 
pressure produces compression of the gas 
that absorbs the strain energy and then 
releases it as the pressure passes. 

 
       Fig.3.29 
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On hydroelectric schemes or large pumped systems, a surge tank is used. This is an elevated 
reservoir attached as close to the equipment needing protection as possible. When the valve is 
closed, the large quantity of water in the main system is diverted upwards into the surge tank. The 
pressure surge is converted into a raised level and hence potential energy. The level drops again as 
the surge passes and an oscillatory trend sets in with the water level rising and falling. A damping 
orifice in the pipe to the surge tank will help to dissipate the energy as friction and the oscillation 
dies away quickly. 

 
Fig.3.30 

 
 
 SELF ASSESSMENT EXERCISE 3.6 
 
 The density of water is 1000 kg/m3 and the bulk modulus is 4 GPa throughout. The modulus of 

elasticity for steel E is 200 GPa. 
 
 
1. A steel pipeline from a reservoir to a treatment works is 1 m bore diameter and has a wall 10 

mm thick. It carries water with a mean velocity of 1.5 m/s. Calculate the pressure rise produced 
when the flow is suddenly interrupted. (1.732 MPa) 

 
 
2. On a hydroelectric scheme, water from a high lake is brought down a vertical tunnel to a depth 

of 600 m and then connects to the turbine house by a horizontal high-pressure tunnel lined with 
concrete. The flow rate is 5 m3/s and the tunnel is 4 m diameter. 

 
 (i) Calculate the static pressure in the tunnel under normal operating conditions.(5.9 MPa) 
 
 (ii) Explain the dangers to the high-pressure tunnel when the turbines are suddenly stopped. 
 
 (iii) Assuming the tunnel wall is rigid, calculate the maximum pressure experienced in the 
   high-pressure tunnel when flow is suddenly stopped. (6.7 MPa) 
 
 (iv) Explain the safety features that are used in such situations to protect the tunnel.  
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EDEXCEL HIGHER 
 

FLUID MECHANICS H1 UNIT 8 
 

NQF LEVEL 4 
 

OUTCOME 3 - THE FLOW OF REAL FLUIDS 
 

TUTORIAL 4 - DRAG 
 
 

3 Flow of real fluids  

Head losses: head loss in pipes by Darcy’s formula; Moody diagram; head loss due to sudden 
enlargement and contraction of pipe diameter; head loss at entrance to a pipe; head loss in valves; 
flow between reservoirs due to gravity; hydraulic gradient; siphons; hammer blow in pipes  

Reynolds’ number: inertia and viscous resistance forces; laminar and turbulent flow; critical 
velocities  

 

Viscous drag: dynamic pressure; form drag; skin friction drag; drag coefficient  

 

Dimensional analysis: checking validity of equations such as those for pressure at depth; thrust on 
immersed surfaces and impact of a jet; forecasting the form of possible equations such as those for 
Darcy’s formula and critical velocity in pipes 

  

 
 

This tutorial carries on from tutorial 3 and deals with how real fluids flow around 
bodies. When you have completed this tutorial you should be able to Explain how 
fluids exert a drag force on a body. 



 
1. DRAG
 
When a fluid flows around the outside of a body, it produces a force that tends to drag the body in 
the direction of the flow. The drag acting on a moving object such as a ship or an aeroplane must be 
overcome by the propulsion system. Drag takes two forms, skin friction drag and form drag. 
 
1.1 SKIN FRICTION DRAG 

 
Skin friction drag is due to the viscous shearing that takes place between the surface and the layer of 
fluid immediately above it. This occurs on surfaces of objects that are long in the direction of flow 
compared to their height. Such bodies are called STREAMLINED. When a fluid flows over a solid 
surface, the layer next to the surface may become attached 
to it (it wets the surface). This is called the ‘no slip 
condition’. The layers of fluid above the surface are 
moving so there must be shearing taking place between the 
layers of the fluid. The shear stress acting between the wall 
and the first moving layer next to it is called the wall shear 
stress and denoted τw. 
 
The result is that the velocity of the fluid grows from zero 
at the surface to a maximum uo at some distance δ above it. 
This layer is called the BOUNDARY LAYER and δ is the 
boundary layer thickness. Fig. 1 Shows how the velocity 
"u" varies with height "y" for a typical boundary layer. 
       Fig. 1 

 
In a pipe, this is the only form of drag and it results in a pressure and energy lost along the length. A 
thin flat plate is an example of a streamlined object. Consider a stream of fluid flowing with a 
uniform velocity uo. When the stream is interrupted by the plate (fig. 2), the boundary layer forms 
on both sides. The diagram shows what happens on one side only. 
 

 
Fig. 2 

 
The boundary layer thickness δ grows with distance from the leading edge. At some distance from 
the leading edge, it reaches a constant thickness. It is then called a FULLY DEVELOPED 
BOUNDARY LAYER. 

The Reynolds number for these cases is defined as:  
µ

xρu)(R o
xe =  

x is the distance from the leading edge. At low Reynolds numbers, the boundary layer may be 
laminar throughout the entire thickness. At higher Reynolds numbers, it is turbulent. This means 
that at some distance from the leading edge the flow within the boundary layer becomes turbulent.  
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A turbulent boundary layer is very unsteady and the streamlines do not remain parallel. The 
boundary layer shape represents an average of the velocity at any height. There is a region between 
the laminar and turbulent section where transition takes place 
  
The turbulent boundary layer exists on top of a thin laminar layer called the LAMINAR SUB 
LAYER. The velocity gradient within this layer is linear as shown. A deeper analysis would reveal 
that for long surfaces, the boundary layer is turbulent over most of the length. Many equations have 
been developed to describe the shape of the laminar and turbulent boundary layers and these may be 
used to estimate the skin friction drag. 
 
Note that for this ideal example, it is assumed that the velocity is the undisturbed velocity uo 
everywhere outside the boundary layer and that there is no acceleration and hence no change in the 
static pressure acting on the surface. There is hence no drag force due to pressure changes. 
 
CALCULATING SKIN DRAG 
 
The skin drag is due to the wall shear stress τw and this acts on the surface area (wetted area).  
The drag force is hence: R = τw x wetted area. The dynamic pressure is the pressure resulting from 
the conversion of the kinetic energy of the stream into pressure and is defined by the expression 

2
ρu2

o .The drag coefficient is defined as  

  
 ρu

2τ
area  x wettedρu

2R
area d   x wettepressure dynamic

force DragC 2
0

w
2
0

Df ===  

 
Note that this is the same definition for the pipe friction coefficient Cf and it is in fact the same 
thing. It is used in the Darcy formula to calculate the pressure lost in pipes due to friction. For a 
smooth surface, it can be shown that CDf = 0.074 (Re)x

-1/5  

(Re)l  is the Reynolds number based on the length.  
µ

Lρu)(R o
xe =  

 
 WORKED EXAMPLE No.1 
 
 Calculate the drag force on each side of a thin smooth plate 2 m long and 1 m wide with the 

length parallel to a flow of fluid moving at 30 m/s. The density of the fluid is 800 kg/m3 and the 
dynamic viscosity is 8 cP. 

 
 SOLUTION 

N 2347.2  1 x 2 x 1173.6  Area  x Wetted τ R
Pa 1173.6 10 x 360 x 0.00326  pressure dynamic x C  τ

kPa 360 
2

30 x 800  
2
ρu  pressure Dynamic

0.00326  ) x10(6 x 0.074 C

10 x 6 
0.008

2 x 30  x 800 
µ

Lρu)(R

w

3
Dfw

22
0

5
1

6
Df

6o
xe

===
===

===

==

===

−
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On a small area the drag is dR = τw dA. If the body is not a thin plate and has an area inclined at an 
angle θ to the flow direction, the drag force in the direction of flow is τw dA cosθ. 

Fig.3 
 
The drag force acting on the entire surface area is found by integrating over the entire area. 

∫ θτ= dA cosR w  

Solving this equation requires more advanced studies concerning the boundary layer and students 
should refer to the classic textbooks on this subject. 
 
 
 SELF ASSESSMENT EXERCISE No.1 
 
1. A smooth thin plate 5 m long and 1 m wide is placed in an air stream moving at 3 m/s with its 

length parallel with the flow. Calculate the drag force on each side of the plate. The density of 
the air is 1.2 kg/m3 and the kinematic viscosity is 1.6 x 10-5 m2/s. (0.128 N) 

 
2. A pipe bore diameter D and length L has fully developed laminar flow throughout the entire 

length with a centre line velocity uo. Given that the drag coefficient is given as CDf = 16/Re 

where 
µ

ρ
=

Du
Re o , show that the drag force on the inside of the pipe is given as R=8πµuoL and 

hence the pressure loss in the pipe due to skin friction is pL = 32µuoL/D2 
 
 
 

© D.J.DUNN freestudy.co.uk 4 

1.2 FORM DRAG and WAKES
 
Form or pressure drag applies to bodies 
that are tall in comparison to the length in 
the direction of flow. Such bodies are 
called BLUFF BODIES. 
 
Consider the case below that could for 
example, be the pier of a bridge in a river. 
The water speeds up around the leading 
edges and the boundary layer quickly 
breaks away from the surface. Water is 
sucked in from behind the pier in the 
opposite direction.     Fig. 4 
 
The total effect is to produce eddy currents or whirl pools that are shed in the wake. There is a build 
up of positive pressure on the front and a negative pressure at the back. The pressure force resulting 
is the form drag. When the breakaway or separation point is at the front corner, the drag is almost 
entirely due to this effect but if the separation point moves along the side towards the back, then a 
boundary layer forms and skin friction drag is also produced. In reality, the drag is always a 
combination of skin friction and form drag. The degree of each depends upon the shape of the body. 
 



The next diagram typifies what happens 
when fluid flows around a bluff object. 
The fluid speeds up around the front 
edge. Remember that the closer the 
streamlines, the faster the velocity. The 
line representing the maximum velocity 
is shown but also remember that this is 
the maximum at any point and this 
maximum value also increases as the 
stream lines get closer together.  
     Fig. 5 
 
Two important effects affect the drag. 
  
Outside the boundary layer, the velocity increases up to point 2 so the pressure acting on the 
surface goes down. The boundary layer thickness δ gets smaller until at point S it is reduced to zero 
and the flow separates from the surface. At point 3, the pressure is negative. This change in 
pressure is responsible for the form drag. 
 
Inside the boundary layer, the velocity is reduced from umax to zero and skin friction drag results. 

 
Fig. 6 

 
In problems involving liquids with a free surface, a negative pressure shows up as a drop in level 
and the pressure build up on the front shows as a rise in level. If the object is totally immersed, the 
pressure on the front rises and a vacuum is formed at the back. This results in a pressure force 
opposing movement (form drag). The swirling flow forms vortices and the wake is an area of great 
turbulence behind the object that takes some distance to settle down and revert to the normal flow 
condition. 
 
Here is an outline of the mathematical approach needed to solve the form drag. 
 
Form drag is due to pressure changes only. The drag coefficient due to pressure only is denoted CDp 
and defined as 

    
area projected x ρu

2R
area projected   x pressure dynamic

force DragC 2
0

Dp ==  

 
The projected area is the area of the outline of the shape projected at right angles to the flow. The 
pressure acting at any point on the surface is p. The force exerted by the pressure on a small surface 
area is p dA. If the surface is inclined at an angle θ to the general direction of flow, the force is p 
cosθ dA. The total force is found by integrating all over the surface. 

∫= dA pcosθR  
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The pressure distribution over the surface is often expressed in the form of a pressure coefficient 
defined as follows. 

   2
o

o
p ρu

)p - 2(pC =  

po is the static pressure of the undisturbed fluid, uo is the velocity of the undisturbed fluid and 

2
ρu2

o is the dynamic pressure of the stream. 

Consider any streamline that is affected by the surface. Applying Bernoulli between an undisturbed 
point and another point on the surface, we have the following. 

2
o

2

2
o

22
o

2
o

22
o

2
o

o
p

22
oo

22
o

o

u
u1

u
)u - (u

ρu

)u - (u
2
ρ2

ρu
)p - 2(pC

)u - (u
2
ρ  p - p           

2
ρu  p  

2
ρu  p

−==
⎟
⎠
⎞

⎜
⎝
⎛

==

=+=+

 

In order to calculate the drag force, further knowledge about the velocity distribution over the object 
would be needed and students are again recommended to study the classic textbooks on this subject. 
The equation shows that if u<uo then the pressure is positive and if u>uo the pressure is negative. 
  
1.3 TOTAL DRAG  
 
It has been explained that a body usually experiences both skin friction drag and form drag. The 
total drag is the sum of both. This applies to aeroplanes and ships as well as bluff objects such as 
cylinders and spheres. The drag force on a body is very hard to predict by purely theoretical 
methods. Much of the data about drag forces is based on experimental data and the concept of a 
drag coefficient is widely used.  
The DRAG COEFFICIENT is denoted CD and is defined by the following expression. 

Area projected x ρu
2R

Area projected x pressure Dynamic
force ResistanceC 2

o
D ==

 
 

WORKED EXAMPLE No.2 
 
A cylinder 80 mm diameter and 200 mm long is placed in a stream of fluid moving at 0.5 m/s. The 
axis of the cylinder is normal to the direction of flow. The density of the fluid is 800 kg/m3. The 
drag force is measured and found to be 30 N.  
Calculate the drag coefficient. 
At a point on the surface, the pressure is measured as 96 Pa above ambient.  
Calculate the velocity at this point. 
 
SOLUTION 
Projected area = 0.08 x 0.2 = 0.016 m2

R = 30 N, uo = 0.5 m/s  ρ = 800 kg/m3  
Dynamic pressure = ρu2/2 = 800 x 0.52/2 = 100 Pa 
 

18.75
0.016 x 100

30 
Area projected x pressure Dynamic

force ResistanceCD ===
 

 

m/s1.0u                     0.01u               u - 0.25 0.24

)u (0.5  
800

2 x 96         )u (0.5
2

800  96         )u - (u
2
ρ  p - p

22

222222
oo

===

−=−==
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1.4 APPLICATION TO A CYLINDER
 

The drag coefficient is defined as :   
Area projected x ρu

2RC 2
o

D = The projected Area is LD where L 

is the length and D the diameter. The drag around long cylinders is more predictable than for short 
cylinders and the following applies to long cylinders. Much research has been carried out into the 

relationship between drag and Reynolds number. 
µ

dρuRe o= and d is the diameter of the cylinder. 

At very small velocities, (Re <0.5) the fluid sticks to the cylinder all the way round and never 
separates from the cylinder. This produces a streamline pattern similar to that of an ideal fluid. The 
drag coefficient is at its highest and is mainly due to skin friction. The pressure distribution shows 
that the dynamic pressure is achieved at the front stagnation point and vacuum equal to three 
dynamic pressures exists at the top and bottom where the velocity is at its greatest. 

 
Fig. 7 

 
As the velocity increases the boundary layer breaks away and eddies are formed behind. The drag 
becomes increasingly due to the pressure build up at the front and pressure drop at the back. 
 

Fig. 8 
 
Further increases in the velocity cause the eddies to elongate and the drag coefficient becomes 
nearly constant. The pressure distribution shows that ambient pressure exists at the rear of the 
cylinder. 

 
Fig. 9 
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At a Reynolds number of around 90 the vortices break away alternatively from the top and bottom 
of the cylinder producing a vortex street in the wake. The pressure distribution shows a vacuum at 
the rear. 

 
Fig.10 

 
Up to a Reynolds number of about 2 x 105, the drag coefficient is constant with a value of 
approximately 1. The drag is now almost entirely due to pressure. Up to this velocity, the boundary 
layer has remained laminar but at higher velocities, flow within the boundary layer becomes 
turbulent. The point of separation moves back producing a narrow wake and a pronounced drop in 
the drag coefficient. 
 
When the wake contains vortices shed alternately from the top and bottom, they produce alternating 
forces on the structure. If the structure resonates with the frequency of the vortex shedding, it may 
oscillate and produce catastrophic damage. This is a problem with tall chimneys and suspension 
bridges. The vortex shedding may produce audible sound. 
 
Fig. 12 shows an approximate relationship between CD and Re for a cylinder and a sphere. 
  
 
 SELF ASSESSMENT EXERCISE No.2 
 
1. Calculate the drag force for a cylindrical chimney 0.9 m diameter and 50 m tall in a wind 

blowing at 30 m/s given that the drag coefficient is 0.8. The density of the air is 1.2 kg/m3. 
(19.44 N) 

 
2. Using the graph (fig.12) to find the drag coefficient, determine the drag force per metre length 

acting on an overhead power line 30 mm diameter when the wind blows at 8 m/s. The density 
of air may be taken as 1.25 kg/m3 and the kinematic viscosity as 1.5 x 10-5 m2/s. (1.8 N). 

 
 
1.5 APPLICATION TO SPHERES 
 
The relationship between drag and Reynolds number is roughly the same as for a cylinder but it is 

more predictable. The Reynolds number is 
µ

ρ
=

du
Re o  where d is the diameter of the sphere. The 

projected area of a sphere of diameter d is ¼ πd2. In this case, the expression for the drag coefficient 

is as follows. 22D d x ρu
8RC
π

=
.
 

 At very small Reynolds numbers (less than 0.2) the flow stays attached to the sphere all the way 
around and this is called Stokes flow. The drag is at its highest in this region. 
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As the velocity increases, the boundary 
layer separates at the rear stagnation point 
and moves forward. A toroidal vortex is 
formed. For 0.2<Re<500 the flow is called 
Allen flow.  

 
Fig.11 

 
 
 
 
 

The breakaway or separation point reaches a stable position approximately 80o from the front 
stagnation point and this happens when Re is about 1000. For 500<Re the flow is called Newton 
flow. The drag coefficient remains constant at about 0.4. Depending on various factors, when Re 
reaches 105 or larger, the boundary layer becomes totally turbulent and the separation point moves 
back again forming a smaller wake and a sudden drop in the drag coefficient to about 0.3. An 
empirical formula that covers the range 0.2 < Re < 105 is as follows. 

0.4
R1

6
R
24C

ee
D +

+
+=

 
Fig. 12 shows this approximate relationship between CD and Re. 

Fig.12 

 
 WORKED EXAMPLE No.3 
 A sphere diameter 40 mm moves through a fluid of density 750 kg/m3 and dynamic viscosity 50 

cP with a velocity of 0.6 m/s. Note 1 cP = 0.001 Ns/m2. 
 Calculate the drag on the sphere. 
 Use the graph to obtain the drag coefficient. 
 SOLUTION 

N 0.136  
2

 10 x 1.2566x 0.6 x 750 x 0.8 
2

A ρuC  R

m10 x 1.2566  
4

0.04  π
4

d π area Projected          
Area projected x ρu

2RC

0.8Cgraph   thefrom

360 
0.05

0.04 x 0.6 x 750
µ
ρudRe

3-22
D

23-
22

2D

D

===

====

=

===
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1.6 TERMINAL VELOCITY
 
When a body falls under the action of gravity, a point is reached, where the drag force is equal and 
opposite to the force of gravity. When this condition is reached, the body stops accelerating and the 
terminal velocity reached. Small particles settling in a liquid are usually modelled as small spheres 
and the preceding work may be used to calculate the terminal velocity of small bodies settling in a 
liquid. A good application of this is the falling sphere viscometer described in chapter one. 
 
For a body immersed in a liquid, the buoyant weight is W and this is equal to the viscous resistance 
R when the terminal velocity is reached. 

R = W = volume x gravity x density difference ( )
6

gd fs
3 ρ−ρπ

=  

ρs = density of the sphere material 
ρf = density of fluid 
d =  sphere diameter 
 
STOKES’ FLOW
 
For Re<0.2 the flow is called Stokes flow and Stokes showed that R = 3πdµut
For a falling sphere viscometer, Stokes flow applies. Equating the drag force and the buoyant 
weight we get 

( )

( )
t

fs
2

fs
3

t

18u
ρρgdµ

6
ρρgπd3ππdµ

−
=

−
=

 

The terminal velocity for Stokes flow is ( )
18µ

ρρgdu fs
2

t
−

=  

This formula assumes a fluid of infinite width but in a falling sphere viscometer, the liquid is 
squeezed between the sphere and the tube walls and additional viscous resistance is produced. The 
Faxen correction factor F is used to correct the result. 
  
 
 WORKED EXAMPLE No.4 
 
 The terminal velocity of a steel sphere falling in a liquid is 0.03 m/s. The sphere is 1 mm 

diameter and the density of the steel is 7830 kg/m3. The density of the liquid is 800 kg/m3. 
Calculate the dynamic and kinematic viscosity of the liquid. 

 
 SOLUTION 
 
 Assuming Stokes’ flow the viscosity is found from the following equation. 

 

( )

cSt 159.6  /sm 0.0001596
800

0.1277
ρ
µν

cP 127.7Ns/m 0.1277 
0.03 x 18

800) - (7830 x 9.81 x  0.001
18u

ρρgdµ

2

s

2
2

t

fs
2

====

===
−

=
 

 Check the Reynolds number. 0.188 
0.0547

0.001 x 0.03 x 800
µ
udρR f

e ===  

 As this is smaller than 0.2 the assumption of Stokes’ flow is correct. 
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ALLEN FLOW
 

For 0.2 < Re < 500 the flow is called Allen flow and the following expression gives the empirical 
relationship between drag and Reynolds number. CD=18.5Re

-0.6

 

Equating for CD gives the following result. 0.6
e22

tf
D 18.5R

  π uρ
8RC −==  

Substitute ( )
6

ρρgπdR fs
3 −

=
 

 

( )

( ) 0.6
tf

2
tf

fs

0.6
tf0.6

e2
tf

fs
D

µ
duρ18.5

u6ρ
ρρ8dg

µ
duρ18.518.5R

u6ρ
ρρ8dgC

−

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

−
=

 

From this equation the velocity ut may be found. 
 
NEWTON FLOW 
 
For 500 < Re < 105 CD takes on a constant value of 0.44. 
 

Equating for CD gives the following. 0.44
  π uρ

8RC 22
tf

D ==  

Substitute ( )
6

ρρgπdR fs
3 −

=  

( ) ( )
f

fs
t2

tf

fs

ρ
ρρ29.73dgu                   0.44

u6ρ
ρρ8dg −

==
−

 
When solving the terminal velocity, you should always check the value of the Reynolds number to 
see if the criterion used is valid. 
 
 
 WORKED EXAMPLE No.5 
 
 Small glass spheres are suspended in an up wards flow of water moving with a mean velocity of 

1 m/s. Calculate the diameter of the spheres. The density of glass is 2630 kg/m3. The density of 
water is 1000 kg/m3 and the dynamic viscosity is 1 cP. 

 
 SOLUTION 
 
 First, try the Newton flow equation. This is the easiest. 

 

( )

( ) ( ) mm 2.1or    m 0.0021 
1000 - 2630 x 9.81 x 29.73

1000 x 1
ρρg 29.73

ρud

ρ
ρρg 29.73du

2

fs

f
2
t

f

fs
t

==
−

=

−
=

 

 Check the Reynolds number. 

 2103 
0.001

0.0021 x 1 x 1000
µ

duρR tf
e ===  

 The assumption of Newton flow was correct so the answer is valid. 
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 WORKED EXAMPLE No.6 
 
 Repeat the last question but this time with a velocity of 0.05 m/s. Determine the type of flow 

that exists. 
 
 SOLUTION 

 If no assumptions are made, we should use the general formula 0.4
R1

6
R
24C

ee
D +

+
+=  

 

0.4
223.6d1

60.00048dC

0.4
50000d1
6

50000d
240.4

R1
6

R
24C

000d 50 
0.001

d x 0.05 x 1000
µ

duρR

0.5
1

D

ee
D

tf
e

+
+

+=

+
+

+=+
+

+=

===

−

 

 

 

( )

0.4
223.6d1

60.00048d  8528.16d

8528.16d 
0.05 x 1000 x 6

1000)- (2630 x 9.81 x 8d
u6ρ
ρρ8dgC

0.5
1

22
f

fs
D

+
+

+=

==
−

=

−

 

 This should be solved by any method known to you such as plotting two functions and finding 
the point of interception.  

 

 0.4
223.6d1

60.00048d  f2(d)

8528.16d  f1(d)

0.5
1 +

+
+=

=

−  

 The graph below gives an answer of d = 0.35 mm. 
 

 
Fig. 13 

 

Checking the Reynolds’ number  17.5 
0.001

0.00035 x 0.05 x 1000
µ

duρR tf
e ===  

This puts the flow in the Allen's flow section. 
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  SELF ASSESSMENT EXERCISE No.3 
 
1. a. Explain the term Stokes flow and terminal velocity. 
 
b. Show that the terminal velocity of a spherical particle with Stokes flow is given by the formula

 u = d2g(ρs - ρf)/18µ 
 
 Go on to show that CD=24/Re 
 
2. Calculate the largest diameter sphere that can be lifted upwards by a vertical flow of water 

moving at 1 m/s. The sphere is made of glass with a density of 2630 kg/m3. The water has a 
density of 998 kg/m3 and a dynamic viscosity of 1 cP. (20.7 mm) 

 
3. Using the same data for the sphere and water as in Q2, calculate the diameter of the largest 

sphere that can be lifted upwards by a vertical flow of water moving at 0.5 m/s. (5.95 mm). 
 
4. Using the graph (fig. 12) to obtain the drag coefficient of a sphere, determine the drag on a 

totally immersed sphere 0.2 m diameter moving at 0.3 m/s in sea water. The density of the 
water is 1025 kg/m3 and the dynamic viscosity is 1.05 x 10-3 Ns/m2. (0.639 N). 

   
5. A glass sphere of diameter 1.5 mm and density 2 500 kg/m3 is allowed to fall through water 

under the action of gravity. The density of the water is 1000 kg/m3 and  the dynamic viscosity is 
1 cP. 

 
 Calculate the terminal velocity assuming the drag coefficient is 
 CD = 24 Re -1 (1+ 0.15Re 0.687)  (Ans. 0.215 m/s 
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EDEXCEL HIGHER 
 

FLUID MECHANICS H1 UNIT 8 
 

NQF LEVEL 4 
 

OUTCOME 3 - THE FLOW OF REAL FLUIDS 
 

TUTORIAL 5 – DIMENSIONAL ANALYSIS 
 
 

3 Flow of real fluids  

Head losses: head loss in pipes by Darcy’s formula; Moody diagram; head loss due to sudden 
enlargement and contraction of pipe diameter; head loss at entrance to a pipe; head loss in valves; 
flow between reservoirs due to gravity; hydraulic gradient; siphons; hammer blow in pipes  

Reynolds’ number: inertia and viscous resistance forces; laminar and turbulent flow; critical 
velocities  

 

Viscous drag: dynamic pressure; form drag; skin friction drag; drag coefficient  

 

Dimensional analysis: checking validity of equations such as those for pressure at depth; thrust on 
immersed surfaces and impact of a jet; forecasting the form of possible equations such as those for 
Darcy’s formula and critical velocity in pipes 

  

 
 
In this section  you will do the following. 
 

• Learn the basic system of dimensions. 
 

• Find the relationship between variables affecting a phenomenon. 
 

• Define and use dimensionless numbers. 
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5.1 BASIC DIMENSIONS 
 
All quantities used in engineering can be reduced to six basic dimensions. These are the dimensions 
of 
 
 Mass   M 
 Length   L 
 Time   T 
 Temperature  θ 
 Electric Current  I 
 Luminous Intensity  J 
 
The last two are not used in fluid mechanics and temperature is only used sometimes. 
 
All engineering quantities can be defined in terms of the four basic dimensions M,L,T and θ.  We 
could use the S.I. units of  kilogrammes, metres, seconds and Kelvins, or any other system of units, 
but if we stick to M,L,T and θ we free ourselves of any constraints to a particular system of 
measurements. 
 
Let's now explain the above with an example. Consider the quantity density. The S.I. units are 
kg/m3 and the imperial units are lb/in3. In our system the units would be Mass/Length3 or M/L3. It 
will be easier in the work ahead if we revert to the inverse indice notation  and  write it as ML-3. 
 
Other engineering quantities need a little more thought when writing out the basic MLTθ 
dimensions. The most important of these is the unit of force or the Newton in the S.I. system. 
Engineers have opted to define force as that which is needed to accelerate a mass such that 1 N is 
needed to accelerate 1 kg at 1 m/s2. From this we find that the Newton is a derived unit equal to 1 
kg m/s2. In our system the dimensions of force become  MLT-2. This must be considered when 
writing down the dimensions of anything containing force. 
 
Another unit that produces problems is that of angle. Angle is a ratio of two sides of a triangle and 
so has no units nor dimensions at all. This also applies to revolutions which is an angular 
measurement. Strain is also a ratio and has no units nor dimensions. Angle and strain are in fact 
examples of dimensionless quantities which will be considered in detail later. 
 
 
 WORKED EXAMPLE No.1 

 
 Write down the basic dimensions of pressure p. 

 
SOLUTION 
 

 Pressure is defined as p = Force/Area 
 

The S.I. unit of pressure is the Pascal which is the name for 1N/m2. 
Since force is MLT-2 and area is L2 then the basic dimensions of pressure are  

  ML-1T-2

 When solving problems it is useful to use a notation to indicate the MLT dimensions of a 
quantity and in this case we would write 

 
  [p] = ML-1T-2
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WORKED EXAMPLE No. 2 

 
 Deduce the basic dimensions of dynamic viscosity. 
 
 SOLUTION 
 
 Dynamic viscosity was defined in an earlier tutorial from the formula  τ =  µdu/dy 
 
 τ is the shear stress, du/dy is the velocity gradient and µ is the dynamic viscosity. From this we 

have µ = τ dy/du 
 
 Shear stress is force/area. 
 The basic dimensions of force are  MLT-2  
 The basic dimensions of area are L2. 
 The basic dimensions of shear stress are ML-1T-2. 
 The basic dimensions of distance y are L. 
 The basic dimensions of velocity v are LT-1. 
 It follows that the basic dimension of dy/du (a differential coefficient) is T. 
 The basic dimensions of dynamic viscosity are hence ( ML-1 T-2)(T) = ML-1T-1. 
 
 [µ] = ML-1 T-1. 
 
 
5.2 LIST OF QUANTITIES AND DIMENSIONS FOR REFERENCE. 
 
AREA   (LENGTH)2   L2

VOLUME   (LENGTH)3   L3

VELOCITY   LENGTH/TIME   LT-1

ACCELERATION  LENGTH/(TIME2)   LT-2

ROTATIONAL SPEED REVOLUTIONS/TIME  T-1

FREQUENCY  CYCLES/TIME   T-1 

ANGULAR VELOCITY ANGLE/TIME   T-1

ANGULAR ACCELERATION ANGLE/(TIME)2   T-2

FORCE   MASS X ACCELERATION  MLT-2

ENERGY   FORCE X DISTANCE   ML2T-2

POWER   ENERGY/TIME   ML2T-3

DENSITY   MASS/VOLUME   ML-3

DYNAMIC VISCOSITY STRESS/VELOCITY GRADIENT ML-1T-1

KINEMATIC VISCOSITY DYNAMIC VIS/DENSITY  L2T-1

PRESSURE   FORCE/AREA   ML-1T-2

SPECIFIC HEAT CAPACITY ENERGY/(MASS X TEMP)  L2T-2
θ

-1

TORQUE   FORCE X LENGTH   ML2T-2

BULK MODULUS  PRESSURE/STRAIN   ML-1T-2

 



© Freestudy 4 

 
5.3 HOMOGENEOUS EQUATIONS 
 
All equations must be homogeneous. 
Consider the equation   F = 3 + T/R 
F is force, T is torque and R is radius. 
Rearranging we have 3 = F - T/R 
 
Examine the units.  
 
F is Newton. T is Newton metre and R is metre.  
 
hence  3 = F (N) - T/R (N m)/m)   
 3 = F(N) -  T/R (N) 
 
It follows that the number 3 must represent 3 Newton. It also follows that the unit of F and T/R 
must both be Newton. If this was not so, the equation would be nonsense. In other words all the 
components of an equation which add together must have the same units. You cannot add dissimilar 
quantities. For example you cannot say that 5 apples + 6 pears = 11 plums. This is clearly nonsense. 
When all parts of an equation that add together have the same dimensions, then the equation is 
homogeneous. 
 
 
 
 WORKED EXAMPLE No. 3
 
 Show that the equation Power = Force x velocity is homogeneous in both S.I. units and basic 

dimensions. 
 
 SOLUTION 
 
 The equation to be checked is  P = F v 
  
 The S.I. Unit of power (P) is the Watt. The Watt is a Joule per second. A Joule is a Newton 

metre of energy. Hence a Watt is 1 N m/s. 
 
 The S.I. unit of force (F) is the Newton and of velocity (v) is the metre/second. 
  
 The units of F v are hence N m/s. 
  
 It follows that both sides of the equation have S.I. units of N m/s so the equation is 

homogeneous. 
 
 Writing out the MLT dimensions of each term we have 
 
 [P] = ML2T-3 

 [v] = LT-1

 [F] = MLT-2 

  
 Substituting into the equation we have ML2T-3 = MLT-2  LT-1= ML2T-3

 
 Hence the equation is homogeneous. 
 



5.4 INDECIAL EQUATIONS 
 
When a phenomenon occurs, such as a swinging pendulum as shown in figure 14 we observe the 
variables that effect each other. In this case we observe that the frequency, (f) of the pendulum is 
affected by the length (l) and the value of gravity (g). We may say that frequency is a function of l 
and g. In equation form this is as follows. 
 f = φ(l,g)  where φ is the function sign. 
When we remove the function sign we must put in a constant because there is an unknown number 
and we must allocate unknown indices to l and g because we do know not what if any they are. The 
equation is written as follows.  f = C la gb 
C is a constant and has no units. a and b are unknown indices. 
This form of relating variables is called an indicial equation. The important point here is that 
because we know the units or dimensions of all the variables, we can solve the unknown indices.  
 
 
 WORKED EXAMPLE No. 4 
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 Solve the relationship between f, l and g for the simple 
 pendulum. 

 
 SOLUTION 

 
 First write down the indecial form of the equation (covered overleaf). 

 f = C la gb 
 Next write down the basic dimensions of all the variables.  
 [f] = T-1       Fig.1 
 [l] = L1

 [g] = LT-2

 Next substitute the dimensions in place of the variables. 
    T-1= (L1)a (LT-2)b

 Next tidy up the equation. T-1= L1a LbT-2b  
 Since the equation must be homogeneous then the power of each dimension must be the same 

on the left and right side of the equation. If a dimension does not appear at all then it is implied 
that it exists to the power of zero. We may write them in until we get use to it. The equation is 
written as follows. 

  M0L0T-1= L1a LT-2bM0

 Next we equate powers of each dimension. First equate powers of Time. 
  T-1 = T-2b  -1 = -2b  b = 1/2 
 Next equate powers of Length. 
  L0 = L1a Lb  0 = 1a + b    hence a = -b = -1/2 
 M0 = M0 yields nothing in this case. 
 Now substitute the values of a and b back into the original equation and we have the following. 
  f = C l-½  g½  f = C (g/l) ½

  The frequency of a pendulum may be derived from basic mechanics and shown to be  
  f = (1/2π)(g/l) ½

 If we did not know how to find  C = (½ π) from basic mechanics, then we know that if we 
conducted an experiment and measured the values f for various values of l and g, we could find 
C by plotting a graph of f against (g/l) ½. This is the importance of dimensional analysis to fluid 
mechanics. We are able to determine the basic relationships and then conduct experiments and 
determine the remaining unknown constants. We are able to plot graphs because we know what 
to plot against what. 

 



  
 SELF ASSESSMENT EXERCISE  No. 1 
 
1. It is observed that the velocity  'v' of a liquid leaving a nozzle depends upon the pressure drop 

'p' and the density 'ρ'. Show that the relationship between them is of the form 

    
2
1

ρ
pCv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
2. It is observed that the speed of a sound in 'a' in a liquid depends upon the density 'ρ' and the 

bulk modulus 'K'. Show that the relationship between them is  

    
2
1

ρ
KCa ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
3. It is observed that the frequency of oscillation of a guitar string 'f' depends upon the mass 'm', 

the length 'l' and tension 'F'. Show that the relationship between them is 
2
1

ml
FCf ⎟
⎠
⎞

⎜
⎝
⎛=  

 
     
 
5.5 DIMENSIONLESS NUMBERS 
 
We will now consider cases where the number of unknown indices to be solved, exceed the number 
of equations to solve them. This leads into the use of dimensionless numbers. 
 
Consider that typically a problem uses only the three dimensions M, L and T. This will yield 3 
simultaneous equations in the solution. If the number of variables in the equation gives 4 indices 
say a, b, c and d, then one of them cannot be resolved and the others may only be found in terms of 
it.  
 
In general there are n unknown indices and m variables. There will be m-n unknown indices. This is 
best shown through a worked example. 
 
 
 WORKED EXAMPLE No. 5 
 
The pressure drop per unit length 'p' due to friction in a pipe depends upon the diameter 'D' , the 

mean velocity 'v' , the density 'ρ'  and the dynamic viscosity 'µ'. Find the relationship between 
these variables. 

 
 SOLUTION 
 
 p = function (D  v ρ µ)    =   K  Da  vb   ρc  µd

 p is pressure per metre 
 [p] =  ML-2T-2

 [D] = L 
 [v] = LT-1

 [ρ] = ML-3

 [µ] = ML-1T-1 
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 ML-2T-2  = La (LT-1) b  (ML-3) c(ML-1T-1) d

                  
 ML-2T-2  =La+b-3c-d  Mc+d  T-b-d

 
 The problem is now deciding which index not to solve.  The best way is to use experience 

gained from doing problems. Viscosity is the quantity that causes viscous friction so the index 
associated with it  (d) is the one to identify. We will resolve a, b and c in terms of d. 

 
 TIME -2 = -b - d  hence  b = 2 - d   is as far as we can resolve  
 
 MASS 1 = c + d  hence c = 1 -d      
 LENGTH -2 = a  + b - 3c  - d 
 
 -2 = a +(2 -d) -3(1-d) – d  hence a =  -1 - d 
 
 Now put these back into the original formula. 
 
 p =    K  D-1-d  v2-d   ρ1-d  µd 
 
 Now group the quantities with same power together as follows :  
 
 p = K{ ρv2D-1} {µ ρ -1v-1D-1}d 

 
 Remember that p was pressure drop per unit length so the pressure loss over a length L is  
 P = K L{ρ v2D-1} {µ ρ -1v-1D-1}d 
 
 We have two unknown constants K and d. The usefulness of dimensional analysis is that it tells 

us the form of the equation so we can deduce how to present experimental data. With suitable 
experiments we could now find K and d. 

 
 Note that this equation matches up with Poiseuille's equation which gives the relationship as : 
    
 p =  32 µ L v D-2

 
 from which it may be deduced that  K = 32 and   d = 1 (laminar flow only) 
 
 The term {ρvDµ-1}   has no units. If you check it out all the units will cancel. This is a 

DIMENSIONLESS NUMBER, and it is named after Reynolds. 
 
 Reynolds Number is denoted Re. The whole equation can be put into a dimensionless form as 

follows. 
 
  {p  ρ-1  L-1 v-2D1} = K {µ ρ-1v-1D-1}d

   
  {p ρ-1  L-1 v-2D1} =  function ( Re ) 
 
This is a dimensionless equation. The term {pρ-1 L -1v-2D1} is also a dimensionless number. 
 
 
 
Let us now examine another similar problem. 



 
 WORKED EXAMPLE No. 6 
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 Consider a sphere moving through an viscous fluid 
 Completely submerged. The resistance to motion R 
 depends upon the diameter D, the velocity v, the density ρ 
  and the dynamic viscosity µ.  
 Find the equation that relates the variables. 

 
 Figure 2 

 R = function (D v  ρ µ)    =   K  Da  vb    ρc  µd 
 First write out the MLT dimensions. 
 
 [R] =  ML1T-2 
 [D] = L  ML1T-2  = La (LT-1)b  (ML-3) c(ML-1T-1)d 
 [v] = LT-1 ML1T-2  =La+b-3c-d  Mc+d  T-b-d 
 [ρ] = ML-3 
 [µ] = ML-1T-1   
 Viscosity is the quantity which causes viscous friction so the index associated with it  ( d) is the 

one to identify. We will resolve a,b and c in terms of d as before. 
 
 TIME -2 = -b - d  hence  b = 2 - d   is as far as we can resolve b 
 MASS 1 = c + d  hence c = 1 - d      
 LENGTH 1= a  + b - 3c  - d 
 1 = a +(2 -d) -3(1-d) - d     hence a = 2-d 
 Now put these back into the original formula. 

R =    K  D2-d v2-d   ρ1-d  µd 
 Now group the quantities with same power together as follows :  
    R= K{ρv2D2} {µ  ρ-1v-1D-1}d 

  R{ρv2D2}-1 = K {µ ρ-1v-1D-1}d 
 

 The term {ρvDµ-1}   is the Reynolds Number Re  and the term  R{ρv2D2}-1  is called the 
Newton Number Ne. Hence the relationship between the variables may be written as follows. 

   
  R{ρv2D2}-1 = function {ρvD µ-1} 
  Ne    =  function (Re) 
 Once the basic relationship between the variables has been determined, experiments can be 

conducted to find the parameters in the equation. For the case of the sphere in an 
incompressible fluid we have shown that 

  Ne  =  function (Re)  Or put another way    Ne  =  K (Re)n 
K is a constant of proportionality and n is an unknown index (equivalent to -d in the earlier 
lines). In logarithmic form the equation is 
 log(Ne )   =  log (K) +  n log(Re) 
This is a straight line graph from which log K and n are taken. Without dimensional analysis we 
would not have known how to present the information and plot it. The procedure now would be 
to conduct an experiment and plot log(Ne) against log(Re). From the graph we would then 
determine K and n. 

 



5.6 BUCKINGHAM'S  Π (Pi) THEORY 
 
Many people prefer to find the dimensionless numbers by intuitive methods. Buckingham's theory 
is based on the knowledge that if there are m basic dimensions and n variables, then there are m - n 
dimensionless numbers. Consider worked example No.12 again. We had the basic equation 
 
 R = function (D v  ρ µ)  
 
There are 5  quantities and there will be 3 basic dimensions ML and T. This means that there will be 
2 dimensionless numbers Π1 and Π2. These numbers are found by choosing two prime quantities  
(R and µ). 
 
Π1 is the group formed between µ and D v ρ   
Π2 is the group formed between R and D v ρ 
 
First taking µ. Experience tells us that this will be the Reynolds number but suppose we don't know 
this.  
 
The dimensions of   µ are  ML-1T-1

 
The dimensions of  D v  ρ must be arranged to be the same.  
 µ = Π1  Da vb  ρ c  
  
 M1L-1T-1 = Π1 (L)a (LT-1)b (ML-3)c  
 
Time -1 = -b   b = 1 
Mass   c = 1  
Length -1 = a + b -3c 
 -1 = a + 1 – 3 a=1       
 
 µ = Π1  D1 v1  ρ 1

 
ρ

µ
=Π

Dv1  

 
The second number must be formed by combining R with ρ,v and D 
 
R = Π2  Da vb  ρ c  
MLT-2 =Π2   (L)a (LT-1)b(ML-3)c  
 
Time -2 = -b   b = 2 
Mass   c = 1  
Length 1 = a + b -3c 
 1 = a + 2  – 3 a = 2 
R = Π2  D2 v2  ρ 1

222 Dv
R

ρ
=Π  

 The dimensionless equation is  Π2 = f(Π1) 
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 WORKED EXAMPLE No. 7 
 
 The resistance to motion 'R' for a sphere of diameter 'D' moving at constant velocity  'v' through 

a compressible fluid is dependant upon the density 'ρ' and the bulk modulus 'K'. The resistance 
is primarily due to the compression of the fluid in front of the sphere. Show that the 
dimensionless relationship between these quantities is Ne  =  function (Ma) 

 
 SOLUTION 
 
 R = function (D v  ρ K)    =   C  Da  vb   ρc  Kd 
  
 There are 3 dimensions and 5 quantities so there will be 5 –3 = 2 dimensionless numbers. 

Identify that the one dimensionless group will be formed with R and the other with K. 
 
 Π1 is the group formed between K and D v ρ   
 Π2 is the group formed between R and D v ρ 
 
 K = Π2 Da  vb ρc    R =  Π1 Da  vb ρc 
 
 [K] = ML-1 T-2    [R] =  MLT-2 
 [D] = L     [D] = L  
 [v] = LT-1    [v] = LT-1

 [ρ] = ML-3    [ρ] = ML-3  
 
 ML-1T-2  = La (LT-1)b  (ML-3)c    MLT-2  = La (LT-1)b  (ML-3)c

     
 ML-1T-2  =La+b-3c  Mc  T-b    ML1T-2  =La+b-3c  Mc  T-b

  
 Time -2 = -b   b = 2  Time -2 = -b  b = 2 
 Mass   c = 1  Mass c = 1 
 Length -1 = a + b -3c   Length 1 = a + b -3c 
 -1 = a + 2  – 3  a = 0 1 = a + 2  – 3 a = 2 
 
 K = Π2  Do v2  ρ 1    R = Π1  D2 v2  ρ 1

 22 v
K
ρ

=Π    221 Dv
R

ρ
=Π  

 
 It was shown earlier that the speed of sound in an elastic medium is given by the following 

formula. 
    a = (k/ρ)½  
 
 It follows that (k/ρ) = a2 and so Π2 = (a/v)2

 The ratio v/a is called the Mach number (Ma) so (Ma)-2

 Π1 is the Newton Number Ne. 
 The equation may be written as  Π1 = φΠ2 Ne or   Ne =  φ(Ma) 
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 SELF ASSESSMENT EXERCISE No. 2 
 
1. The resistance to motion  'R' for a sphere of diameter 'D' moving at constant velocity 'v' on the 

surface of a liquid is due to the density 'ρ' and the surface waves produced by the acceleration 
of gravity 'g'. Show that the dimensionless equation linking these quantities is Ne = 
function(Fr) 

 
Figure 3 

 

 Fr  is the Froude number and is given by   
gD
vF

2

r =  

 
 Here is a useful tip. It is the power of g that cannot be found. 
 
2.  The Torque 'T' required to rotate a disc in a viscous fluid depends upon the diameter 'D' , the 

speed of rotation 'N' the density 'ρ' and the dynamic viscosity 'µ'. Show that the dimensionless 
equation linking these quantities is : 

 
  {T D-5 N-2  ρ-1}  = function {ρ N D2   µ-1} 
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EDEXCEL HIGHER 
 

FLUID MECHANICS H1 UNIT 8 
 

NQF LEVEL 4 
 

OUTCOME 4 – HYDRAULIC MACHINES 
 

TUTORIAL 6 – MOMENTUM AND PRESSURE FORCES  
 

 
4 Hydraulic machines  
Impact of a jet: power of a jet; normal thrust on a moving flat vane; thrust on a moving 
hemispherical cup; velocity diagrams to determine thrust on moving curved vanes; fluid friction 
losses; system efficiency  
 
Operating principles: operating principles, applications and typical system efficiencies of common 
turbomachines including the Pelton wheel, Francis turbine and Kaplan turbine  
 
Operating principles of pumps: operating principles and applications of reciprocating and 
centrifugal pumps; head losses; pumping power; power transmitted; system efficiency 
  
 
 
This is another major outcome requiring a lot of study time and the tutorial probably contains more 
than required. 
 
 
On completion of this tutorial you should be able to solve the following.  
 

• Forces due to pressure difference. 
 

• Forces due to momentum changes.  
 

• Forces on flat plates. 
 

• Forces on curved vanes. 
 

•  
 
Let’s start with forces due to changes in the pressure of the fluid.  
 



1. PRESSURE FORCES  
 
Consider a duct as shown in fig.1. First identify the control volume on which to conduct a force 
balance. The inner passage is filled with fluid with pressure p1 at inlet and p2 at outlet. There will 
be forces on the outer surface of 
the volume due to atmospheric 
pressure. If the pressures of the 
fluid are measured relative to 
atmosphere (i.e. use gauge 
pressures) then these forces 
need not be calculated and the 
resultant force on the volume is 
due to that of the fluid only. The 
approach to be used here is to 
find the forces in both the x and 
y directions and then combine 
them to find the resultant force.  

 
    Fig.1 

The force normal to the plane of the bore is pA.  
At the inlet (1) the force is Fp1= p1A1  
At the outlet (2) the force is Fp2 = p2A2 These forces must be resolved vertically and horizontally to 
give the following. Fpx1 = Fp1 cos θ1 (to the right) Fpx2 = Fp1 cos θ2 (to the left) The total 
horizontal force FH = Fpx1 -Fpx2 
Fpy1 = Fp1 sin θ1 (up) Fpy2 = Fp2 sin θ2  (down) The total vertical force FV = Fpy1 -Fpy2  
 
 
 WORKED EXAMPLE No. 1  
 
 A nozzle has an inlet area of 0.005 m

2
 and it discharges into the atmosphere. The inlet gauge 

pressure is 3 bar. Calculate the resultant force on the nozzle.  

 
Fig.2  

 SOLUTION 
 
 Since the areas are only in the vertical plane, there is no vertical force. FV = 0 
 
 Using gauge pressures, the pressure force at exit is zero.  Fpx2 = 0 
 Fpx1 = 3 x 105 x 0.005 = 1500 N     
 FH =   1500 – 0 = 1500 N to the right. 
 



 
 
 WORKED EXAMPLE No. 2 
 
 The nozzle shown has an inlet area of 0.002 m2 and an outlet area of 0.0005 m2. The inlet 

gauge pressure is 300 kPa and the outlet gauge pressure is 200 kPa. Calculate the horizontal 
and vertical forces on the nozzle. 

 

 
Fig.3 

 SOLUTION 
 Fp1= 300 x 103 x 0.002 = 600 N 
 Fpx1=  600 N  
 Fpy1=0 N since the plane is vertical. 
 Fp2 = 200 x 103 x 0.0005 = 100 N 
 Fpx2 = 100 x cos 60o = 50 N 
 Fpy2 = 100 x sin 60o = 86.67 N 
 
 Total Horizontal force FH = 600 - 50 = 550 N 
 Total vertical force  FV = 0 - 86.67 N = - 86.67 N 
 
 
 
2. MOMENTUM FORCES 
 
When a fluid speeds up or slows down, inertial forces come into play. Such forces may be produced 
by either a change in the magnitude or the direction of the velocity since either change in this vector 
quantity produces acceleration.  
For this section, we will ignore pressure forces and just study the forces due to velocity changes.  
 
2.1 NEWTON'S 2nd LAW OF MOTION 
 
This states that the change in momentum of a mass is equal to the impulse given to it. Impulse = 
Force x time Momentum = mass x velocity Change in momentum = ∆mv  
Newton’s second law may be written as ∆mv = Ft Rearrange to make F the subject. ∆mv/t = F 
Since ∆v/t = acceleration ‘a’ we get the usual form of the law F = ma The mass flow rate is m/t and 
at any given moment this is dm/dt or m' and for a constant flow rate,  
only the velocity changes.  
In fluids we usually express the second law in the following form. F = (m/t) ∆v = m'∆v  
m'∆v is the rate of change of momentum so the second law may be restated as  
 
F = Rate of change of momentum  
F is the impulsive force resulting from the change. ∆v is a vector quantity. 



2.2 APPLICATION TO PIPE BENDS  
 
Consider a pipe bend as before and use the idea of a control volume.  

 
Fig.4  

 
First find the vector change in velocity using trigonometry. tanΦ= v2sinθ/(v2cosθ-v1) 
∆v= {(v2 sinθ)

2
 + (v2 cosθ - v1)

 2
 }

½ 
Alternatively ∆v could be found by drawing the diagram to 

scale and measuring it. If we had no change in magnitude then v1 = v2 = v then 
∆v= v {2(1 -cosθ)}

½
 

 
The momentum force acting on the fluid is Fm = m'∆v The force is a vector quantity which must be 
in the direction of ∆v. Every force has an equal and opposite reaction so there must be a force on 
the bend equal and opposite to the force on the fluid. This force could be resolved vertically and 
horizontally such that FH = FmcosΦ and FV = FmsinΦ  
 
This theory may be applied to turbines and pump blade theory as well as to pipe bends.  
 
 
 SELF ASSESSMENT EXERCISE No. 1  
 
1.  A pipe bends through an angle of 90o in the vertical plane. At the inlet it has a cross sectional 

area of 0.003 m2 and a gauge pressure of 500 kPa. At exit it has an area of 0.001 m2 and a 
gauge pressure of 200 kPa.  

 Calculate the vertical and horizontal forces due to the pressure only. (200 N and 1500 N).  
 
2.  A pipe bends through an angle of 45o in the vertical plane. At the inlet it has a cross sectional 

area of 0.002 m2 and a gauge pressure of 800 kPa. At exit it has an area of 0.0008 m2 and a 
gauge pressure of 300 kPa.  

 Calculate the vertical and horizontal forces due to the pressure only. (169.7 N and 1430 N).  
 
3.  Calculate the momentum force acting on a bend of 130o which carries 2 kg/s of water at 16 m/s 

velocity.  
 Determine the vertical and horizontal components. (Ans.24.5 N and 52.6 N)  
 
4. Calculate the momentum force on a 180o bend that carries 5 kg/s of water. The pipe is 50 mm 

bore diameter throughout. The density is 1000 kg/m3.  
(Ans. 25.46 N )  
 

5. A horizontal pipe bend reduces from 300 mm bore diameter at inlet to 150 mm diameter at 
outlet. The bend is swept through 50o from its initial direction. The flow rate is 0.05 m3/s and 
the density is 1000 kg/m3. Calculate the momentum force on the bend and resolve it into two 
perpendicular directions relative to the initial direction. (Ans.108.1 N and 55.46 N). 

 



3.  COMBINED PRESSURE AND MOMENTUM FORCES  
 
Now we will look at problems involving forces due to pressure changes and momentum changes at 
the same time. This is best done with a worked example since we have covered the theory already.  
 
 
 WORKED EXAMPLE No.3  
 
 A pipe bend has a cross sectional area of  0.01 m2 at  
 inlet and 0.0025 m2 at outlet. It bends 90o from its  
 initial direction.  
 The velocity is 4 m/s at inlet with a pressure of 
 100 kPa gauge. The density is  

 
Fig.5  

 SOLUTION  
 
 v1 = 4m/s Since ρA1v1 = ρA2v2 then v2 = 16 m/s 
 
 We need the pressure at exit. This is done by applying Bernoulli between (1) and (2) as 

follows. 
 p1 + ½ ρv1

2 = p2 + ½ ρv2
2 

 100 x 103 + ½ 1000 x 42 = p2 + 1000 x ½ 162 
 p2 = 0 kPa gauge 
 
 Now find the pressure forces. 
 
 Fpx1 = p1A1 = 1200 N 
  Fpy2 = p2A2 = 0 N Next solve the momentum forces. 
  m' = ρAv = 40 kg/s 
 ∆v = (42 + 162)½ = 16.49 m/s 
 Fm = m'∆v = 659.7 N 
 φ = tan-1(16/4) = 75.96o 
 
 RESOLVE      Fig.6 
 
 Fmy = 659.7 sin 75.96 = 640 N Fmx = 659.7 cos 75.96 = 160 N 
 
 Total forces in x direction = 1200 + 160 = 1360 N 
 Total forces in y direction = 0 + 640 = 640 N 
 
 ALTERNATIVE SOLUTION 
 
 Many people prefer to solve the complete problems by solving pressure and momentum forces 

in the x  or  y directions as follows. 
 
 x direction   m'v1 + p1A1 = FX = 1200 N 
 
 y direction  m'v2 + p2A2 = FY = 640 N 
 
 When the bend is other than 90o this has to be used more carefully because there is an x 

component at exit also. 
 



4.  APPLICATIONS TO STATIONARY VANES  
 
When a jet of fluid strikes a stationary vane , the vane decelerates the fluid in a given direction. 
Even if the speed of the fluid is unchanged, a change in direction produces changes in the velocity 
vectors and hence momentum forces are produced. The resulting force on the vane being struck by 
the fluid is an impulsive force. Since the fluid is at atmospheric pressure at all times after leaving 
the nozzle, there are no forces due to pressure change. 
 
4.1  FLAT PLATE NORMAL TO JET 

 
Fig.7  

 
The velocity of the jet leaving the nozzle is v1. The jet is decelerated to zero velocity in the original 
direction. Usually the liquid flows off sideways with equal velocity in all radial directions with no 
splashing occurring. The fluid is accelerated from zero in the radial directions but since the flow is 
equally divided no resultant force is produced in the radial directions. This means the only force on 
the plate is the one produced normal to the plate. This is found as follows. 
 
m' = mass flow rate. Initial velocity = v1. 
Final velocity in the original direction = v2 = 0. 
Change in velocity =∆v = v2 – v1= - v1 
Force = m'∆v = -mv1 
 
This is the force required to produce the momentum changes in the fluid. The force on the plate 
must be equal and opposite so  
 
  F = m'v1 = ρA v1 
 
 
 WORKED EXAMPLE No.4 
 
 A nozzle has an exit diameter of 15 mm and discharges water into the atmosphere. The gauge 

pressure behind the nozzle is 400 kPa. The coefficient of velocity is 0.98 and there is no 
contraction of the jet. The jet hits a stationary flat plate normal to its direction. Determine the 
force on the plate. The density of the water is 1000 kg/m3. Assume the velocity of approach 
into the nozzle is negligible. 

 
 SOLUTION 
 
 The velocity of the jet is  v1 = Cv(2∆p/ρ)½ 
 v1 = 0.98 (2x 400 000/1000) ½  = 27.72 m/s 
 The nozzle exit area A = π x 0.0152/4 = 176.7 x 10-6 m2. 
 The mass flow rate is  ρAv1 = 1000 x  176.7 x 10-6 x 27.72 = 4.898 kg/s. 
 The force on the vane = 4.898 x 27.72 = 135.8 N 
 



4.2  FLAT PLATE AT ANGLE TO JET 
 
If the plate is at an angle as shown in fig. 4.9 then 
the fluid is not completely decelerated in the 
original direction but the radial flow is still equal 
in all radial directions. All the momentum normal 
to the plate is destroyed. It is easier to consider the 
momentum changes normal to the plate rather than 
normal to the jet. 

 
      Fig. 8 
Initial velocity normal to plate = v1 cosθ. 
Final velocity normal to plate = 0. 
Force normal to plate = m'∆v =0 -  ρA v1 cosθ. 
This is the force acting on the fluid so the force on the plate is 
 
  m' v1 cosθ   or ρA v1

2 cosθ. 
 
If the horizontal and vertical components of this force are required then the force must be resolved. 
 
 
 WORKED EXAMPLE No. 5 
 
 A jet of water has a velocity of 20 m/s and flows at 2 kg/s. The jet strikes a stationary flat plate. 

The normal direction to the plate is inclined at 30o to the jet. Determine the force on the plate 
in the direction of the jet. 

 
 
 SOLUTION 

 
Fig. 9 

 
 

 The force normal to the plate is  mv1 cosθ =  2 x 20cos 30o = 34.64 N. 
 
 The force in the direction of the jet is found by resolving. 
 
 FH = F/cos30o = 34.64/cos 30o = 40 N 
 
 
 



4.3 CURVED VANES 
 
When a jet hits a curved vane, it is 
usual to arrange for it to arrive on 
the vane at the same angle as the 
vane. The jet is then diverted from 
with no splashing by the curve of 
the vane. If there is no friction 
present, then only the direction of 
the jet is changed, not its speed.  

 
 

  Fig. 10 
This is the same problem as a pipe bend with uniform 
size. v1 is numerically equal to v2.  

 
    

 
If the deflection angle is θ as shown in figs. 10 and 11 
then the impulsive force is 
 
F = m'∆v  = m' v1{2(1 - cosθ)}1/2    Fig. 11 
   
 
The direction of the force on the fluid is in the direction of ∆v and the direction of the force on the 
vane is opposite. The force may be resolved to find the forces acting horizontally and/or vertically.  
 
It is often necessary to solve the horizontal force and this is done as follows. 
 

 
Fig.12 

 
Initial horizontal velocity = vH1 = v1 
Final horizontal velocity = vH2 = -v2 cos (180 - θ) = v2 cos θ 
Change in horizontal velocity = ∆vH1  
Since v2 = v1 this becomes  ∆vh=  {v2 cosθ - v1 } = v1{cosθ - 1} 
Horizontal force on fluid = m'v1{cosθ - 1} 
The horizontal force on the vane is opposite so 
 
  Horizontal force = m'∆vH = m'v1{1 - cosθ} 
 



 
 WORKED EXAMPLE No. 6 
 
 A jet of water travels horizontally at 16 m/s with a flow rate of 2 kg/s. It is deflected 130o by a 

curved vane. Calculate resulting force on the vane in the horizontal direction. 
 
 SOLUTION 
 
 The resulting force on the vane is  F = m' v1{2(1 - cosθ)½  
 
 F = 2 x 16 {2(1 -cos 130o)} ½ = 58 N 
 
 The horizontal force is 
 
 FH = m' v1{cosθ - 1}  
 FH = 2 x 16 x (1 - cos130)  
 FH = 52.6 N 
 
 

 
 
 SELF ASSESSMENT EXERCISE No. 2 
 
 Assume the density of water is 1000 kg/m3 throughout. 
 
1. A pipe bends through 90o from its initial direction as shown in fig. 4.7. The pipe  reduces in 

diameter such that the velocity at point (2) is 1.5 times the velocity at point (1).  The pipe is 200 
mm diameter at  point  (1)  and the static pressure is 100 kPa. The volume flow rate is 0.2 m3/s. 
Assuming that there is no friction calculate the following. 

 
 a) The static pressure at (2). 
 
 b) The velocity at (2). 
 
 c) The horizontal and vertical forces on the bend FH and FV. 

 
 d) The total resultant force on the bend. 

 
Fig. 13 

 



 
2.  A nozzle produces a jet of water. The gauge pressure behind the nozzle is 2 MPa. The exit 

diameter is 100 mm. The coefficient of velocity is 0.97 and there is no contraction of the jet. 
The approach velocity is negligible. The jet of water is deflected 165o from its initial direction 
by a stationary vane.  Calculate the resultant force on the nozzle and on the vane due to 
momentum changes only. (29.5 kN and 58.5 kN). 

 
 
3.  A stationary vane deflects 5 kg/s of water 50o from its initial direction. The jet velocity is 13 

m/s. Draw the vector diagram to scale showing the velocity change. Deduce by either scaling or 
calculation the change in velocity and go on to calculate the force on the vane in the original 
direction of the jet. (49.8 N). 

 
4.  A jet of water travelling with a velocity of 25 m/s and flow rate 0.4 kg/s is deflected 150o from 

its initial direction by a stationary vane. Calculate the force on the vane acting parallel to and 
perpendicular to the initial direction.  (Ans.18.66 N and 5 N) 

 
5. A jet of water discharges from a nozzle 30 mm diameter with a flow rate of 15 dm3/s into the 

atmosphere. The inlet to the nozzle is 100 mm diameter. There is no friction nor contraction of 
the jet. Calculate the following. 

 
a) The jet velocity. 
b) The gauge pressure at inlet. 
c) The force on the nozzle. 
 
 The jet strikes a flat stationary plate normal to it. Determine the force on the plate. 
  

 
 

5. MOVING VANES 
 
When a vane moves away from the jet as shown on fig.4.14, the mass flow arriving on the vane is 
reduced because some of the mass leaving the nozzle is producing a growing column of fluid 
between the jet and the nozzle. This is what happens in turbines where the vanes are part of a 
revolving wheel. We need only consider the simplest case of movement in a straight line in the 
direction of the jet. 
 
5.1 MOVING FLAT PLATE 
 
The velocity of the jet is v and the velocity of the 
vane is u.  If you were on the plate, the velocity of 
the fluid arriving would be v - u. This is the 
relative velocity, that is, relative to the plate. The 
mass flow rate arriving on the plate is then 
 

  m' = ρA(v-u)  
 

      Fig. 14 
 
The initial direction of the fluid is the direction of the jet. However, due to movement of the plate, 
the velocity of the fluid as it leaves the edge is not at 90o to the initial direction. In order to 
understand this we must consider the fluid as it flows off the plate. Just before it leaves the plate it 
is still travelling forward with the plate at velocity u. When it leaves the plate it will have a true 
velocity that is a combination of its radial velocity and u. The result is that it appears to come off 
the plate at a forward angle as shown.  



We are only likely to be interested in the force in the direction of movement so we only require the 
change in velocity of the fluid in this direction. 
 
The initial forward velocity of the fluid = v 
The final forward velocity of the fluid = u 
The change in forward velocity = v-u 
The force on the plate = m'ρv = m' (v-u) 
Since m' = ρA(v-u) then the force on the plate is 
  F = ρA(v-u)2 
 
5.2  MOVING CURVED VANE 
 
Turbine vanes are normally curved and the fluid 
joins it at the same angle as the vane as shown in 
the diagram.  
 
The velocity of the fluid leaving the nozzle is v1. 
This is a true or absolute velocity as observed by 
anyone standing still on the ground.  
      Fig.15 
 
The fluid arrives on the vane with relative velocity v1-u as 
before. This is a relative velocity as observed by someone 
moving with the vane. If there is no friction then the 
velocity of the fluid over the surface of the vane will be v1-
u at all points. At the tip where the fluid leaves the vane, it 
will have two velocities. The fluid will be flowing at v1-u 
over the vane but also at velocity u in the forward direction. 
The true velocity v2 at exit must be the vector sum of these 
two. 
      Fig. 16 
 
If we only require the force acting on the vane in the direction of movement then we must find the 
horizontal component of v2. Because this direction is the direction in which the vane is whirling 
about the centre of the wheel, it is called the velocity of whirl vw2. The velocity v1 is also in the 
direction of whirling so it follows that v1 = vw1.  
 
Vw2 may be found by drawing the vector diagram (fig.4.16) to scale or by using trigonometry. In 
this case you may care to show for yourself that  vw2 = u + (v1-u)(cosθ) 
 
The horizontal force on the vane becomes FH = m' (vw1-vw2) = m' (v1-vw2)  
 
You may care to show for yourself that this simplifies down to Fh = m'(v1-u)(1-cosθ) 
This force moves at the same velocity as the vane. The power developed by a force is the product of 
force and velocity. This is called the Diagram Power (D.P.) and the diagram power developed by a 
simple turbine blade is 
   D.P. = m'u(v1-u)(1-cosθ) 
 
This work involving the force on a moving vane is the basis of turbine problems and the geometry 
of the case considered is that of a simple water turbine known as a Pelton Wheel. You are not 
required to do this in the exam. It is unlikely that the examination will require you to calculate the 
force on the moving plate but the question in self assessment exercise 5 does require you to 
calculate the exit velocity v2. 



 
 WORKED EXAMPLE No. 7 
 
 A simple turbine vane as shown in fig.15 moves at 40 m/s and has a deflection angle of 150o. 

The jet velocity from the nozzle is 70 m/s and flows at 1.7 kg/s. 
 
 Calculate the absolute velocity of the water leaving the vane and the diagram power. 
 
 SOLUTION 
 
 Drawing the vector diagram (fig.4.15) to scale, you may show that v2 = 20.5 m/s. This may also 

be deduced by trigonometry. The angle at which the water leaves the vane may be measured 
from the diagram or deduced by trigonometry and is 46.9o to the original jet direction. 

 
 D.P. = m'u(v1-u)(1+cosθ) = 1.7 x 40(70-40)(1 - cos 150) = 3807 Watts 
 
 
 
 SELF ASSESSMENT EXERCISE No. 3 
 
1.  A vane moving at 30 m/s has a deflection angle of 90o. The water jet moves at 50 m/s with a 

flow of 2.5 kg/s. Calculate the diagram power assuming that all the mass strikes the vane.  
 (1.5 kW). 
 
2.  Figure 10 shows a jet of water 40 mm diameter flowing at 45 m/s onto a curved fixed vane. The 

deflection angle is 150o. There is no friction. Determine the magnitude and direction of the 
resultant force on the vane. 

 
 The vane is allowed to move away from the nozzle in the same direction as the jet at a velocity 

of 18 m/s. Draw the vector diagram for the velocity at exit from the vane and determine the 
magnitude and direction of the velocity at exit from the vane. 
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4 Hydraulic machines  
Impact of a jet: power of a jet; normal thrust on a moving flat vane; thrust on a moving 
hemispherical cup; velocity diagrams to determine thrust on moving curved vanes; fluid friction 
losses; system efficiency  
 
Operating principles: operating principles, applications and typical system efficiencies of common 
turbomachines including the Pelton wheel, Francis turbine and Kaplan turbine  
 
Operating principles of pumps: operating principles and applications of reciprocating and 
centrifugal pumps; head losses; pumping power; power transmitted; system efficiency 
  
 
 
This is another major outcome requiring a lot of study time and the tutorial probably contains more 
than required. 
 
 
On completion of this tutorial you should be able to solve the following.  
 

•  Explain the general principles of pumps and turbines. 
 

• Construct and analyse vector diagrams for pump and turbine rotors. 
 

• Explain and analyses the Pelton Wheel. 
 

• Explain the Francis Turbine. 
 

• Explain and analyses the Kaplan turbine 
 

• Explain and analyses the Centrifugal Pump. 
  

 
Let’s start with forces due to changes in the pressure of the fluid.  
 
 
 



1.  TURBINES  
 
A water turbine is a device for converting water (fluid) power into shaft (mechanical) power. A 
pump is a device for converting shaft power into water power. 
 
Two basic categories of machines are the rotary type and the reciprocating type. Reciprocating 
motors are quite common in power hydraulics but the rotary principle is universally used for large 
power devices such as on hydroelectric systems. 
 
Large pumps are usually of the rotary type but reciprocating pumps are used for smaller 
applications.  
 
1.1  GENERAL PRINCIPLES OF TURBINES.  
 
WATER POWER  
 
This is the fluid power supplied to the machine in the form of pressure and volume.  
Expressed in terms of pressure head the formula is  W.P. = mg∆H  
M is the mass flow rate in kg/s and ∆H is the pressure head difference over the turbine in metres. 
Remember that ∆p = ρg∆H  
Expressed in terms of pressure the formula is  W.P. = Q∆p  
Q is the volume flow rate in m

3
/s. ∆p is the pressure drop over the turbine in N/m

2
 or Pascals. 

 
SHAFT POWER  
 
This is the mechanical, power output of the turbine shaft. The well known formula is  
S.P. = 2πNT Where T is the torque in Nm and N is the speed of rotation in rev/s  
 
DIAGRAM POWER  
 
This is the power produced by the force of the water acting on the rotor. It is reduced by losses 
before appearing as shaft power. The formula for D.P. depends upon the design of the turbine and 
involves analysis of the velocity vector diagrams.  
 
HYDRAULIC EFFICIENCY ηhyd 
 
This is the efficiency with which water power is converted into diagram power and is given by 
 

η hyd= D.P./W.P. 
 
MECHANICAL EFFICIENCY ηmech 
 
This is the efficiency with which the diagram power is converted into shaft power. The difference is 
the mechanical power loss.  

ηmech= S.P./D.P. 
 
OVERALL EFFICIENCY ηo/a 
 
This is the efficiency relating fluid power input to shaft power output.  

ηo/a = S.P./W.P. 
 
It is worth noting at this point that when we come to examine pumps, all the above expressions are 
inverted because the energy flow is reversed in direction.  
The water power is converted into shaft power by the force produced when the vanes deflect the 
direction of the water. There are two basic principles in the process, IMPULSE and REACTION. 



IMPULSE occurs when the direction of the fluid is changed with no pressure change. It follows 
that the magnitude of the velocity remains unchanged. 
 
REACTION occurs when the water is accelerated or decelerated 
over the vanes. A force is needed to do this and the reaction to this 
force acts on the vanes.  
Impulsive and reaction forces are determined by examining the 
changes in velocity (magnitude and direction) when the water 
flows over the vane. The following is a typical analysis.  
The vane is part of a rotor and rotates about some centre point. 
Depending on the geometrical layout, the inlet and outlet may or 
may not be moving at the same velocity and on the same circle. In 
order to do a general study, consider the case where the inlet and 
outlet rotate on two different diameters and hence have different 
velocities.  
          Fig. 1 
 
u1 is the velocity of the blade at inlet and u2 is the velocity of the blade at outlet. Both have 
tangential directions.ω1 is the relative velocity at inlet and ω2 is the relative velocity at outlet. 
 
The water on the blade has two velocity components. It is moving tangentially at velocity u and 
over the surface at velocity ω. The absolute velocity of the water is the vector sum of these two and 
is denoted v. At any point on the vane   v = ω + u 
 
At inlet, this rule does not apply unless the direction of v1 is made such that the vector addition is 
true. At any other angle, the velocities will not add up and the result is chaos with energy being lost 
as the water finds its way onto the vane surface. The perfect entry is called "SHOCKLESS 
ENTRY" and the entry angle β1 must be correct. This angle is only correct for a given value of v1. 

 
Fig.2  

INLET DIAGRAM 
 
For a given or fixed value of u1 and v1, shockless entry will occur only if the vane angle α1 is 
correct or the delivery angle β1 is correct. In order to solve momentum forces on the vane and 
deduce the flow rates, we are interested in two components of v1. These are the components in the 
direction of the vane movement denoted vw (meaning velocity of whirl) and the direction at right 
angles to it vR (meaning radial velocity but it is not always radial in direction depending on the 
wheel design). The suffix (1) indicates the entry point. A typical vector triangle is shown. 
 

 
 

Fig.3 



OUTLET DIAGRAM 
 
At outlet, the absolute velocity of the water has to be the vector resultant of u and ω and the 
direction is unconstrained so it must come off the wheel at the angle resulting. Suffix (2) refers to 
the outlet point. A typical vector triangle is shown. 

 
Fig. 4 

DIAGRAM POWER 
 
Diagram power is the theoretical power of the wheel based on momentum changes in the fluid. The 
force on the vane due to the change in velocity of the fluid is F = m∆v and these forces are vector 
quantities. m is the mass flow rate. The force that propels the wheel is the force developed in the 
direction of movement (whirl direction). In order to deduce this force, we should only consider the 
velocity changes in the whirl direction (direction of rotation) ∆vw. The power of the force is always 
the product of force and velocity. The velocity of the force is the velocity of the vane (u). If this 
velocity is different at inlet and outlet it can be shown that the resulting power is given by 
 

D.P. = m ∆vw = m (u1vw1 – u2 vw2) 
 
1.2  PELTON WHEEL 
 
 

 
Fig. 5 Pelton wheel with the casing removed  

 
Pelton wheels are mainly used with high pressure heads such as in mountain hydroelectric schemes. 
The diagram shows a layout for a Pelton wheel with two nozzles. 



  
Fig. 6 Typical Layout 

 
The Pelton Wheel is an impulse turbine. The fluid power is converted into kinetic energy in the 
nozzles. The total pressure drop occurs in the nozzle. The resulting jet of water is directed 
tangentially at buckets on the wheel producing impulsive force on them. The buckets are small 
compared to the wheel and so they have a single velocity  u = πND        D is the mean diameter of 
rotation for the buckets. 
 
The theoretical velocity issuing from the nozzle is given by  v1= (2gH)1/2 or v1= (2p/ρ)1/2 
 
Allowing for friction in the nozzle this becomes  v1= Cv(2gH)1/2 or v1= Cv(2p/ρ)1/2 
H is the gauge pressure head behind the nozzle, p the gauge pressure and cv the coefficient of 
velocity and this is usually close to unity. 
 
The mass flow rate from the nozzle is  m = Cc ρAv1 = CcρACv(2gH)1/2 =  Cd ρA(2gH)1/2  
 
 
Cc is  the coefficient of contraction 
(normally unity because the nozzles are 
designed not to have a contraction).  
 
Cd is the coefficient of discharge and  
Cd = Cc Cv 
 
 

 
 
 
 

Fig.7 Layout of Pelton wheel with one nozzle  
 

 



In order to produce no axial force on the wheel, the flow is divided equally by the shape of the 
bucket. This produces a zero net change in momentum in the axial direction. The water is deflected 
over each half of the bucket by an angle of θ degrees. Since the change in momentum is the same 
for both halves of the flow, we need only consider the vector diagram for one half. The initial 
velocity is v1 and the bucket velocity u1 is in the same direction. The relative velocity of the water 
at inlet (in the middle) is ω1 and is also in the same direction so the vector diagram is a straight line. 

  
    

 
   Fig. 9 Vector Diagram 

 
Fig.8 Cross section through bucket  
 
If the water is not slowed down as it passes over the bucket surface, the relative velocity ω2 will be 
the same as ω1. In reality friction slows it down slightly and we define a blade friction coefficient as 
 k = ω2/ω1 
The exact angle at which the water leaves the sides of the bucket depends upon the other velocities 
but as always the vectors must add up so that   v2=  u  + ω2 
 
Note that u2 = u1 = u since the bucket has a uniform velocity everywhere. 
 
It is normal to use ω1 and u as common to both diagrams and combine them as shown. 

 
 

         Fig. 10 Inlet Vector Diagram                                11  bined tor Diag Fig. Com  Vec arm 
 

Since u2 = u1 = u the diagram power becomes  D.P. = mu∆vw 
 = ω1- ω2cosθ 

2=kω1 

 D.P.= muω (1 - kcosθ) but ω1= v1-u 

D.P.=mu(v1-u)( 1- kcosθ) 

Examining the combined vector diagram shows that ∆vw
Hence  D.P.= mu(ω1 - ω2cosθ) but ω
 
 1
  
  
 



 
 
 WORKED EXAMPLE No. 1 
  
 A Pelton wheel is supplied with 1.2 kg/s of water at 20 m/s. The buckets rotate on a mean 

diameter of 250 mm at 800 rev/min. The deflection angle is 165o and friction is negligible. 
Determine the diagram power. Draw the vector diagram to scale and determine �vw. 

 
 SOLUTION 
  
 u = πND/60 = π x 800 x 0.25/60 = 10.47 m/s 
 D.P = mu(v1-u)( 1- kcosθ)  
 D.P = 1.2 x 10.47 x (20 - 10.47)(1 - cos 165) = 235 Watts 
 
 You should now draw the vector diagram to scale and show that ∆vw= 18.5 m/s 
 
 
 
 
 SELF ASSESSMENT EXERCISE No. 1 
 
1. The buckets of a Pelton wheel revolve on a mean diameter of 1.5 m at 1500 rev/min. The jet 

velocity is 1.8 times the bucket velocity. Calculate the water flow rate required to produce a 
power output of 2MW. The mechanical efficiency is 80% and the blade friction coefficient is 
0.97. The deflection angle is 165o.  

 (Ans. 116.3 kg/s) 
 
2. Calculate the diagram power for a Pelton Wheel 2m mean diameter revolving at 3000 rev/min 

with a deflection angle of 170o under the action of two nozzles , each supplying 10 kg/s of 
water with a velocity twice the bucket velocity. The blade friction coefficient is 0.98.    (Ans. 
3.88 MW) 

 
 If the coefficient of velocity is 0.97, calculate the pressure behind the nozzles. (Ans 209.8 MPa) 
 
3. A Pelton Wheel is 1.7 m mean diameter and runs at maximum power. It is supplied from two 

nozzles. The gauge pressure head behind each nozzle is 180 metres of water. Other data for the 
wheel is : 

 
 Coefficient of Discharge Cd= 0.99 
 Coefficient of velocity  Cv= 0.995 
 Deflection angle = 165o. 
 Blade friction coefficient = 0.98 
 Mechanical efficiency = 87% 
 Nozzle diameters = 30 mm 
 
 Calculate the following. 
a) The jet velocity   (59.13 m/s) 
b) The mass flow rate (41.586 kg/s) 
c) The water power ( 73.432 kW) 
d) The diagram power ( 70.759 kW) 
e) The diagram efficiency (96.36%) 
f) The overall efficiency (83.8%) 
g) The wheel speed in rev/min (332 rev/min) 
 



1.4 KAPLAN TURBINE 
 
The Kaplan turbine is a pure reaction turbine. The 
main point concerning this is that all the flow energy 
and pressure is expended over the rotor and not in the 
supply nozzles. The picture shows the rotor of a large 
Kaplan turbine. They are most suited to low pressure 
heads and large flow rates such as on dams and tidal 
barrage schemes. 
 
The diagram below shows the layout of a large 
hydroelectric generator in a dam. 
 
 
 
Fig. 12 Picture of a Kaplan Turbine Rotor 
 

 
 
 

 
 

Fig. 13 Typical Layout 



1.5 FRANCIS WHEEL 

 
 

Fig. 14 
 
The Francis wheel is an example of a mixed impulse and reaction turbine. 
They are adaptable to varying heads and flows and may be run in reverse 
as a pump such as on a pumped storage scheme. The diagram shows the 
layout of a vertical axis Francis wheel. 
 
 
The Francis Wheel is an inward flow device with the water entering 
around the periphery and moving to the centre before exhausting. The 
rotor is contained in a casing that spreads the flow and pressure evenly 
around the periphery. 
       Fig. 15 

 
The impulse part comes about because guide vanes are used to produce an initial velocity v1 that is 
directed at the rotor. Pressure drop occurs in the guide vanes and the velocity is v1 = k (∆H)½  where  
∆H is the head drop in the guide vanes. 
 
The angle of the guide vanes is adjustable so that the inlet angle β1 is correct for shockless entry. 
 
The shape of the rotor is such that the 
vanes are taller at the centre than at 
the ends. This gives control over the 
radial velocity component and usually 
this is constant from inlet to outlet. 
The volume flow rate is usually 
expressed in terms of radial velocity 
and circumferential area.    Fig. 16 
 
vR = radial velocity A = circumferential area = D h  k 
Q = vR πD h  k h = height of the vane. 
 
k is a factor which allows for the area taken up by the thickness of the vanes on the circumference. 
If vR is constant then since Q is the same at all circumferences,   D1h1=D2h2. 



VECTOR DIAGRAMS 

 
Fig. 17 

The diagram shows how the vector diagrams are constructed for the inlet and outlet. Remember the 
rule is that the vectors add up so that  u + v = ω 
 
If u is drawn horizontal as shown, then Vw is the horizontal component of v and vR is the radial 
component (vertical). 

MORE DETAILED EXAMINATION OF VECTOR DIAGRAM 
Applying the sine rule to the inlet triangle we find 
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If all the angles are known, then vw1 may be found as a fraction of u1. 
 

DIAGRAM POWER 
 
Because u is different at inlet and outlet we express the diagram power as : 
 
  D.P. = m ∆(uvw)= m (u1vw1 – u2vw2) 
 
The kinetic energy represented by v2 is energy lost in the exhausted water. For maximum 
efficiency, this should be reduced to a minimum and this occurs when the water leaves radially with 
no whirl so that vw2 = 0. This is produced by designing the exit angle to suit the speed of the wheel. 
The water would leave down the centre hole with some swirl in it. The direction of the swirl 
depends upon the direction of v2 but if the flow leaves radially, there is no swirl and less kinetic 
energy. Ideally then, 
 
  D.P. = m u1 vw1 



WATER POWER 
 
The water power supplied to the wheel is mg∆H where ∆H is the head difference between inlet and 
outlet. 

HYDRAULIC EFFICIENCY 
 
The maximum value with no swirl at exit is  ηhyd = D.P./W.P. = u1v w1/gρH 
 

OVERALL EFFICIENCY 
  ηo/a= Shaft Power/Water Power 
          ηo/a = 2πNT/mg∆H 

LOSSES 
 
The hydraulic losses are the difference between the water power and diagram power. 
Loss = mg∆H - mu1vw1= mghL 
hL = ∆H – u1vw1/g 
∆H - hL = u1vw1/g 
 
 
 

 SELF ASSESSMENT EXERCISE No. 2 
 
 You have studied the basic principles of Pelton , Kaplan and Francis turbines. 
 
 Hydroelectric schemes may have very high pressures (e.g. mountain lakes). They may have 

very low pressures (e.g. dammed lakes). The pressure head may vary (e.g. tidal barrage 
schemes). They may have access to large or small quantities of water. Sometimes they are used 
as pumps (e.g. pumped storage schemes). 

 
 Find out what each turbine is best suited to. Explain what it is in their design that suit to them 

to their application. 
 



2. CENTRIFUGAL PUMPS 
 
2.1 GENERAL THEORY 
 
A Centrifugal pump is a Francis turbine running backwards. The 
water between the rotor vanes experiences centrifugal force and 
flows radially outwards from the middle to the outside. As it flows, 
it gains kinetic energy and when thrown off the outer edge of the 
rotor, the kinetic energy must be converted into flow energy. The 
use of vanes similar to those in the Francis wheel helps. The 
correct design of the casing is also vital to ensure efficient low 
friction conversion from velocity to pressure. The water enters the 
middle of the rotor without swirling so we know vw1 is always 
zero for a c.f. pump. Note that in all the following work, the inlet is 
suffix 1 and is at the inside of the rotor. The outlet is suffix 2 and is 
the outer edge of the rotor. 
      Fig. 18 Basic Design 

 
The increase in momentum through the rotor is found as always by drawing the vector diagrams. At 
inlet v1 is radial and equal to vr1 and so vw1 is zero. This is so regardless of the vane angle but 
there is only one angle which produces shockless entry and this must be used at the design speed. 

 
At outlet, the shape of the vector diagram is greatly affected by the vane angle. The diagram below 
shows a typical vector diagram when the vane is swept backwards (referred to the vane velocity u). 

 
Fig. 19 

 
vw2 may be found by scaling from the diagram.  We can also apply trigonometry to the diagram as 
follows. 
 vw2 = u2 - vr2/tanα2  
 vr2 = Q/circumferential area = Q/(πD2h2k) 
 u2 = πND2 
hence vw2 = u2 - Q/(πD2h2k tan α2) =  u2 - vr2/tan α2) 



DIAGRAM POWER 
  D.P.= m∆uvw  
 
Usually vw1 is zero this becomes D.P.= mu2vw2  
 
WATER POWER 
    W.P. = mg∆h 
 
MANOMETRIC HEAD ∆hm 
 
This is the head that would result if all the energy given to the water is converted into pressure head. 
It is found by equating the diagram power and water power. 
 
mu2vw2 = mg∆hm ∆hm = u2vw2/g 
 
MANOMETRIC EFFICIENCY ηm  
   
  ηm = W.P./D.P. = mg∆h/ mu2vw2 = mg∆h/ mg∆hm 
  ηm = ∆h/∆hm 
 
SHAFT POWER   

S.P. = 2πNT 
 
OVERALL EFFICIENCY   

ηo/a = W.P./S.P. 
 
KINETIC ENERGY AT ROTOR OUTLET  
 

K.E. = mv22/2 
 
Note the energy lost is mainly in the casing and is usually expressed as a fraction of the K.E. at exit. 



 
 

 SELF ASSESSMENT EXERCISE No. 3 
 
 
 Below is the vector diagram for a centrifugal pump. 

 
Inlet vector diagram 

  
OUTLET VECTOR DIAGRAM 

 The important data follows. 
 
 The flow enters radially without shock. 
 Rotor outlet diameter D2 = 100 mm 
 Flow rate  Q = 0.0022 m3/s 
 Density of water  1000 kg/m3 
  
 The developed head is 5 m and the power input to the shaft is 170 Watts.  
 vr1 = vr2 = 0.35 m/s 
 u1 = 3 m/s 
 u2 = 7.5 m/s 
 
 Draw the vector diagrams to scale and determine the following. 
 
a. The inlet vane angle α1 
b. The change in the velocity of whirl ∆vw 
c. The speed N 
d. The diagram power 
e. The manometric head ∆hm 
f. The manometric efficiency ηm 
g. The overall efficiency ηo/a 
 
 
 
 
 
 
 


