91 2000

$$
\begin{aligned}
& h_{1 g} @ 35^{\circ} \mathrm{C}=1123.9 \mathrm{~kJ} / \mathrm{kg} \\
& h_{3}=h_{\mathrm{g}} @ 35^{\circ} \mathrm{C}=347.4 \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=h_{\mathrm{g}}+x h_{f g}=347.4+0.8 \times 1123.9=4246.52 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

HEAT REJECTED AT COMRENSEX

$$
\omega(\text { out })=h_{3}-h_{3}=899.12 \mathrm{~kJ} / \mathrm{kg}
$$

THE SUBSTANCE APPEARS TO BE AMMONIA (TABLES Meg $=1123.2 \mathrm{KJl} \operatorname{kg}$ @ $35^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& h_{4}=h_{3} \\
& S_{S_{3}}=\frac{-h_{1}}{T}=\frac{1123.9}{273+35}=3.649 \\
& s_{3}-s_{2}=80 \%_{0} \times 3.649 \\
& =2.9192
\end{aligned}
$$

THE EXAMINER SAYS IT REVOLVES A BOUT SETTING h or S To ZERO AT ANY POINT.

1 CANNOT SEE HOW THIS HELPS

Q2 The diagram shows an idealised regenerative steam cycle. In the turbine, heat is transferred from the steam to the feed-water and no heat is lost to the surroundings. The water at point (3) is saturated at 0.05 bar pressure. The water at point (5) is saturated at 200 bar pressure. The steam at point (3) is at $600^{\circ} \mathrm{C}$. The feed pump process is adiabatic and reversible. The expansion in the turbine from point (6) to point (2) is isentropic.
(a) Draw the $\mathrm{T}-\mathrm{s}$ diagram for the cycle indicating the heat gained by the feed-water from (4) to (5) and the heat lost by the steam from(1) to (6).
(b) Assuming a cycle efficiency of 40%, determine the dryness fraction at point (2) and the work output of the cycle.
(c) Determine the temperature of the steam at (6), the dryness fraction and enthalpy.
(d) Comment on the distribution between work output and heat transfer within the turbine.

Assume the specific heat capacity of water is $4.187 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Also assume straight condition lines for the steam and feed-water in the regenerative section of the turbine.
COMMENT
As will be seen below, I cannot obtain sensible answers to this question and suspect the 40% efficiency is the cause of the problem but if anyone can point out an error in my method, please let me know.

SOLUTION

a) The shaded areas represents the heat transfer inside the turbine from the steam into the feed water so the areas should be equal.

(b)

Point (1) 200 bar $600^{\circ} \mathrm{C} \quad \mathrm{h}_{1}=3537 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{1}=6.505 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Point (2) 0.05 bar
Point (3) saturated water @ $0.05{\text { bar } \mathrm{h}_{3}=138 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{3}=0.476 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, ~}_{\text {K }}$
$\mathrm{t}_{\mathrm{s}}=32.9^{\circ} \mathrm{C}$
Point (4) $\quad \mathrm{s}_{4}=0.476$ (rev adiabatic 3 to 4)
Point (5) saturated water @ 200 bar $\mathrm{h}_{6}=1827 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{6}=4.01 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad \mathrm{t}_{\mathrm{s}}=365.7^{\circ} \mathrm{C}$

BOILER

$$
\begin{aligned}
& \mathrm{Q}(\mathrm{in})=\mathrm{h}_{1}-\mathrm{h}_{5}=3537-1827=1710 \mathrm{~kJ} / \mathrm{kg} \\
& \eta=40 \%=\mathrm{W}(\text { nett }) / \mathrm{Q}(\mathrm{in})
\end{aligned}
$$

NETT WORK

$\mathrm{W}($ nett $)=0.4 \times 1710=684 \mathrm{~kJ} / \mathrm{kg}$ This is the work output of the cycle.

PUMP

Work input $=$ volume $\times \Delta \mathrm{p}=0.001 \mathrm{~m}^{3} / \mathrm{kg} \times(200-0.05) \times 10^{5}=19995 \mathrm{~J} / \mathrm{kg}$ or $20 \mathrm{~kJ} / \mathrm{kg}$
Pump work $=20 \mathrm{~kJ} / \mathrm{kg}=\mathrm{c} \Delta \theta \Delta \theta=20 / 4.187=4.8 \mathrm{~K}$
$\theta_{3}=\mathrm{t}_{\mathrm{s}} @ 0.05 \mathrm{bar}=32.9^{\circ} \mathrm{C}$
Work out of turbine $=\mathrm{W}$ (out) $=684+20=704 \mathrm{~kJ} / \mathrm{kg}$

CONDENSER

Heat Loss from cycle $=\mathrm{Q}($ out $)=\mathrm{Q}(\mathrm{in})-\mathrm{W}(\mathrm{nett})=1710-684=1026 \mathrm{~kJ} / \mathrm{kg}$
Check $\eta=1$ - Q(out)/ Q(in) $=1-1026 / 1710=40 \%$
$\mathrm{h}_{2}=\mathrm{h}_{3}+\mathrm{Q}$ (out) $=138+1026=1164 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=1164=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fg}}$ at 0.05 bar $=138+2423 \mathrm{x}$
$\mathrm{x}_{2}=0.423$
$\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{sfg}$ at 0.05 bar $=0.476+.423(7.918)=3.825 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=\mathrm{s}_{6}$

(c) HEAT TRANSFER

Heat received from (4) to (5) $\mathrm{Q}=$ shaded area under process line.
$\theta_{4}=32.9+4.8=37.7^{\circ} \mathrm{C}$
$\mathrm{Q}_{\mathrm{T}}=\left(\mathrm{s}_{5}-\mathrm{s}_{4}\right)(37.7+365.7) / 2=(4.014-0.476)(37.7+365.7) / 2=713.6 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{Q}_{\mathrm{T}}=713.6 \mathrm{~kJ} / \mathrm{kg}$ This is almost equal to the work output of the turbine.
This is the same for process 1 to 6 and can be used to find T_{6}
$\mathrm{Q}_{\mathrm{T}}=\left(\mathrm{s}_{1}-\mathrm{s}_{6}\right)\left(600+\mathrm{T}_{6}\right) / 2$
$\mathrm{Q}_{\mathrm{T}}=(6.505-3.825)\left(600+\mathrm{T}_{6}\right) / 2=713.6 \mathrm{~kJ} / \mathrm{kg}$
(2.68) $\left(600+\mathrm{T}_{6}\right) / 2=713.6$
$\left(600+\mathrm{T}_{6}\right)=532.5$
$\mathrm{T}_{6}=-67.5$ silly ??????
Another approach is as follows.
$\mathrm{h}_{1}-\mathrm{h}_{2}=\mathrm{W}$ (out) $+\mathrm{Q}_{\mathrm{T}}$
$3537-\mathrm{h}_{2}=704+713.6=1417.6 \quad \mathrm{~h}_{2}=3537-1417.6$
$\mathrm{h}_{2}=2119.4 \mathrm{~kJ} / \mathrm{kg}$ and this does not agree with the other method
$\mathrm{h}_{2}=2119.4=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fg}}$ at 0.05 bar $=138+2423 \mathrm{x}$
$\mathrm{x}_{2}=0.818$
$\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{s}_{\mathrm{fg}}$ at $0.05 \mathrm{bar}=0.476+.818(7.918)=6.951 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ This is larger than s_{1} so this is also a
silly answer. No sensible answer to this question.
A third approach
Ideal conditions suggest that $\mathrm{T}_{6}=\mathrm{T}_{4}$ so that there is isothermal heat transfer all through the heat exchanger.
In this case $T_{6}=37.7^{\circ} \mathrm{C}$ and $\mathrm{p}_{\mathrm{s}}=0.065$ bar
$\mathrm{s}_{6}=\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{s}_{\mathrm{fg}}$ at 0.065 bar but there are two possible values from above.
$44 \quad 2000$

$$
\begin{aligned}
& h_{1}=3241 \mathrm{~kJ} / \mathrm{k}_{3} \\
& h_{5}=28<3 \mathrm{k} 51 \mathrm{k}_{9}
\end{aligned}
$$

hp Tamputa
Feoin $h-s$ chait $h_{2}^{\prime}=2720 k 5 l k_{j}$

$$
\begin{aligned}
& \eta_{1}=85=\frac{3241-h_{2}}{3241-242} \quad h_{2}=2968 \mathrm{k} / \mathrm{l}_{\mathrm{g}} \\
& P_{\text {cont }}=250(3241-2468)=68.2512 \mathrm{~m}
\end{aligned}
$$

AD. ABHELK MIxCNLS

$$
\begin{aligned}
& 250 h_{2}+102 h_{13}=350 h_{4} \\
& 250+2465+102 \times 2803=350 h_{4} \\
& h_{4}=2921 \mathrm{kj} \mathrm{k}_{3}
\end{aligned}
$$

dip Tarbink

$$
p_{4}=306 \quad b_{4}=2 i_{21}
$$

Frion sitract $\quad h_{6}{ }^{\prime}=2 a x k 5 / \mathrm{kg}$

$$
N / 4=-52=\frac{2921-h_{b}}{2921-200} \quad h_{L}=2190 \mathrm{kSlkis}
$$

$$
h_{5}=265<\pi i k_{5}
$$

Q4 20 200

$$
\begin{array}{ll}
P_{4-5} & P=38(2721-2650)=9405 \mathrm{men} \\
f_{5-5} & P=240(2650-2190)=1334 \mathrm{mov}
\end{array}
$$

Pumis iDCote iozere $=$ val $\times \Delta_{p}$

$$
\begin{aligned}
& \text { 7-8 } \quad P=290 \times 001 \times(5 \ldots 1) \times 10^{5}=142.1 \mathrm{kN} \\
& \text { a-ic } \quad \vec{y}=\left(\cos +\cdots(3 c-5) \times 10^{5}=250 i m\right. \\
& \text { at.11 } P=250 \times \cos (102-5) \times 10^{=}=2.375 \mathrm{Mw} \\
& \text { NEET Powín coet }=2465-61142-0.45-2.375 \\
& \text { Prat }=2437 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fozt }=290\left(h_{2}-h_{7}\right)=290(2190-192) \\
& Q_{\text {coit }}=574.42 \mathrm{Mm} \\
& Z_{m}=\text { Eaxct }+ \text { Pmit }^{\prime}=826.92 \text { Mus } \\
& \eta_{\text {ph }}=\text { Prut/Zin }=243.7 / 826.42=33.5 \%
\end{aligned}
$$

962000

$$
\begin{aligned}
\Gamma_{p}=10 & T_{1} \\
\frac{T_{3}}{} & =293 \mathrm{~K} \\
& =1173 \mathrm{~K}
\end{aligned}
$$

Gas consianzs Alr

$$
\begin{aligned}
& R_{a}=R_{0} / m=287 J / \mathrm{kgk} \\
& C_{p a}=1.004 \mathrm{~kJ} / \mathrm{kg} k \\
& K_{a}=1.4
\end{aligned}
$$

GIS constants (Tafbade)

$$
\begin{aligned}
& R_{g}=R_{0} / 32=259.81 \mathrm{~J} / \mathrm{kgk} \\
& C_{p g}=1.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \text { 总 } \\
& C_{v g}=C_{P_{g}}-R_{g}=1200-259.81=940.2 \mathrm{~J} / \mathrm{kgk} \\
& \gamma_{g}=C_{b} / C_{v g}=1200 / 940.2=1.276
\end{aligned}
$$

Com PRESSGR

$$
\begin{aligned}
& T_{2}^{\prime}=293 \times 10^{\frac{\gamma}{\gamma 1}} \\
& T_{2}=293 \times 10^{.286}=566 \mathrm{~K}
\end{aligned}
$$

ISEnTpopic Efticienct

$$
\begin{aligned}
& \eta_{1 s}=\frac{T_{2}^{\prime}-\pi}{T_{2}-\pi_{1}} \quad 0.88=\frac{566-293}{T_{2}-293} \\
& \bar{r}_{2}=603.2 \mathrm{~K}
\end{aligned}
$$

$$
\Phi(1 \sim)=M_{g} C_{9} T_{3}-M_{a} C_{1} T_{2}
$$

USNG FUEL CALOLINC VALUE

$$
\begin{aligned}
& \Phi(m)=m_{f} \times 45000 \quad m_{g}=m_{a}+m_{f} \\
& 45000 m_{f}=\left(m_{a}+m_{f}\right) \times 1.2 \times 1173-m_{a} \times 1.004 \times 603.2 \\
& 45000=\left(\frac{m_{a}}{m_{f}}+1\right) \times 1.2 \times 173-\frac{m_{a}}{m_{f}} \times 1.004 \times 603.2 \\
& 45000=1407.6 m_{a} / m_{f}+1407.6-605.5 m_{a} / m_{f} \\
& 43592=802 m_{a} / m_{f} \quad m_{a} / m_{f}=54.35
\end{aligned}
$$

Q6 2eser
IURBINE $\quad p_{3}=90 \%_{0} \times p_{2}=q$ tar $\quad r_{p}=9$

$$
T_{4}^{\prime}=T_{3}\left(\frac{1}{r_{p}}\right)^{\frac{x-1}{p}}=1173\left(\frac{1}{9}\right)^{-226 / 1.226}=729 \mathrm{~K}
$$

ISEnTlupic SAficienc-1

$$
D_{15}=\frac{T_{3}-T_{4}}{T_{3}-T_{4}} \quad 0.9=\frac{1173-T_{4}}{1173-729}
$$

$$
T_{4}=773.6 \mathrm{~K}
$$

Poute ore $\tau=M$ Cpg $\left(T_{3}-T_{4}\right)$

$$
P(\text { out } T)=m_{g} \times 1.2 \times(1173-773.6)=479.2 \mathrm{Mg}_{g}
$$

COMPRESSO μ

$$
\begin{aligned}
P(1 N) & =M_{a} C_{a}\left(T_{2}-\overline{T_{1}}\right)= \\
& =M_{a} \times 1.004(603.2-293) \\
& =311.4 \mathrm{Ma}
\end{aligned}
$$

NEET POWER

$$
\begin{aligned}
& P_{\text {rett }}=479.2 \mathrm{Mg}-311.4 \mathrm{Ma} \\
& \Phi(1 n)=45000 \mathrm{M}_{\mathrm{f}}
\end{aligned}
$$

Efficicencl

$$
\begin{aligned}
& M_{\text {th }}=\frac{P_{\text {nett }}}{D i n}=\frac{499.2 \mathrm{Mg}-311.4 \mathrm{Ma}}{45 \operatorname{mg}} \\
& m_{g}=m_{a}+m_{f} \quad m_{a}=54.35 m_{8} \quad m_{g}=55.35 m_{f} \\
& \eta_{\mathrm{m}}=\frac{479.2 \times 55.35 \mathrm{mf}_{\mathrm{f}}-311.44 \times 54.35 \mathrm{mt}}{45000 \mathrm{mf}^{\prime}} \\
& \eta_{H}=\frac{9612}{45000}=0.214 \text { or } 21.4 \%
\end{aligned}
$$

962600
Capnor cofficienty

$$
\begin{aligned}
M_{C} & =1-\frac{T_{\operatorname{COLD}}}{T_{H O T}} \\
& =1-\frac{293}{1173}=0.75 \sim 75 \%_{0}
\end{aligned}
$$

982000

$$
\begin{aligned}
& \gamma=1.25 \\
& \tilde{m}=34 \mathrm{~kg} / \mathrm{knol} \\
& \bar{T}=2800 p_{0}=256 \\
& R=R_{0} / \mathrm{m}^{2} \\
& R=\frac{8314}{34}=244.53 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

$$
C_{p}=\frac{R r}{r-1}=\frac{244.53 \times 1.25}{0.25}=1222.6 \mathrm{~J} / \mathrm{kgK}
$$

- Flow is cHokGD se $\frac{\bar{\pi}}{\frac{\pi}{e}}=1+\frac{(r-1)}{2}=1.125$

$$
\begin{aligned}
& T_{\epsilon}=2800 / 1.125=2489 \mathrm{~K} \\
& \frac{P_{E}}{P_{0}}=\left(\frac{2}{r+1}\right)^{\frac{5}{r-1}}=0.5549 \\
& P_{t}=25 \times 0.5549=13.873 \mathrm{f}
\end{aligned}
$$

Sonce veroutz1 $a_{t}=\sqrt{\gamma R T_{t}}$

$$
a_{t}=V_{t}=\sqrt{1.25 \times 244.53 \times 2489}=872.2 \mathrm{~m} / \mathrm{s}
$$

nensiote $P_{t}=\frac{\mu}{V}=\frac{P}{R T}=\frac{13.873 \times 10^{5}}{244.53 \times 2489}$

$$
P_{t}=2.279 \mathrm{~kg} / \mathrm{m}^{3}
$$

$E x / T T_{e}=T_{0} r^{8-1 / r}=2800(1 / 25)^{\frac{.25}{.25}}=1470.8 \mathrm{~K}$

$$
C_{p} \tau_{0}=C_{p} \tau_{e}+\frac{v^{2}}{2}
$$

982000

$$
\begin{aligned}
& \left.2 C_{p}\left(T_{0}-T_{e}\right)=V_{e}^{2} \quad \text { (Velocity }\right) \\
& 2 \times 1222.6 / 2800-1470.8)=V_{e}^{2} \\
& V_{e}=180.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Densiat at नxit $P_{e}=\frac{M}{V}=\frac{P_{E}}{R_{T_{e}}}$

$$
P_{e}=\frac{1 \times 10^{5}}{244.53 \times 1470.8}=0.278 \mathrm{~kg} / \mathrm{m}^{3}
$$

mass flow $=\rho A V$

$$
\begin{aligned}
& P_{t} A_{t} V_{t}=P_{e} A_{e} V_{e} \quad \frac{A_{e}}{A_{t}}=\frac{P_{E} V_{t}}{P_{e} V_{e}} \\
& \frac{A_{e}}{A_{t}}=\frac{2.279}{0.278} \times \frac{8722}{1803}=3.96 \mathrm{~S} \text { ANSWtR }
\end{aligned}
$$

THRUST

$$
\begin{aligned}
& F=m \Delta V+A_{e} \Delta_{p} \\
& F=1988 \times 1803 \\
& +3.965 m / \times 10^{5} \\
& \text { For } A_{t}=1 \mathrm{~m}^{2} \\
& A_{C}=3.96 \mathrm{sm}^{2} \\
& m=2.279 \mathrm{~kg} \times \mathrm{AV} \\
& m=2.279 \times 1 \times 872.2 \\
& m=1988 \mathrm{~kg} / \mathrm{m}^{2} \\
& F=3.585 \mathrm{MN}+0.397 \mathrm{Mal} \\
& F=3.982 \mathrm{MN} \text { Ansmase }
\end{aligned}
$$

992000

Consider a thin cyindpicon later radial THckakss dr and TEMP. Difference $d T$

Fourcés lan $\dot{\varphi}=-k A \frac{d T}{d r} \quad A=2 \pi r \times k$ ength

$$
\begin{aligned}
& \dot{Q}=-K \times 2 \pi r L \frac{d T}{d r} \\
& 2 \pi K L d T=-\phi \frac{d r}{r} \\
& 2 \pi K L \int_{T}^{T_{2}} d T=-\dot{Q}^{R_{2}} \int_{R_{1}}^{r} \frac{d r}{r} \quad Q \text { sAmE AT ALL } \\
& 2 \pi K L\left(T-\overline{r_{2}}\right)=-\dot{\varphi} \ln R_{1}\left(R_{2}=+\dot{\varphi} \ln R_{2} / R_{1}\right. \\
& \dot{\varphi}=\frac{2 \pi k L\left(\overline{T_{1}}-T_{2}\right)}{\ln R_{2} / R}=\text { Constant }\left(T_{1}-T_{2}\right)
\end{aligned}
$$

THERMAL RESISTANCE $R=\frac{T_{1}-T_{2}}{\Phi}$

$$
\begin{aligned}
& R_{1}=\frac{\ln R_{2} / R_{1}}{2 \pi \mathrm{~kL}} \quad \begin{array}{l}
\text { TAKE } L=/ \mathrm{m} \\
K=1.2 \mathrm{~W} / \mathrm{hk} \text { Foe linear } \\
\text { Layer }
\end{array} \\
& R_{1}=\frac{\ln 70 / \mathrm{so}}{2 \pi \times 1.2}=0.044626 \mathrm{k} / \mathrm{W}
\end{aligned}
$$

9920000
outGh later Convection

$$
\begin{array}{rlrl}
\dot{\varphi} & =h A\left(T_{a}-T_{2}\right)=h \times 2 \pi r L\left(T_{a}-T_{2}\right) \\
\dot{\varphi} & =30 \times 2 \pi \times .09 \times 1\left(\bar{T}_{a}-\bar{T}_{2}\right) & r & =90 \mathrm{~mm} \\
& =16.96\left(\bar{r}_{a}-\bar{\tau}_{2}\right) & & h=30 \mathrm{~m} / \mathrm{m}^{2} \mathrm{k}
\end{array}
$$

THermac Resustmace $K_{3}=\frac{T_{a}-T_{2}}{\Phi}=0.0589 \frac{\mathrm{~K}}{\mathrm{~W}}$ AnALDGI 3 Resistances in selies

$$
\begin{aligned}
& R\left(\sigma_{\Delta A L}\right)=R_{1}+R_{2}+R_{3}=0.044626+0.016666 \\
&+0.0589 \\
& R_{T}=0.12024 \mathrm{k} / \mathrm{W} \\
& \dot{\varphi}=\frac{T_{1}-T_{a}}{R_{T}}=8.317\left(\tau_{2}-T_{a}\right)
\end{aligned}
$$

RGVEXSING LATEAS

$$
\begin{aligned}
& R_{1}=\frac{\ln 20 / 50}{2 \pi \times 2.4}=0.022313 \mathrm{~N} / \mathrm{w} \\
& R_{2}=\frac{\ln 90 / 20}{2 \pi \times 1.2}=0.03333 \mathrm{ta} \\
& R_{3}=0.0589 \mathrm{ta} / \mathrm{w} \\
& R_{T}=0.1145 \mathrm{k} / \mathrm{W} \\
& \dot{\varphi}=\frac{T_{1}-T_{a}}{.1145}=8.23\left(\tau_{1}-T_{a}\right)
\end{aligned}
$$

992000

$$
\begin{aligned}
\text { Diffetcence } & =8.73-8.317 \\
& =0.413
\end{aligned}
$$

$$
\% \text { of } 8.73 \quad \frac{.413}{8.73} \times 100=4.70
$$

THIS 15 1/2 THE EXPECTO An sware.

Q1 2001

To find h,

AT 2.006 bar
lok sufortheat $0^{\circ} \mathrm{C}$

$$
h=392.51
$$

$$
\text { Mid Pount } h=396,79
$$

$$
h=401.07
$$

h_{2} a $16.812 \mathrm{bar} \epsilon_{s}=60^{\circ} \mathrm{C}$
$\therefore 80^{\circ} \mathrm{C}$ us zok Suparhat
h_{2} e 16.826 m 2ak s.h. is $451.93 \mathrm{~kJ} / \mathrm{h}$

$$
h_{3}=h_{6} @ 16.826 \mathrm{~m}=287.51 \mathrm{~kJ} / \mathrm{kg}
$$

Heat Pump $c_{\text {of }} P=\frac{\Phi(\text { out })}{P(\text { in })}$

$$
\begin{aligned}
\Phi(o u T) & =m_{r}\left(h_{2}-h_{3}\right) \\
& =0.025(451.93-287.51) \\
& =4.11 \mathrm{~kW}
\end{aligned}
$$

$$
\cos P=4.11 / 1.5=2.74
$$

Pow OR PASSED inTo THE REARIGEPAUT 15 Mr (h2-h.)

$$
\begin{aligned}
& =0.025(451.93-396.79) \\
& =1.3785 \mathrm{tw}
\end{aligned}
$$

Powar LOSS KROM CASANG $=1.5-1.3785$

$$
=0.02215 \mathrm{~km}
$$

If COOLED TO $55^{\circ} \mathrm{C}$ AT POMT (3)
$h_{3} \simeq h_{1} @ 55^{\circ} \mathrm{C}$ (NGPeest we can let)

$$
h_{3} \simeq 279.46 \mathrm{k} 51 \mathrm{~kg}
$$

$$
\begin{aligned}
& Q(\text { ont })=0.025(451.93-279.46)=4.311 \mathrm{kad} \\
& \text { copp }=4.311 / 1.5=2.874
\end{aligned}
$$

AN IMPROVGMGNT AS EXPGCTED BCOT WE WOMLD NEED MOAE EUAPORATION To MAINTAIN STATEA CONDITOUS.

942001
1)

$$
\begin{aligned}
& \eta=1-\frac{\theta_{u} T}{\theta_{m}}=1-\frac{m \omega\left(T_{5}-T_{1}\right)}{m c_{v}\left(T_{3}+T_{2}\right)+m \cos \left(T_{4}-T_{3}\right)} \\
& \eta=1-\frac{c_{r}\left(T_{5}-T_{1}\right)}{c_{r}\left(T_{3}-T_{2}\right)+c_{p}\left(T_{4}-T_{3}\right)}
\end{aligned}
$$

NB Heat REJEETED AT const. VCL (5-1)
HeAt input at const val ($2-3$) And CONST. PlESSWRE (3-4)
ii) $r_{2}=10$

$$
P_{1}=1 \mathrm{tar} T_{1}=290 \mathrm{k} \quad m_{a}=0.05 \mathrm{~kg} / \mathrm{s}
$$

$\Phi \mathrm{Dm}=50 \mathrm{kw}$
馬 2-3 $=25 \mathrm{~kW}$
Fin $\quad 3-4=25 \mathrm{~km}$
Highast P and T is at hour (4)

$$
\begin{aligned}
& r=C_{p} / a=1.004 / 0.717=1.4 \\
& \begin{aligned}
T_{2}=11(r)
\end{aligned} \\
& =290 \times 10 \\
& \\
& \\
&
\end{aligned}
$$

Caust $v_{a} 1$ Heal.in

$$
\begin{aligned}
& 25 \mathrm{kw}=m\left(T_{3}-T_{2}\right) \\
& 25=0.05 \times 0.717\left(T_{3}-728.4\right) \\
& \quad T_{3}=697.35+728.4=1425.8 \mathrm{~K}
\end{aligned}
$$

Constent Prossume Hactron

$$
\begin{aligned}
& 25=0.05 \% 1.004\left(T_{4}-1425.8\right) \\
& \bar{T}_{4}=498+1425.8=1923.8 \mathrm{k} \\
& P_{3}=P_{4}=\text { Hesitest lec35 } \\
& P_{3}=\frac{\rho_{1} v_{1}}{r_{1}} \times \frac{\sqrt{3}}{V_{3}}=\frac{1}{290} \times \frac{10}{29} \times 1425.8 \\
& p_{3}=p_{4}=49.16 \mathrm{6ar} \\
& P_{\text {natt }}=\Phi_{\text {L }}-\Phi \text { aut } \\
& B_{\text {et }}=m a(\overline{r s}-T) \\
& \frac{P_{4} V_{4}}{r_{4}}=\frac{P_{3} V_{3}}{r_{3}} \\
& \frac{V_{3}}{V_{4}}=\frac{P_{4}}{P_{3}} \times \frac{\overline{T 3}}{V_{4}}=1 \times \frac{14258}{1923.8}=0.74 \\
& \frac{\sqrt{4}}{\sqrt{3}}=1.35
\end{aligned}
$$

$$
\begin{aligned}
& T_{5}=T_{4}\left(r_{V_{4} / V_{1}}^{0.4}\right. \\
& \frac{V_{5}}{V_{4}}=\frac{V_{5}}{V_{3}} \times \frac{V_{3}}{V_{4}}=10 \times .74=7.4 \\
& T_{5}=1923.8 \times\left(\frac{1}{7.4}\right) \cdot 4=863.9 \mathrm{k} \\
& \phi \text { ant }=0.05 \times 717 / 863.9-290) \\
& =20.57 \mathrm{kw} \\
& P(\text { neH })=50-20.57=29.43 \mathrm{~km} \\
& \eta=\frac{29.43}{50}=58.92
\end{aligned}
$$

952001

KNown Point at (1) watere $1006200^{\circ} \mathrm{C}$ IDEAKAY WE NGED watter TABLES BUT AS TITCY ARE NOT SUPILIED $h_{1} \simeq h_{f} @ 200{ }^{\circ} \mathrm{C}$

$$
h_{1} \simeq 855 \mathrm{~kJ} / \mathrm{kg}
$$

Pump 2

(8) satubated watex

$$
\begin{aligned}
& P_{5}=p_{5} @ 40^{\circ} \mathrm{C} \\
& P_{5}=0.07375605 \\
& P_{6}=1006 \mathrm{ar}
\end{aligned}
$$

$$
\begin{aligned}
\text { Powet inPuT } & \simeq V 01 \times \Delta_{P} \quad \text { Nominally } v=-0011 \\
\text { Powbe inPuT } & =0.001 \times(100-0.07375) \times 10^{5} \\
& =10000 \mathrm{~m} / \mathrm{kg} \text { or } 10 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Enceay balancé

$$
\begin{aligned}
& h_{6}=h_{5}+10 \mathrm{~kJ} / \mathrm{kg} \\
& h_{5}=h_{f} @ 40^{\circ} \mathrm{C}=167.5 \mathrm{~kJ} / \mathrm{kg} \\
& h_{6}=177.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

pump 1

20 bar xks

$$
\begin{aligned}
\text { Pouke input }: v \Delta_{p} & =0.001(100-20) \times 10^{5} \\
& =800051 \mathrm{~kg} \\
& =8 \mathrm{k} 5 \mathrm{lkg}
\end{aligned}
$$

EnGRGY BACANCE $h_{9}=h_{8}+8$

$$
\begin{aligned}
& h_{8}=h_{1} @ 2060 \mathrm{G}=999 \mathrm{~kJ} \mathrm{~kg} \\
& h_{9}=909+8=917 \mathrm{~kJ} \mathrm{~kg}
\end{aligned}
$$

feed HEATER

$$
\begin{aligned}
h_{3} & =3100 \mathrm{k} 5 / \mathrm{kg} \\
h_{8} & =h_{1} e 206 \\
& =167.5 \mathrm{k} 5 / \mathrm{kg}
\end{aligned}
$$

ENECGY BACANCE

$$
\begin{aligned}
& (1-x) h_{6}+x h_{3}=(1-x) h_{7}+x h_{8} \\
& (1-x) 177.5+31000 x=(1-x) h_{7}+x(167.5) \\
& 177.5-177.5 x+3100 x=(1-x) h_{7}+167.5 x \\
& 177.5+2755 x=(1-x) h_{7} \\
& h_{7}=\frac{177.5+2755 x}{(1-x)}
\end{aligned}
$$

MIXER

$$
\begin{aligned}
& 1 h_{1}=(1-x) h_{7}+x h_{9} \\
& 855=(1-x) h_{7}+x h_{9} \\
& 855=(1-x)\left\{\frac{177.5+2755 x\}}{(1-x)}\right\}+917 x \\
& 855=177.5+2755 x+9.7 x \\
& 677.9=3672 x \quad x=0.184 \mathrm{~kg}
\end{aligned}
$$

Pump 1

$$
\begin{aligned}
P & =8 \mathrm{~kJ} 1 \mathrm{~kg} \\
& =8 \times 0.184 \mathrm{kw} \\
& =1.6 \mathrm{kw}
\end{aligned}
$$

Pump 2

$$
\begin{aligned}
P & =10 \mathrm{k} 5(\mathrm{~kg} \\
& =10 \times(1-.184) \mathrm{kw} \\
& =8.16 \mathrm{kw}
\end{aligned}
$$

Based in $1 \mathrm{~kg} / \mathrm{s}$ Torah low

Q6 zoral

$$
\begin{aligned}
& \left.h_{1}=\log @ 27^{\circ} \mathrm{C}=412.23+\frac{2}{5}(414.74)-417.23\right)=413.23 \\
& \rho_{1}=\rho_{5} @ 27^{\circ} \mathrm{C}=6.525+\frac{2}{5}(7.7-6.6525)=7-076 \\
& \rho_{3}=\rho_{s} @ 8^{\circ} \mathrm{C}=3.4466+\frac{3}{5}(4.1459-34966)=3.886605 \\
& h_{3}=h_{f} @ 8^{\circ} \mathrm{C}=206.75+\frac{3}{5}(213.57-266.75)=210.84 \mathrm{ks} 1 \mathrm{~kg} \\
& S_{1}=S_{g} \Theta 27^{\circ} \mathrm{C}=1.7158+\frac{2}{5}(1.7142-1.7158)=1.715 \mathrm{k5} \mathrm{~kg} \mathrm{k}
\end{aligned}
$$

1stewthat \＆ic Andicen

$$
\begin{aligned}
& S_{2}=S_{1}=1.7152=S_{t}+r S_{+g} \text { @ } 8^{\circ} \mathrm{C} \\
& s_{f}=1.0243+3 / 5(1.0243-1.048)=1.038 \mathrm{~kJ} / \mathrm{kg} / \mathrm{c} \\
& S_{g}=1.7238+3 / 5(1.7215-1.7238)=1.7224 \mathrm{k} / \mathrm{lg} \mathrm{~K} \\
& S_{t g}=1.7224-1.038=0.6837 \mathrm{~kJ} / \mathrm{kgk} \\
& 1.7152=1.038+x \times .6837 \quad x=0.989 \\
& h_{f}=206.75+3 / 5(213.57-206.75)=210.84-5 / \mathrm{kg} \\
& h_{g}=401.33+3 / 5(404.16-401.33)=403.0365(\mathrm{~kg} \\
& \text { 有诃 }=403.03-210.88=192.19 \mathrm{kJlg} \\
& h_{2}{ }^{\prime}=210.87+.989 \times 192.19=400.91 \mathrm{k} 5 \mathrm{k} \\
& h_{2}=413.23+.9(413.23-400.91)=402.1 \\
& \text { kJitg }
\end{aligned}
$$

Q6 2001

$$
\begin{aligned}
& P_{\text {Gut }}=1000 \mathrm{kw}=\operatorname{mr}\left(h_{1}-h_{2}\right) \\
& 10000=\operatorname{mr}(413.23-402.1) \quad M_{r}=89.85 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Pump

$$
\begin{aligned}
& P_{\text {in }}=\frac{\text { i } V \Delta p}{7.5}=\frac{89.85 \times 1.0075}{0.85}(2.07-3.886) \times 10^{5} \\
& P_{m}=252.2 \mathrm{~km} \\
& h_{*}=h_{3}+\frac{252.2}{89.85}=210.84+2.81=213.6 \mathrm{~kJ} / \mathrm{hs}_{\mathrm{s}} \\
& P_{\text {ret }}=1000-252.2=747.8 \mathrm{kw} \\
& \mathcal{R}_{\text {in }}=\operatorname{Mr}\left(h_{1}-h_{4}\right)=89.85(413.23-213.6) \\
& \mathscr{B} 二=17937 \mathrm{kw} \\
& M_{\text {m }}=\text { Prot } / 4=5.570 \\
& \text { Sout }=M_{r}\left(h_{2}-h_{3}\right)=89.85(402.1-210-86) \\
& \text { Foat }=17185 \mathrm{kw} \\
& \Phi_{\text {rett }}=17937-17185=752 \mathrm{kw}
\end{aligned}
$$

WATER
Bollere

$$
\begin{gathered}
17937=M_{\omega} \times 4.2 \times(28-26) \\
M_{\omega}=2135 \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

Cons

$$
\begin{aligned}
17185 & =\text { muw } \times 4.2 \times(9-5) \\
M_{\omega} & =1023 \mathrm{k} / \mathrm{s}
\end{aligned}
$$

Q7 2001

$$
\begin{aligned}
& p_{2}=16 \times 8 \\
& p_{2}=12.8600 \\
& p_{3}=17.860 \mathrm{ar}
\end{aligned}
$$

$$
\bar{T}^{\prime}=250 \times 16^{2}
$$

$$
r=1.39
$$

$$
T_{2}^{\prime}=250 \times 16^{.280}=544.2 \mathrm{k}
$$

$$
\begin{gathered}
M_{1 s}=0.88=\frac{544.2-250}{\sqrt{2}-250} \quad \bar{T} 2=584.3 \mathrm{~K} \\
P(\mathrm{~N})=M C_{P} \Delta T=1 \times 1.03(584.3-250) \\
P((n)=344.3 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

TuABne $\quad P\left(\sigma_{n}\right)=m c_{p} \Delta T=P$ in

$$
344.3=1 \times 1.19 \times\left(1600-T_{4}\right) \quad T_{4}=1310.67 k
$$

THS IS THE ACTUAL TEMP

$$
\begin{aligned}
& m_{15}=0.9=\frac{1600-1310.7}{1600-T_{4}^{\prime}} \quad T_{4}^{\prime}=1278.6 \mathrm{~K} \\
& \frac{T_{4}^{\prime}}{T_{3}}=\left(\frac{P_{4}}{11.8}\right)^{\frac{x^{\prime}}{2}}=\frac{1278-6}{1600}=0.8=\left(\frac{P_{4}}{11.8}\right)^{0.242} \\
& P_{4}=11.8 \times 0.8^{1 / 24 \mathrm{~K}}=11.8 \times .398=4.7 \mathrm{tar}
\end{aligned}
$$

NozzLE $r=\frac{\rho_{4}}{\rho_{1} L} \hat{4} \frac{4.7}{0.8} \hat{F} \quad 5.875=0.17$
If the nozzees chocked

$$
\begin{aligned}
& r_{c}=\left(\frac{2}{\gamma+1}\right)^{\frac{r}{r-1}}=\left(\frac{2}{1.34+1}\right)^{\frac{1.34}{0.34}}=(.855)^{3.94} \\
& r_{c}=0.5386 \quad p=.5386+4.7=
\end{aligned}
$$

Nance no33le is chackad
Get velocitg is sonic Lorks luke A conv/dir nozze

$$
\left.\begin{array}{rl}
C_{p} T_{4} & =C_{T} T_{5}+\frac{u^{2}}{2} \\
T_{5}^{\prime}=T_{T} & \left(\frac{4.71}{.8}\right)^{\frac{r-1}{r}}
\end{array}=1310.67\left(5 \frac{1}{8^{2} 75}\right)^{.254}\right) ~=836.3 \mathrm{~K}
$$

$$
\begin{aligned}
& \text { Mresur } M_{15}=0.92=\frac{1310.67-\sqrt{5}}{1310.47-836.3} \\
& \overline{T 5}=874.31< \\
& 1.14 \times 1310.67=1.14 \times 878.3+\frac{4^{2}}{2} \\
& u=997.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

momentum thruent

$$
\begin{aligned}
F & =\dot{N} \Delta v \\
& =100 \times(9975-250) \\
& =74.75 \mathrm{kN}
\end{aligned}
$$

Q1 2002

From tables
Point (2) $\quad h=h_{g} @ 556=2790 \mathrm{~kJ} / \mathrm{kg}$
Tuebing $S=S_{g}$ e $556=5.931 \mathrm{~kJ} / \mathrm{kgk}$ IDEAC EXPANSION $2 \rightarrow 3^{\prime}$

$$
\begin{aligned}
s_{2} & =s_{3}^{\prime}=s_{f}+x_{3} s_{+9} @ 15 \mathrm{kar} \\
& 5.931=2.315+x_{3}^{\prime} \times 4.130 \quad x_{3}^{\prime}=0.8755 \\
h_{3}^{\prime} & =h_{1}+x h_{+9} \varrho 1560 r \\
h_{3}^{\prime} & =845+0.8755 \times 1947=2549.7 \mathrm{~kJ} 1 \mathrm{~kg}
\end{aligned}
$$

$$
\text { Isentrupic eftaciency }=0.85=\frac{2790-253}{2790-2549.7}
$$

$$
h_{3}=2585.7 \mathrm{k} 5 \mathrm{~kg}
$$

$$
2585.7=845+x_{3} \times 1947 \quad x_{3}=0.894
$$

Powte $=2000000 \mathrm{kw}=\mathrm{ms}_{\mathrm{s}}(2790-2585.7)$

$$
m_{s}=978.95 \mathrm{~kg} / \mathrm{s}
$$

SEPACATOR

$$
\begin{aligned}
& h_{8}=h_{1} @ 156 a r=845 \mathrm{~kJ} 1 \mathrm{~kg} \\
& h_{4}=h_{9} 巴 156 a r=1947 \mathrm{~kJ} 1 \mathrm{~kg} \\
& m_{4}=978.95 \times 0.894=875.2 \mathrm{~kg} / \mathrm{s} \\
& M_{8}=103.8 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

2nd TuLBINE

$$
\begin{aligned}
& h_{5}= 3039 \mathrm{~kJ} / \mathrm{kg} \quad S_{5}=6.919 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} \\
& S_{5}=S_{6}^{\prime}= 0.832+x_{6}{ }^{\prime} 7.075=6.919 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} \\
& x_{6}^{\prime}=\frac{6.919-0.832}{7.075}=0.860 \\
& h_{6}^{\prime}= 251+0.860 \times 2358=2279.7 \mathrm{k} 5 / \mathrm{kg} \\
& \eta_{15}= 0.85=\frac{3039-h_{6}}{3039-2279.7} \quad h_{6}=2394 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Powor

$$
\begin{aligned}
& P=m \Delta h=875.2(3039-2394) \\
& P=564,848 \mathrm{KW} \\
& P=564.8 \mathrm{~mW}
\end{aligned}
$$

TOTAL TUKBINE POWOR $=764.8 \mathrm{mw}$

Condonsok

$$
\begin{aligned}
\not P_{\text {out }}=m \Delta h & =875.2(2394-251) \\
& =1875.6 \times 10^{3} \mathrm{kw} \\
& =1875.6 \mathrm{MW}
\end{aligned}
$$

Boild

$$
\begin{aligned}
& \mathscr{Q}_{\text {in }}=P+\text { 禺 } \\
& \mathscr{S}_{m}=764.8+1875.6
\end{aligned}
$$

Extcioncy $M=\frac{P}{P_{0}}=\frac{764.8}{2640.4}=0.29$

$$
\eta=2900
$$

022002
(1)

ComlRESSAR

$$
\begin{aligned}
\text { Poware } & =m C_{p} \Delta T=m C_{p}\left(590.3-2 q_{0}\right) \\
& =300.3 m C_{p}
\end{aligned}
$$

Tresing

$$
P_{\text {owur }}=m c_{1} \Delta T=m c_{p}\left(1500-T_{4}\right)
$$

$$
\begin{aligned}
& T_{4}=1 / 99.7 \mathrm{~K} \\
& \eta_{15}=0.92=\frac{1500-1199.7}{15000-T_{4}^{\prime}} \quad T_{4}^{\prime}=1174 K \\
& T_{4}=\bar{\tau}_{3} \quad r_{P}^{-\left(\frac{5}{5}\right)}, 1174=1500 r_{P}^{-.286} \\
& r_{P}{ }^{\cdot \cdots 6}=\frac{1174}{1500}=0.782 \quad r_{p}=2.35 \\
& 2.35=P_{5} / P_{4}=10 / P_{4} \quad P_{4}=10 / 2.35 \\
& P_{4}=4.245605 \\
& \text { CHackeas Nozzec } \\
& T_{5} / T_{4}=2 /(\delta+1)=0.833 \quad T_{5}=1000 \mathrm{~K}
\end{aligned}
$$

If CHOCKCDD, Exit vecocity is Sanic

$$
\begin{aligned}
\text { Velozity } & =a=\sqrt{1+T_{5}} \\
a & =\sqrt{1.4 \times 28^{7} \times 1000}=633.00 \mathrm{n} / \mathrm{s}
\end{aligned}
$$

Volumb hrows RAEE $=$ Ales x vecoccty

$$
\begin{aligned}
& V=A a=0.2 \mathrm{~m}^{2} \times 6.33 .8 \mathrm{~m} / \mathrm{s} \\
& V=126.71 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

CRITCAC PRESSudE Ratio $r_{c}=\left(\frac{2}{\gamma+1}\right)^{\frac{r}{r-1}}=0.528$

$$
\begin{aligned}
P_{5} & =0.528 \times 4.245 \\
& =2.242 \mathrm{kav} \\
\text { MASS } & =\frac{P V}{R_{T}}=\frac{2.242 \times 10^{5} \times 126.77}{287 \times 1000} \\
\text { MAKS } & =99 \mathrm{~kg} / \mathrm{s} \\
\text { THeust } & =\mathrm{m} \mathrm{\Delta vekeits}+A \Delta_{P} \\
& =99 \times(633-8-0)+0.2(2.742-1) \times 10^{5} \\
& =62746 \mathrm{~N}+34840 \mathrm{~N} \\
& =97.6 \mathrm{kN}
\end{aligned}
$$

Q4 2002

$$
\begin{aligned}
& p_{1}=p_{s} e-25^{\circ} \mathrm{C}=1.2376 \mathrm{br} \\
& h_{1}=h_{g} e-25^{\circ} \mathrm{C}=176.48 \mathrm{~kJ} \mathrm{~kg}
\end{aligned}
$$

$h_{2} @ 12.19680^{\circ} \mathrm{C} \quad t_{s}=50^{\circ} \mathrm{C}$ so 30 K Supenitect

$$
\text { 12.196 3ck s.h. } \quad h_{2}=230.33 \mathrm{k} 5 \mathrm{~kg}
$$

$$
h_{3}=h_{4} e 12.196=84.94 \mathrm{~kg} / \mathrm{kg}
$$

$h_{4}=h_{3}$ (THETTIE)
Eout (CovDCNSLX) $=\Delta h=230.33-84.94$ $Q_{\text {out }}=145.39 \mathrm{~kJ} / \mathrm{kg}$
\&in (Gupsentar) $=\Delta h=176.48-84.94$

$$
E_{\text {out }}=91.54 \mathrm{~kJ} \mathrm{lg}
$$

Comprecesore Powat $=\Delta h=230.33-176.48$

PGALLYY $S_{2}=S$, and CHECTINTS THAS MAEGS THE VAPMUR SUPEFIEATED AT (2)

COUSIDCE THE IDEAC COMPRESSSR

$$
s_{1}=s_{2}=0.7127
$$

$$
\begin{aligned}
& P(1 N)=53.85 \mathrm{~kJ} \mathrm{~kg} \\
& C_{\text {of }} P \text { (RGK14) }=\frac{91.54}{53.85}=\underline{\square} \\
& s_{1}=0.7127 \mathrm{~kJ} \operatorname{kg} \mathrm{~K}
\end{aligned}
$$

Feam TABCEB AT $12.196 a r 0.7127$ Puts IT BGFWGON Sg AND 15 k

S_{g}	θ	15 K Supat LEAT
0.6797	0.7127	0.7166

GINGAR INTGXPOCATION

$$
\begin{aligned}
& 0.7127-.6797=0.033 \\
& 0.7166-0.6797=0.0369
\end{aligned}
$$

$\theta=\frac{0.033}{0.0369} \times 15=13.4 \mathrm{~K}$ for iparl Comperisin

SOMILAKCY TO FIND IPCAL EnTHALPY

h_{g}	$13.4 k$	$15 k$	$218.64-206.45=1219$
206.45	h	$218: 64$	

$$
h-206.45=\frac{13.4}{15} \times 12.19=10.9 \quad h=217.3 \mathrm{~kJ} / \mathrm{kg}
$$

LDEAL $h_{2}=217.3 \mathrm{~kJ} 1 \mathrm{~kg}$
AEUAL $h_{2}=230.33$

$$
N_{1 s}=\frac{217.3-176.48}{230.33-176.48}=0.76
$$

Q8 2002

Mss

$$
\begin{aligned}
& P_{g}=0.03166 \text { Gar } Q 25^{0} \mathrm{C} \\
& p_{s 1}=0.65 \times 0.03166=0.0205796 \mathrm{bar} \\
& P_{a}=1.01-p_{s}=0.989421 \mathrm{kar} \\
& w_{1}=0.622 \frac{p_{s}}{p_{a}}=0.012937
\end{aligned}
$$

$$
m_{a}=p V / R T=\frac{0.489421 \times 10^{5} \times V_{A}}{287 \times 298}
$$

Fore \lg of Dey ARR $V_{A}=0.864 \mathrm{~m}^{3}$
$M_{S 1}=\frac{P_{11} V}{R T}$ FoR vapoce VoLume of VAPIneR IS SAME AS VOL OLAIR
$R=462$ FOR WATER vAlouR

$$
\begin{aligned}
& m_{51}=\frac{0.020579 \times 10^{5} \times 0.864}{462 \times 298}=0.0129206 \\
& \omega=M_{s} / M_{a}=0.622 P_{s} / P_{a} \\
& \phi=P_{s} / P_{g}=1.608 \mathrm{~Pa} / P_{g} \\
& p=1.01 \quad \sigma \quad \theta=2.50<\quad \phi=0.65
\end{aligned}
$$

LNLET
$@ 25^{\circ} \mathrm{C} P_{g}=0.03166$ 6ar

$$
\begin{aligned}
\phi=\rho_{s} / P_{g}=0.65 \quad \rho_{s} & =0.65 \times 0.03166 \\
& =0.020579 \mathrm{baw} \\
\rho_{a}=1.01-0.020579 & =0.989421 \mathrm{6ar} \\
\omega=1.62 \times \frac{0.020579}{0.989421} & =0.012937
\end{aligned}
$$

DEW Pornt $=17.8^{\circ} \mathrm{C}$
Exit $\phi_{3}=0.35=P_{53} / P_{9}$

$$
\begin{aligned}
& p_{g_{3}}=P_{5} @ 23^{\circ} \mathrm{C}=0.02808 \mathrm{bar} \\
& p_{53}=0.02805 \times 0.35=0.009828 \mathrm{kar} \\
& P_{a 3}=1.01-0.009828=1.000172 \mathrm{bar} \\
& \omega_{3}=0.622 \mathrm{P}_{5} \mathrm{~Pa}_{a}=0.422 \times \frac{0.009828}{1.000172}
\end{aligned}
$$

$\omega_{3}=0.006111964$

$$
m_{53}=0.006112 m_{a}
$$

$$
\mathrm{msl}_{1}=0.0129206 \mathrm{ma}
$$

CONDONSATE FORNED $=M_{51}-M_{53}=0.00651 \mathrm{ma}$
EnGRGY balance on cooler
$p_{52}=p_{53}=0.009828$ har

$$
m_{a} c_{a}\left(\overline{r a}_{1}-\tau_{a 2}\right)-m_{w} c_{w} \bar{T}+m_{s 1} h_{51}
$$

hst@250c 0.0206 bar = 2550 kJlkg (Chart)
hs 2 @ BRE $0.00983 \mathrm{kr}=\mathrm{hg}=2533 \mathrm{ks} / \mathrm{lg}$

$$
\begin{aligned}
& m_{a 1}= 1 \mathrm{~kg} \quad c_{a}=1.004 \mathrm{k} 5 \mathrm{k} \mathrm{k} \\
& m_{s 2}= M_{s 3} \quad c_{\omega}=4.186 \mathrm{~kJ} / \mathrm{k} \mathrm{~K} \\
&(\times 1.004(25-17.8)-0.00681 \times 4.186 \times 17.8 \\
&+0.012926 \times 2550-0.006112 \times 2533=\text { Eoat }
\end{aligned}
$$

$\Phi_{\text {our }}=24.187 \mathrm{~kJ}$ fore 1 kg of Dey owe

ENERGY BACANLE ON HEATER

$$
\begin{aligned}
& h_{53}=2545 \mathrm{~kJ} / \mathrm{kg} \quad\left(23^{\circ} \mathrm{C} \quad 0.009828 \mathrm{G}\right) \\
& m_{a} C_{a} \theta_{3}+m_{53} h_{53}=m_{a} c_{a} \theta_{2}+m_{52} h_{52}+\Phi((N) \\
& 1.001 .004 \times 23+0.006112 \times 2545 \\
& =1 \times 1.004 \times 17-8+0.006112 \times 2533+\phi(n) \\
& \phi(\mathrm{ow})=5.3 \mathrm{k} 5 \mathrm{pack} \mathrm{~kg} \text { of DCY ACR } \\
& m_{a}=1 k_{g} \text { AT Ext } M=M_{a}+M s_{3} \\
& m=1.006112 \mathrm{~kg} \\
& \left.\begin{array}{l}
\mathbb{R}(\text { our })=24.04 \mathrm{~kJ} / \mathrm{kg} \\
\mathbb{R}(\mathrm{on})=5.27 \mathrm{~kJ} / \mathrm{kg}
\end{array}\right\} \begin{array}{l}
\text { PGK } \mathrm{kg} \text { of } \\
\text { conirionert } \\
\text { Rir }
\end{array}
\end{aligned}
$$

Q1 A schematic of a Rankine-cycle steam power plant is shown. This plant uses a boiling-water nuclear reactor as the heat source and a pressure reducing valve is located between the reactor and the turbine.

The water in the reactor is at a pressure of 7 MPa and leaves the reactor as superheated vapour at a temperature of $400^{\circ} \mathrm{C}$. The pressure reducing valve lowers the steam pressure adiabatically by 2 MPa before it enters the steam turbine which has an isentropic efficiency of 80%. The steam expands through the turbine exiting at a pressure of 0.005 MPa and then is condensed at constant pressure before entering the feed-water pump. The condensate enters the feed-water pump at a pressure of 0.005 MPa and a temperature of $25^{\circ} \mathrm{C}$. The pump has an isentropic efficiency of 90%. The water conditions at entry to the reactor are exactly the same as at exit from the pump and there are no pressure losses in the reactor. The net power output from the plant is 500 MW .
It may be assumed that there is no change in enthalpy across the pressure reducing valve, that is, $\mathrm{h}_{4}=\mathrm{h}_{3}$.
(a) Sketch the temperature-entropy (T-s) diagram for the cycle.
(b) Determine the cycle efficiency, the mass flow rate of steam and the heat input to the boilingwater reactor.
Note. $1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2}=10^{5} \mathrm{~Pa}$, and the specific heat capacity of water is $4.187 \mathrm{~kJ} / \mathrm{kgK}$.

SOLUTION

$\mathrm{h}_{3}=3158 \mathrm{~kJ} / \mathrm{kg} \quad\left(70 \mathrm{bar}\right.$ and $\left.400^{\circ} \mathrm{C}\right)$
$\mathrm{h}_{4}=3158 \mathrm{~kJ} / \mathrm{kg} \quad$ (50 bar)
Either by interpolation or by use of the $\mathrm{h}-\mathrm{s}$ chart the temperature at point (4) is $387^{\circ} \mathrm{C}$ and the specific entropy is $6.592 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

Ideal conditions at point (5) $\quad \mathrm{s}_{4}=\mathrm{s}_{5}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{s}_{\mathrm{fg}}$ at 0.05 bar
$6.592=0.476+7.918 \mathrm{x} \quad$ hence $\mathrm{x}=0.772$
$\mathrm{h}_{5^{\prime}}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fg}}$ at $0.05 \mathrm{bar}=138+2423 \mathrm{x} 0.772=2010 \mathrm{~kJ} / \mathrm{kg}$
Isentropic Efficiency $0.8=\frac{3158-h_{5}}{3158-2010} \quad$ hence $\mathrm{h}_{5}=2239.6 \mathrm{~kJ} / \mathrm{kg}$
Power $=500000 \mathrm{~kW}=\mathrm{m}(3158-2239.6) \quad$ hence $\mathrm{m}=544.4 \mathrm{~kg} / \mathrm{s}$
Pump Ideal Power $=V \Delta p$
The volume of water is approximately $0.001 \times 544.4=0.544 \mathrm{~m}^{3} / \mathrm{s}$
Pressure rise $=7-0.005=6.995 \mathrm{MPa} \quad$ Ideal Power $=6.995 \times 10^{6} \times 0.544=3.8 \mathrm{MW}$

Energy added to water $=4.228 / 544.4=0.00777 \mathrm{MJ} / \mathrm{kg}$ or $7.77 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{pv}+\mathrm{mc} \theta=0.005 \times 10^{6} \times 0.001+1 \times 4187 \times 25=5+104675=104680 \mathrm{~J} / \mathrm{kg}$
$\mathrm{h}_{2}=104.68+7.77=112.45 \mathrm{~kJ} / \mathrm{k}$
$\Phi($ in $)$ to boiler $=\mathrm{m}\left(\mathrm{h}_{3}-\mathrm{h}_{2}\right)=544.4(3158-112.45)=1658000 \mathrm{~kW}$ or 1658 MW
Cycle Efficiency $=495.772 / 1658=0.299$ or 29.9%

On the $\mathrm{T}-\mathrm{s}$ diagram the water is under-cooled at (1)

Q2 A schematic of a regenerative gas turbine is shown. Air $(\gamma=1.4)$ enters the compressor at a pressure of 1 bar and a temperature of $20^{\circ} \mathrm{C}$. The compressor has an isentropic efficiency of 85% and a pressure ratio of 10:1. The expansion process in the turbine is polytropic, that is $p v^{n}=$ constant, with $n=1.35$. The plant exhaust gas temperature, that is point 6 , is $20^{\circ} \mathrm{C}$ higher than that at the compressor outlet.

Assume that $\mathrm{p}_{6}=\mathrm{p}_{5}=\mathrm{p}_{1}=1$ bar, $\mathrm{T}_{4}=1000^{\circ} \mathrm{C}$ and the specific heat capacity is constant throughout the cycle with $\mathrm{C}_{\mathrm{P}}=1.005 \mathrm{~kJ} / \mathrm{kgK}$.
(a) Sketch the T-s diagram for the cycle illustrating the regenerative heat exchange process.
(b) Calculate,
(i) the heat transfer in the heat exchanger
(ii) the heat supplied in the combustion chamber
(iii) the cycle efficiency.

SOLUTION

$\mathrm{T}_{2^{\prime}}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=293(10)^{\frac{1.4-1}{1.4}}=565.7 \mathrm{~K}$
$\eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{565.7-293}{\mathrm{~T}_{2}-293} \quad \mathrm{~T}_{2}=613.8 \mathrm{~K}$
$\mathrm{T}_{5}=\mathrm{T}_{4} / \mathrm{rp}^{(1-1 / \mathrm{n})}=1273 /(10)^{0.259}=730 \mathrm{~K}$
Heat Exchanger with same specific heat and mass flow at all points
$\mathrm{T}_{6}=\mathrm{T}_{2}+20=633.8 \mathrm{~K}$
$\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=\left(\mathrm{T}_{5}-\mathrm{T}_{6}\right) \quad \mathrm{T}_{3}=\mathrm{T}_{5}-\mathrm{T}_{6}+\mathrm{T}_{2}=730-633.8+613.8=710 \mathrm{~K}$
It willbe assumed that $\mathrm{m}=1 \mathrm{~kg}$ throughout
HEAT EXCHANGER
Heat Transfer $=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=1 \times 1.005 \times(710-613.6)=99.75 \mathrm{~kJ} / \mathrm{kg}$

COMBUSTION CHAMBER

$\mathrm{Q}(\mathrm{in})=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)=1 \times 1.005(1273-710)=565.8 \mathrm{~kJ} / \mathrm{kg}$
The main problem here is the turbine has a heat loss since the expansion is polytropic and we either need to find the heat loss or the power output in order to find the cycle efficiency.
For a steady flow process the work done is :
$\mathrm{W}($ out $)=\frac{\mathrm{mR}}{\mathrm{n}-1}(\Delta \mathrm{~T})=\frac{1 \times 0.287}{1.35-1}(1273-730)=445.36 \mathrm{~kJ} / \mathrm{k}$
(Turbine)
293
$\mathrm{W}(\mathrm{in})=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times 1.005(613.8-293)=322.4$
$\mathrm{kJ} / \mathrm{kg}$ (Compressor)

$\mathrm{W}($ nett $)=\mathrm{W}($ out $)-\mathrm{W}(\mathrm{in})=123 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {th }}=W($ nett $) / Q($ in $)=123 / 565.8=\mathbf{0 . 2 2}$ or $\mathbf{2 2 \%}$

Q3 A gaseous fuel has the following percentage composition by volume:
CO $13 \%, \mathrm{H}_{2} 42 \%, \mathrm{CH}_{4} 25 \%, \mathrm{O}_{2} 2 \%, \mathrm{CO}_{2} 3 \%, \mathrm{~N}_{2} 15 \%$
Determine the wet and dry volumetric and gravimetric analyses of the products of combustion if 15% excess air is used. State all assumptions made and take air as $21 \% \mathrm{O}_{2}$ and $79 \% \mathrm{~N}_{2}$ by volume. The relative atomic masses are hydrogen l, carbon 12 , nitrogen 14 and oxygen 16 .

VOLUMETRIC

CARBON MONOXIDE
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
$2 \mathrm{~m}^{3}+1 \mathrm{~m}^{3} \rightarrow 2 \mathrm{~m}^{3}$
$0.13 \mathrm{~m}^{3}+0.065 \mathrm{~m}^{3} \rightarrow 0.13 \mathrm{~m}^{3}$
HYDROGEN
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{~m}^{3}+1 \mathrm{~m}^{3} \rightarrow 2 \mathrm{~m}^{3}$
$0.42 \mathrm{~m}^{3}+0.21 \mathrm{~m}^{3} \rightarrow 0.42 \mathrm{~m}^{3}$
METHANE
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$1 \mathrm{~m}^{3}+2 \mathrm{~m}^{3} \rightarrow 2 \mathrm{~m}^{3}+1 \mathrm{~m}^{3}$
$0.25 \mathrm{~m}^{3}+0.5 \mathrm{~m}^{3} \rightarrow 0.5 \mathrm{~m}^{3}+0.25 \mathrm{~m}^{3}$
Total oxygen required is $0.065+0.21+0.5-0.02=0.755 \mathrm{~m}^{3}$
Air required $=0.755 / 0.21=3.595 \mathrm{~m}^{3}$
Air supplied $=3.595 \times 1.15=4.135$

PRODUCTS			WET	DRY
$\mathrm{H}_{2} \mathrm{O}$	$0.42+0.5=$	$0.920 \mathrm{~m}^{3}$	18.9%	0
O_{2}	$0.21 \times 4.135-0.755=$	$0.113 \mathrm{~m}^{3}$	2.3%	2.9%
$\mathrm{~N}_{2}$	$0.79 \times 4.135+0.15=$	$3.417 \mathrm{~m}^{3}$	70.3%	86.7%
CO_{2}	$0.13+0.25+0.03=$	$0.410 \mathrm{~m}^{3}$	8.4%	10.4
Total		$4.86 / 3.94$	100%	100

GRAVIMETRIC

We convert volumes to masses using the formula $\frac{m_{i}}{m}=\frac{\left(V_{i} / V\right) \tilde{m}_{i}}{\sum\left\{\left(V_{i} / V\right) \tilde{m}\right\}_{i}}$

				WET
i	$\mathrm{V}_{\mathrm{i}} / \mathrm{V}$	\tilde{m}_{i}	$\left(\mathrm{~V}_{\mathrm{i}} / \mathrm{V}\right) \tilde{m}_{i}$	\tilde{m}_{i} / m
$\mathrm{H}_{2} \mathrm{O}$	0.189	18	3.40	12.3%
O_{2}	0.023	32	0.74	2.7%
$\mathrm{~N}_{2}$	0.703	28	19.7	71.5%
CO_{2}	0.084	44	3.7	13.4%
Total	1.0		27.54	100
				DRY
i	$\mathrm{V}_{\mathrm{i}} / \mathrm{V}$	\tilde{m}_{i}	$(\mathrm{~V} / \mathrm{V}) \tilde{m}_{i}$	\tilde{m}_{i} / m
O_{2}	0.029	32	0.928	3.1%
$\mathrm{~N}_{2}$	0.867	28	24.276	81.5%
CO_{2}	0.104	44	4.576	15.4%
Total	1.0		29.78	100

Q4 Sketch a pressure-volume diagram for the air-standard dual combustion cycle and describe the processes which occur in each part of the cycle.

In an air-standard dual combustion cycle, the temperature and pressure at the start of compression are 300 K and 1 bar respectively. The energy added in the cycle is $1600 \mathrm{~kJ} / \mathrm{kg}$, of which three-quarters is added at the constant volume and the remainder at the constant pressure parts of the cycle. The compression ratio is $20: 1$ and the compression and expansion strokes are polytropic with polytropic indices of $n_{c}=1.45$ and $n_{e}=1.35$ respectively.

Determine:
(a) the maximum pressure in the cycle
(b) the maximum temperature in the cycle
(c) the cycle efficiency
(d) the mean effective pressure.

Assume that $\mathrm{c}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kgK}, \quad \mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kgK}$ and all remain constant throughout the cycle.

Comment - If the compression and expansion are not adiabatic, the cycle can not be an air standard cycle. The air standard efficiency formula cannot be used in this case.

The processes are as follows.
1-2 reversible (polytropic??) compression.
2-3 constant volume heating.
3-4 constant pressure heating.
4-1 reversible (polytropic??) expansion.
5-1 constant volume cooling.

$\mathrm{T}_{1}=300 \mathrm{~K} \quad \mathrm{p}_{1}=1 \mathrm{bar}$
$\mathrm{V}_{1} / \mathrm{V}_{2}=20$
$\mathrm{T}_{2}=300 \times 20^{\mathrm{n}-1}=300 \times 20^{1.45-1}=1155 \mathrm{~K}$
$\mathrm{p}_{2}=\mathrm{p}_{1} \mathrm{r}^{\mathrm{n}}=1 \times 20^{1.45}=77 \mathrm{bar}$
Heat Input at constant Volume is $0.75 \times 1600=1200 \mathrm{~kJ} / \mathrm{kg}$
$1200=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=1 \times 0.718 \times\left(\mathrm{T}_{3}-1155\right) \quad \mathrm{T}_{3}=2826.3 \mathrm{~K}$
Heat Input at constant Pressure is $0.25 \times 1600=400 \mathrm{~kJ} / \mathrm{kg}$
$400=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)=1 \times 1.005 \times\left(\mathrm{T}_{4}-2826.3\right) \quad \mathrm{T}_{4}=3224.3 \mathrm{~K}$
This is the maximum temperature in the cycle.
$\mathrm{p}_{3}=\frac{\mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{3}}{\mathrm{~V}_{3} \mathrm{~T}_{1}}=\frac{1 \times 20 \times 2826.4}{1 \times 300}=188.42 \mathrm{bar}$
$\mathrm{p}_{4}=188.42$ bar This is the highest pressure in the cycle.
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{4}}=\frac{\mathrm{p}_{4} \mathrm{~T}_{1}}{\mathrm{p}_{1} \mathrm{~T}_{4}}=\frac{188.42 \times 300}{1 \times 3224.3}=17.53 / 1=\frac{\mathrm{V}_{5}}{\mathrm{~V}_{4}}$
$\mathrm{p}_{4} \mathrm{~V}_{4}{ }^{\mathrm{n}}=\mathrm{p}_{5} \mathrm{~V}_{5}{ }^{\mathrm{n}}$
$\mathrm{p}_{5}=\mathrm{p}_{4}\left(\frac{\mathrm{~V}_{4}}{\mathrm{~V}_{5}}\right)^{\mathrm{n}}=188.42\left(\frac{1}{17.53}\right)^{1.35}=3.95 \mathrm{bar}$
$\frac{\mathrm{p}_{5}}{\mathrm{~T}_{5}}=\frac{\mathrm{p}_{1}}{\mathrm{~T}_{1}}$
$\mathrm{T}_{5}=\frac{\mathrm{p}_{5} \mathrm{~T}_{4}}{\mathrm{p}_{1}}=\frac{3.95 \times 300}{1}=1185 \mathrm{~K}$

The problem now is that because the work processes are polytropic, there is a heat transfer in these processes that makes it difficult to determine the heat rejected so we need to find the net work done. This involves a lot more work and I wonder if this is what the examiner intended?

Finding the true net work would require the work laws to be applied
COMPRESSION
$\mathrm{W}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}-\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{n}-1}=\frac{\mathrm{mR}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{n}-1}=\frac{1 \times 287(300-1155)}{0.45}=-545.3 \times 10^{3} \mathrm{~J} / \mathrm{kg}$
EXPANSION
$\mathrm{W}=\frac{\mathrm{p}_{4} \mathrm{~V}_{4}-\mathrm{p}_{5} \mathrm{~V}_{5}}{\mathrm{n}-1}=\frac{\mathrm{mR}\left(\mathrm{T}_{4}-\mathrm{T}_{5}\right)}{\mathrm{n}-1}=\frac{1 \times 287(3224.3-1185)}{0.35}=1772.2 \times 10^{3} \mathrm{~J} / \mathrm{kg}$
There is also work in the constant pressure process
$\mathrm{W}=\mathrm{p}_{3}\left(\mathrm{~V}_{4}-\mathrm{V}_{3}\right)=\mathrm{mR}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)=1 \times 287(3224.3-2826.3)=114.2 \times 10^{3} \mathrm{~J} / \mathrm{kg}$
Net Work $=114.2+1772.2-545.3=1341.1 \mathrm{~kJ} / \mathrm{kg}$
$\eta=1341.1 / 1600=83.8 \%$
$\mathrm{V}_{1}=\mathrm{mRT}_{1} / \mathrm{p}_{1}=1 \times 287 \times 300 /\left(1 \times 10^{5}\right)=0.861 \mathrm{~m}^{3}($ based on 1 kg$)$
$\mathrm{V}_{2}=\mathrm{V}_{1} / 20=0.04305 \mathrm{~m}^{3}$ (based on 1 kg)
$\mathrm{MEP}=\mathrm{W}($ net $) /$ Swept Volume $=\mathrm{W}(\mathrm{net}) /\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)=1341.1 \times 10^{3} /(0.861-0.04305)=1.64 \times 10^{6} \mathrm{~Pa}$
This seems extremely high if anyone finds any errors in this work please contact admin@freestudy.co.uk

5 A vapour compression refrigerator uses refrigerant 12 as the working fluid and operates between temperature limits of $-10^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.
(a) Sketch the flow diagram, indicating the components of the refrigeration cycle.
(b) If the refrigerant entering the compressor is dry saturated sketch the temperature-entropy (T-s) and the pressure-enthalpy ($\mathrm{p}-\mathrm{h}$) diagrams for the two following cases;
(i) the refrigerant leaves the condenser saturated
(ii) the refrigerant is sub-cooled to $40^{\circ} \mathrm{C}$ before entry to the throttle valve.
(c) For the case in which the refrigerant leaves the condenser and enters the throttle valve as saturated liquid and assuming isentropic processes for the compressor determine:
(i) the refrigeration effect
(ii) the coefficient of performance.

The red lines show the difference when under cooled.
The major trap to fall into here is the maximum operating temperature is not the same as the condenser temperature. Without a p - h chart this seems very difficult. If anyone knows how to complete this correctly please contact admin@freestudy.co.uk
$\mathrm{h}_{1}=183.19 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{1}=0.7020 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{p}_{1}=\mathrm{p}_{\mathrm{s}}$ at $-10^{\circ} \mathrm{C}=2.191 \mathrm{bar} \quad \mathrm{v}_{1}=0.0766 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{T}_{1}=263 \mathrm{~K} \quad \mathrm{~T}_{2}=333 \mathrm{~K}$
Assuming the compression is reversible and adiabatic $\mathrm{s}_{1}=\mathrm{s}_{2}$. but this does not help. Clearly the refrigerant is superheated at exit from the compressor.
On the row for $60^{\circ} \mathrm{C}$ in the tables, $\mathrm{s}_{2}=0.7020 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ occurs between 0 and 15 K of superheat so interpolation is needed. Using the data on $60^{\circ} \mathrm{C}$ row of the tables we find:

	Sat.	θ	15 K
s	0.6765	0.7020	0.7146
h	209.26	$\mathrm{~h}_{2}$	222.23

$\frac{0.7020-0.6765}{0.7146-0.6765}=0.66929=\frac{\theta-0}{15-0} \quad \theta=10 \mathrm{~K}$ so the actual saturation temperature is around $50^{\circ} \mathrm{C}$
Now find the values using the $50^{\circ} \mathrm{C}$ row at 10 K superheat

	Sat.	10 K	15 K
s	0.6797	$\mathrm{~s}_{2}$	0.7166
h	206.45	$\mathrm{~h}_{2}$	218.64

$\frac{\mathrm{s}_{2}-0.6797}{0.7166-0.6797}=\frac{10}{15} \quad \mathrm{~s}_{2}=0.7043 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ this is close so we will use this temperature.
$\frac{\mathrm{h}_{2}-206.45}{218.64-206.45}=\frac{10}{15} \quad \mathrm{~h}_{2}=214.6 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}$ at $60^{\circ} \mathrm{C}=95.74 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{4}=\mathrm{h}_{3}$
$\Phi($ in $)=\mathrm{h}_{1}-\mathrm{h}_{4}=87.45 \mathrm{~kJ} / \mathrm{kg}=$ Refrigeration Effect
$\mathrm{P}(\mathrm{in})=\mathrm{h}_{2}-\mathrm{h}_{1}=31.39 \mathrm{~kJ} / \mathrm{kg}$
C of P (refrigerator) $=87.45 / 31.39=2.8$
$\Phi($ out $)=\mathrm{h}_{2}-\mathrm{h}_{3}=118.56 \mathrm{~kJ} / \mathrm{kg}$
C of $\mathrm{P}($ Heat Pump $)=118.56 / 31.39=3.8$
Q. 7 Fifteen successive stages of an axial-flow reaction steam turbine have blades with constant inlet and outlet angles of 15° and 75° respectively. The mean diameter of the blade rows is 1.0 m and the speed of rotation is $50 \mathrm{rev} / \mathrm{s}$. The axial velocity is constant throughout the stages. The steam inlet conditions to the turbine are 15 bar and $300^{\circ} \mathrm{C}$ and the outlet pressure is 0.24 bar.

Determine:
(a) all relevant blade and steam velocities and sketch the velocity diagram
(b) the specific enthalpy drop per stage
(c) the overall efficiency of the turbine.

If there is a reheat factor between each turbine stage of 1.03 determine the stage efficiency. Note. As there is constant axial velocity and all blades are of the same geometry kinetic energy can be ignored.

$\mathrm{u}=\pi \mathrm{ND}=\pi \times 50 \times 1=157.08 \mathrm{~m} / \mathrm{s}$
$\tan \alpha_{1}=c_{a} / \mathrm{c}_{\mathrm{w} 1}$
$\mathrm{c}_{\mathrm{w} 1} \tan 15=\left(\mathrm{c}_{\mathrm{w} 1}-\mathrm{u}\right) \tan 75 \quad 0.269 \mathrm{c}_{\mathrm{w} 1}=3.732\left(\mathrm{c}_{\mathrm{w} 1}-157.08\right)$
$0.269 \mathrm{c}_{\mathrm{w} 1}=3.732 \mathrm{c}_{\mathrm{w} 1}-586.23$
$586.23=3.463 \mathrm{c}_{\mathrm{w} 1}$
$\mathrm{c}_{\mathrm{w} 1}=169.28 \mathrm{~m} / \mathrm{s}$
$\mathrm{c}_{\mathrm{w} 2}=\mathrm{c}_{\mathrm{w} 1}-\mathrm{u}=169.28-157.08=12.2 \mathrm{~m} / \mathrm{s}$
$\mathrm{c}_{\mathrm{a}}=\mathrm{c}_{\mathrm{w} 2} \tan \beta_{2}=12.2 \tan 75=45.55 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{c}_{\mathrm{w}}=169.28+12.2=181.5 \mathrm{~m} / \mathrm{s}$
Stage enthalpy change $\Delta \mathrm{h}_{\mathrm{s}}=\mathrm{u} \Delta \mathrm{c}_{\mathrm{w}}=157.08 \times 181.5=28507 \mathrm{~J} / \mathrm{kg}$
For 15 stages $\Delta \mathrm{h}_{\mathrm{o}}=15 \times 28.507=427.6 \mathrm{~kJ} / \mathrm{k}$
$\mathrm{h}_{1}=3039 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{1}=6.919 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}_{\mathrm{sfg}}$ at 0.24 bar
$6.919=0.882+6.962 \mathrm{x} \quad \mathrm{x}=0.867$
$\mathrm{h}_{2}=\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\mathrm{sfg}}$ at 0.24 bar
$\mathrm{h}_{2}=268+(2348)(0.867)=2304 \mathrm{~kJ} / \mathrm{kg}$
Ideal enthalpy drop $=3039-2304=735 \mathrm{~kJ} / \mathrm{kg}$
Overall Efficiency $\eta_{o}=427.6 / 735=58.2 \%$
$\eta_{\mathrm{o}}=\eta_{\mathrm{s}} \times$ Reheat Factor
$0.582=\eta_{\mathrm{s}} \times 1.03$
$\eta_{\mathrm{s}}=0.565$ or 56.5%

Q8 The water-flow rate from the condenser of a 500 MW power plant is $20 \times 10^{3} \mathrm{~kg} / \mathrm{s}$. The water is cooled in an array of cooling towers from a temperature of $35^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. Atmospheric air at a pressure of 1 bar enters the towers at $15^{\circ} \mathrm{C}$ with a relative humidity of 40% and exits with a temperature of $30^{\circ} \mathrm{C}$ at 98% relative humidity.

Determine the make-up water required and the air-flow rate.
Assume that the specific heat capacity at constant pressure for air and steam are 1.005 kJlkgK and $1.86 \mathrm{~kJ} / \mathrm{kgK}$ respectively and the specific heat capacity for water is $4.187 \mathrm{~kJ} / \mathrm{kgK}$.
(2)

INLET AIR

$\mathrm{p}_{\mathrm{g} 1}=0.01704$ bar at $15{ }^{\circ} \mathrm{C}$
$\phi 1=0.4=\mathrm{p}_{\mathrm{s} 1} / \mathrm{pg}_{\mathrm{g}}$
$\mathrm{p}_{\mathrm{s} 1}=0.4 \times 0.01704=0.006816$ bar
hence $p_{a 1}=1.0-0.006816=0.993184$ bar
$\omega_{1}=0.622 \frac{0.006816}{0.993184}=0.004268647$
$\mathrm{m}_{\mathrm{s} 1}=0.004268647 \mathrm{~m}_{\mathrm{a}}$

OUTLET AIR

$\phi 2=0.98$

$\mathrm{p}_{\mathrm{s} 2}=0.98 \mathrm{pg} 2=0.98 \times 0.0424242=0.041575716$
bar hence $\mathrm{p}_{\mathrm{a} 2}=0.95842428$ bar
$\omega_{2}=0.622 \frac{0.00415757}{0.9584242}=0.021698$
$\mathrm{m}_{\mathrm{s} 2}=0.021698 \mathrm{~m}_{\mathrm{a}}$

MASS BALANCE

$\mathrm{m}_{\mathrm{w} 4}=\mathrm{m}_{\mathrm{w} 3}-\left(\mathrm{m}_{\mathrm{s} 2}-\mathrm{m}_{\mathrm{s} 1}\right)=20000-\left(0.021698 \mathrm{~m}_{\mathrm{a}}-0.0042686 \mathrm{~m}_{\mathrm{a}}\right)=20000-0.017429 \mathrm{~m}_{\mathrm{a}}$

ENERGY BALANCE

$\mathrm{h}_{\mathrm{s} 2}=\mathrm{hg}_{\mathrm{g}}=2555.7 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{\mathrm{sl}}=2530 \mathrm{~kJ} / \mathrm{kg}$ (from h-s chart)
Balancing energy we get

$$
\begin{aligned}
& (20000 \times 4.86 \times 35)+\left(\mathrm{m}_{\mathrm{a}} \times 1.005 \times 15\right)+\left(0.0042686 \times \mathrm{m}_{\mathrm{a}} \times 2530\right)= \\
& \left\{\left(20000-0.017429 \mathrm{~m}_{\mathfrak{a}}\right) \times 4.186 \times 20\right\}+\left(0.021698 \times 2555.7 \mathrm{~m}_{\mathfrak{a}}\right)+\left(\mathrm{m}_{\mathfrak{a}} \times 1.005 \times 30\right) \\
& 3402000+15.075 \mathrm{~m}_{\mathrm{a}}+10.8 \mathrm{~m}_{\mathrm{a}}=1674400-1.459 \mathrm{~m}_{\mathrm{a}}+70.4 \mathrm{~m}_{\mathfrak{a}}+30.15 \mathrm{~m}_{\mathrm{a}} \\
& 1727600=73.216 \mathrm{~m}_{\mathrm{a}} \\
& \mathrm{~m}_{\mathrm{a}}=23596 \mathrm{~kg} / \mathrm{s} \\
& \mathrm{~m}_{\mathrm{s} 2}=512 \mathrm{~kg} / \mathrm{s} \\
& \mathrm{~m}_{\mathrm{s} 1}=100.72 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Evaporation rate is $411.3 \mathrm{~kg} / \mathrm{s}$ so this is the required make up water

Q1 A steam power plant operates on the Rankine cycle. The high pressure steam is at 60 bar and $500^{\circ} \mathrm{C}$ at entry to the turbine. The turbine produces 20 MW of power. The condenser pressure is 2 bar .

During day time operation the waste heat from the condenser is used for process heating. During night time operation the waste heat is used in a $\mathrm{R}-12$ power plant that also operates on the Rankine cycle. The refrigerant cycle uses vapour with no superheat at $80^{\circ} \mathrm{C}$ at entry to the turbine and condenses at $10^{\circ} \mathrm{C}$.

Assuming no heat losses and negligible power usage at the pumps, calculate the power output from the R-12 cycle and the thermal efficiency of the plant. The isentropic efficiency of both turbines is 85\%. (This question very similar to Q1 1997)

SOLUTION

WATER/VAPOUR CYCLE.
$\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f}} @ 2$ bar= $505 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{1}=\mathrm{h}_{4}=505 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=\mathrm{h} @ 60$ bar and $500^{\circ} \mathrm{C}=3421 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{2}=\mathrm{s} @ 60 \mathrm{bar}$ and $500^{\circ} \mathrm{C}=6.879 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{3}{ }^{\prime}=\mathrm{s}_{2}=6.879 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{s}_{\mathrm{fg}} @ 2 \mathrm{bar}$
$6.879=1.530+5.597 \mathrm{x} \quad \mathrm{x}=0.9557$
$\mathrm{h}_{3^{\prime}}=\mathrm{h}_{\mathrm{f}}+\mathrm{x} \mathrm{h}_{\mathrm{fg}} @ 2 \mathrm{bar}=505+0.9557 \mathrm{x} 2202=2609.4 \mathrm{~kJ} / \mathrm{kg}$
Power out $=20000 \mathrm{~kW}=\mathrm{m}_{\mathrm{s}} \mathrm{x} \eta_{\mathrm{I}}(3421-2609.4)$
$20000=\mathrm{m}_{\mathrm{s}} \mathrm{x} 0.85$ (3421-2609.4)
$\mathrm{m}_{\mathrm{s}}=20000 / 689.8=29 \mathrm{~kg} / \mathrm{s}$
We need to find $h_{3} . \frac{3421-h_{3}}{3421-2609.4}=0.85 \quad h_{3}=2731 \mathrm{~kJ} / \mathrm{kg}$
Check Power out $=29(3421-2731)=20000 \mathrm{~kW}$
Heat lost from the condenser $=29\left(\mathrm{~h}_{3}-\mathrm{h}_{4}\right)=29(2731-505)=64554 \mathrm{~kW}$
This becomes the heat input to the evaporator in the R-12 cycle.

R-12 CYCLE

$\mathrm{h}_{\mathrm{R} 2}=\mathrm{h}_{\mathrm{g}}$ at $80^{\circ} \mathrm{C}=212.83 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{\mathrm{R} 1}=\mathrm{h}_{\mathrm{R} 4}=\mathrm{h}_{\mathrm{f}} @ 10^{\circ} \mathrm{C}=45.37 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=64554=\mathrm{m}_{\mathrm{R}}(212.83-45.37) \quad \mathrm{m}_{\mathrm{R}}=385.48 \mathrm{~kg} / \mathrm{s}$
$\mathrm{s}_{\mathrm{R} 2}=\mathrm{s}_{\mathrm{g}}$ at $80^{\circ} \mathrm{C}=0.6673 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=\mathrm{s}_{\mathrm{R} 3}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{s}_{\mathrm{fg}} @ 10^{\circ} \mathrm{C}=0.1752+\mathrm{x}(0.6921-0.1752)$
$\mathrm{x}=(0.6673-0.1752) / 0.5169=0.952$
$\mathrm{h}_{\mathrm{R} 3}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fg}} @ 10^{\circ} \mathrm{C}=45.37+0.952(191.74-45.37)=184.72 \mathrm{~kJ} / \mathrm{kg}$
Power output $=\mathrm{m}_{\mathrm{R}}\left(\mathrm{h}_{\mathrm{R} 2}-\mathrm{h}_{\mathrm{R} 3}\right)=385.48(212.83-184.72)=10837 \mathrm{~kW}$
Thermal efficiency P(out)/ $\Phi(\mathrm{in})=10837 / 64554=0.168$ or 16.8%

Q2 The diagram shows an idealised regenerative steam cycle. In the turbine, heat is transferred from the steam to the feed-water and no heat is lost to the surroundings. The water at point (3) is saturated at 0.05 bar pressure. The water at point (5) is saturated at 200 bar pressure. The steam at point (3) is at $600^{\circ} \mathrm{C}$. The feed pump process is adiabatic and reversible. The expansion in the turbine from point (6) to point (2) is isentropic.
(a) Draw the $\mathrm{T}-\mathrm{s}$ diagram for the cycle indicating the heat gained by the feed-water from (4) to (5) and the heat lost by the steam from(1) to (6).
(b) Assuming a cycle efficiency of 40%, determine the dryness fraction at point (2) and the work output of the cycle.
(c) Determine the temperature of the steam at (6), the dryness fraction and enthalpy.
(d) Comment on the distribution between work output and heat transfer within the turbine.

Assume the specific heat capacity of water is $4.187 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Also assume straight condition lines for the steam and feed-water in the regenerative section of the turbine.
COMMENT
As will be seen below, I cannot obtain sensible answers to this question and suspect the 40% efficiency is the cause of the problem but if anyone can point out an error in my method, please let me know.

SOLUTION

a) The shaded areas represents the heat transfer inside the turbine from the steam into the feed water so the areas should be equal.

(b)

Point (1) 200 bar $600^{\circ} \mathrm{C} \quad \mathrm{h}_{1}=3537 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{1}=6.505 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Point (2) 0.05 bar
Point (3) saturated water @ 0.05 bar $^{2}=138 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{3}=0.476 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{t}_{\mathrm{s}}=32.9^{\circ} \mathrm{C}$
Point (4) $\quad \mathrm{s}_{4}=0.476$ (rev adiabatic 3 to 4)
Point (5) saturated water @ 200 bar $\mathrm{h}_{6}=1827 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{6}=4.01 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad \mathrm{t}_{\mathrm{s}}=365.7^{\circ} \mathrm{C}$

BOILER

$$
\begin{aligned}
& \mathrm{Q}(\mathrm{in})=\mathrm{h}_{1}-\mathrm{h}_{5}=3537-1827=1710 \mathrm{~kJ} / \mathrm{kg} \\
& \eta=40 \%=\mathrm{W}(\text { nett }) / \mathrm{Q}(\mathrm{in})
\end{aligned}
$$

NETT WORK

$\mathrm{W}($ nett $)=0.4 \times 1710=684 \mathrm{~kJ} / \mathrm{kg}$ This is the work output of the cycle.

PUMP

Work input $=$ volume $\times \Delta \mathrm{p}=0.001 \mathrm{~m}^{3} / \mathrm{kg} \times(200-0.05) \times 10^{5}=19995 \mathrm{~J} / \mathrm{kg}$ or $20 \mathrm{~kJ} / \mathrm{kg}$
Pump work $=20 \mathrm{~kJ} / \mathrm{kg}=\mathrm{c} \Delta \theta \Delta \theta=20 / 4.187=4.8 \mathrm{~K}$
$\theta_{3}=\mathrm{t}_{\mathrm{s}} @ 0.05 \mathrm{bar}=32.9^{\circ} \mathrm{C}$
Work out of turbine $=\mathrm{W}$ (out) $=684+20=704 \mathrm{~kJ} / \mathrm{kg}$

CONDENSER

Heat Loss from cycle $=\mathrm{Q}($ out $)=\mathrm{Q}(\mathrm{in})-\mathrm{W}($ nett $)=1710-684=1026 \mathrm{~kJ} / \mathrm{kg}$
Check $\eta=1-\mathrm{Q}$ (out)/ $\mathrm{Q}($ in $)=1-1026 / 1710=40 \%$
$\mathrm{h}_{2}=\mathrm{h}_{3}+\mathrm{Q}$ (out) $=138+1026=1164 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=1164=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fg}}$ at 0.05 bar $=138+2423 \mathrm{x}$
$\mathrm{x}_{2}=0.423$
$\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x} \mathrm{sfg}$ at $0.05 \mathrm{bar}=0.476+.423(7.918)=3.825 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=\mathrm{s}_{6}$

(c) HEAT TRANSFER

Heat received from (4) to (5) $\mathrm{Q}=$ shaded area under process line.
$\theta_{4}=32.9+4.8=37.7^{\circ} \mathrm{C}$
$\mathrm{Q}_{\mathrm{T}}=\left(\mathrm{s}_{5}-\mathrm{s}_{4}\right)(37.7+365.7) / 2=(4.014-0.476)(37.7+365.7) / 2=713.6 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{Q}_{\mathrm{T}}=713.6 \mathrm{~kJ} / \mathrm{kg}$ This is almost equal to the work output of the turbine.
This is the same for process 1 to 6 and can be used to find T_{6}
$\mathrm{Q}_{\mathrm{T}}=\left(\mathrm{s}_{1}-\mathrm{s}_{6}\right)\left(600+\mathrm{T}_{6}\right) / 2$
$\mathrm{Q}_{\mathrm{T}}=(6.505-3.825)\left(600+\mathrm{T}_{6}\right) / 2=713.6 \mathrm{~kJ} / \mathrm{kg}$
(2.68) $\left(600+\mathrm{T}_{6}\right) / 2=713.6$
$\left(600+\mathrm{T}_{6}\right)=532.5$
$\mathrm{T}_{6}=-67.5$ silly ??????
Another approach is as follows.
$\mathrm{h}_{1}-\mathrm{h}_{2}=\mathrm{W}$ (out) $+\mathrm{Q}_{\mathrm{T}}$
$3537-\mathrm{h}_{2}=704+713.6=1417.6 \quad \mathrm{~h}_{2}=3537-1417.6$
$\mathrm{h}_{2}=2119.4 \mathrm{~kJ} / \mathrm{kg}$ and this does not agree with the other method
$\mathrm{h}_{2}=2119.4=\mathrm{h}_{\mathrm{f}}+\mathrm{x} \mathrm{h}_{\mathrm{fg}}$ at $0.05 \mathrm{bar}=138+2423 \mathrm{x}$
$\mathrm{x}_{2}=0.818$
$\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fg}}$ at $0.05 \mathrm{bar}=0.476+.818(7.918)=6.951 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ This is larger than s_{1} so this is also a silly answer. No sensible answer to this question.

A third approach
Ideal conditions suggest that $\mathrm{T}_{6}=\mathrm{T}_{4}$ so that there is isothermal heat transfer all through the heat exchanger.
In this case $\mathrm{T}_{6}=37.7^{\circ} \mathrm{C}$ and $\mathrm{p}_{\mathrm{s}}=0.065$ bar
$s_{6}=s_{2}=s_{f}+x s_{f g}$ at 0.065 bar but there are two possible values from above.

Q3 In a water-cooled nuclear reactor the coolant water to the reactor is divided into high-pressure and low-pressure circuits. The high-pressure circuit generates $200 \mathrm{~kg} / \mathrm{s}$ of steam at 100 bar and $500^{\circ} \mathrm{C}$. The low-pressure circuit generates $100 \mathrm{~kg} / \mathrm{s}$ of dry saturated steam at 30 bar . A line diagram of the plant is shown.

The high-pressure steam expands in a high-pressure turbine to 30 bar with an isentropic efficiency of 90%, and the exhaust is mixed adiabatically with the low-pressure steam all of which is then expanded in a low-pressure turbine to 0.10 bar with an isentropic efficiency of 92%. The optimum quantity of dry saturated steam is bled at 5 bar from the low-pressure turbine into an open-type feed-water heater positioned prior to the separation into the two coolant-water circuits.
(a) Sketch the T-s and h-s diagrams for the cycle.
(b) Calculate the power developed and the cycle efficiency.

Neglect the feed-pumps work, and assume a straight line of condition for the low-pressure turbine.

Start with known points.
Point $1 \quad 100$ bar $500^{\circ} \mathrm{C} \quad \mathrm{h}=3373 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}=6.596 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Point 230 bar
Point $3 \quad 30$ bar dss $\quad \mathrm{h}=2803 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}=6.186 \mathrm{~kJ} / \mathrm{kg}$ K
Point 430 bar
Point 50.1 bar
Point 60.1 bar sw $\quad \mathrm{h}=192 \mathrm{~kJ} / \mathrm{kg}$ (assumed to be saturated water in absence of information)
Point 85 bar
Point 95 bar sw $\quad \mathrm{h}=640 \mathrm{~kJ} / \mathrm{kg}$ (assumed to be saturated water in absence of information)
HP Turbine m = $200 \mathrm{~kg} / \mathrm{s}$
Ideal expansion $\quad s_{2}=s_{1}=6.596$ From $h-s$ chart the steam is superheated at 30 bar and $310^{\circ} \mathrm{C}$
$\mathrm{h}_{2^{\prime}}=3020 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.9=\frac{3373-\mathrm{h}_{2}}{3373-3020} \quad \mathrm{~h}_{2}=3055.3 \mathrm{~kJ} / \mathrm{kg}-$ the actual enthalpy
Power output $=200\left(h_{1}-h_{2}\right)=63540 \mathrm{~kW}$
MIXING $200 \mathrm{~h}_{2}+100 \mathrm{~h}_{3}=300 \mathrm{~h}_{4} \quad 200(3055.3)+100(2803)=891360=300 \mathrm{~h}_{4}$ $\mathrm{h}_{4}=2971.2 \mathrm{~kJ} / \mathrm{kg}$

LP TURBINE

First expansion to 5 bar
Point 430 bar $h_{4}=2971.2 \mathrm{~kJ} / \mathrm{kg}$ Locate on $\mathrm{h}-\mathrm{s}$ chart and find $\mathrm{h}_{8}{ }^{\prime}=2620 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.92=\frac{2971.2-\mathrm{h}_{8}}{2971.2-2620} \quad \mathrm{~h}_{8}=2648.1 \mathrm{~kJ} / \mathrm{kg}$
Power out $=300(2971.2-2648.1)=96931.2 \mathrm{~kW}$
Expansion to 0.1 bar
Locate point 8 and then point ' $5 \mathrm{~h}_{5}$ ' $=2090 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.92=\frac{2648.1-h_{5}}{2648.1-2090} \quad h_{5}=2134.6 \mathrm{~kJ} / \mathrm{kg}$
Power out $=\mathrm{m}(2648.1-2134.6)=513.45 \mathrm{mkW} \mathrm{m}=$ mass flowing to condenser.

FEED HEATER

$y h_{8}+(300-y) h_{7}=300 h_{9} \quad y=$ mass bled at 5 bar
$\mathrm{h}_{6}=\mathrm{h}_{7}=192 \mathrm{~kJ} / \mathrm{kg}$
y $2648.1+(300-y) 192=300 \times 640$
$2648.1 \mathrm{y}+57600-192 \mathrm{y}=192000$
$2456.1 \mathrm{y}=134400 \quad \mathrm{y}=54.72 \mathrm{~kg} / \mathrm{s}$
$\mathrm{m}=300-54.72=245.28$ Power out of second part of expansion $513.45 \mathrm{~m}=125938.6 \mathrm{~kW}$
Total power from LP turbine $=96931.2+125938.6=222869.7 \mathrm{~kW}$
Total power out from both turbines $=222869.7+63540=286409.7 \mathrm{~kW}$ say 286.41 MW

BOILER

$\Phi($ in $)=200\left(\mathrm{~h}_{1}-\mathrm{h}_{11}\right)+100\left(\mathrm{~h}_{3}-\mathrm{h}_{10}\right) \mathrm{h}_{11}=\mathrm{h}_{10}=\mathrm{h}_{9}=640 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=200(3373-640)+100(2803-640)=762900 \mathrm{~kW}$ say 762.9 MW

CONDENSER

$\Phi($ out $)=(300-54.72)\left(\mathrm{h}_{5}-\mathrm{h}_{6}\right)=(300-54.72)(2134.6-192)=476481 \mathrm{~kW}$
Check $\mathrm{P}=\Phi($ in $)-\Phi($ out $)=762.9-476.48=286.4$ MW
$\eta=P / \Phi=286.41 / 1036.2=27.6 \%$

4 (a) Show for helium that $\gamma=5 / 3$ where γ is the adiabatic constant.
A closed-cycle single-shaft gas turbine plant using helium as the working fluid incorporates the following components in the given order: (a) a compressor, (b) a heater, (c) a two-stage turbine with reheater and (d) a cooler.

The maximum and minimum pressures and temperatures in the cycle are 40 bar and $700{ }^{\circ} \mathrm{C}$, and 10 bar and $25{ }^{\circ} \mathrm{C}$ respectively, with reheat to $700^{\circ} \mathrm{C}$. The pressure in the reheater is optimum for maximum specific power (power per kg / s of gas flow).

The molar mass of helium is $4 \mathrm{~kg} / \mathrm{kmol}$ and the molar heat capacity at constant volume for helium is $3 / 2 \tilde{\mathrm{R}}$ where $\tilde{\mathrm{R}}=8.3145 \mathrm{~kJ} / \mathrm{kmol} \mathrm{K}$ is the universal molar gas constant.
(b) Sketch the T-s diagram for the plant and indicate pressures and temperatures between the components if
(i) the reheater is used,
(ii) the reheater is by-passed.
(c) Calculate the ideal cycle efficiency and specific power for each case. Assume that there are no losses in the cycle.
(a) For Helium $\tilde{\mathrm{m}}=4$ (mol mass) $\mathrm{R}=\tilde{\mathrm{R}} / \tilde{\mathrm{m}}=8.3145 / 4=2.0786 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\tilde{\mathrm{c}}_{\mathrm{v}}=\frac{3 \tilde{\mathrm{R}}}{2}$
$\tilde{\mathrm{C}}_{\mathrm{p}}=\widetilde{\mathrm{R}}+\tilde{\mathrm{c}}_{\mathrm{v}}=\tilde{\mathrm{R}}+\frac{3 \tilde{\mathrm{R}}}{2}=\frac{5 \tilde{R}}{2}$
$c_{v}=\frac{3 R}{2}=3.1179 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{c}_{\mathrm{p}}=\mathrm{R}+\mathrm{c}_{\mathrm{v}}=5.1966 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\gamma=c_{p} / c_{v}=1.667$
$\mathrm{p}_{1}=10$ bar $\theta_{1}=25^{\circ} \mathrm{C} \quad \mathrm{T}_{1}=298 \mathrm{~K}$
$\mathrm{P}_{2}=40$ bar

$\mathrm{p}_{3}=40$ bar $\theta_{3}=700^{\circ} \mathrm{C} \quad \mathrm{T}_{3}=973 \mathrm{~K}$
For optimal turbine work $p_{4 / 5}=\sqrt{ }(40)(10)=\sqrt{ } 400=20$ bar $\theta_{5}=700^{\circ} \mathrm{C}_{5}=973 \mathrm{~K}$

$$
\begin{aligned}
& \mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-\frac{1}{\gamma}}=298\left(\frac{40}{10}\right)^{1-\frac{1}{1.667}}=518.9 \mathrm{~K} \\
& \mathrm{~T}_{4}=\mathrm{T}_{3}\left(\frac{\mathrm{p}_{4}}{\mathrm{p}_{3}}\right)^{1-\frac{1}{\gamma}}=973\left(\frac{20}{40}\right)^{1-\frac{1}{1.667}}=737.4 \mathrm{~K} \\
& \mathrm{~T}_{6}=\mathrm{T}_{5}\left(\frac{\mathrm{p}_{6}}{\mathrm{p}_{5}}\right)^{1-\frac{1}{\gamma}}=973\left(\frac{10}{20}\right)^{1-\frac{1}{1.667}}=737.4 \mathrm{~K}
\end{aligned}
$$

HEAT INPUT
$\Phi(\mathrm{in})=\mathrm{c}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)+\mathrm{c}_{\mathrm{p}}\left(\mathrm{T}_{5}-\mathrm{T}_{4}\right)=5.1966(973-518.9)+5.1966(973-734.7)=3598.1 \mathrm{~kW}$
HEAT OUTPUT
$\Phi($ out $)=c_{p}\left(\mathrm{~T}_{6}-\mathrm{T}_{1}\right)=5.1966(734.7-298)=2269.4 \mathrm{~kW}$
Nett Power Out $=3598.1-2269.4=1328.7 \mathrm{~kW}$ per kg / s of gas flow
Cycle efficiency $\eta=\mathrm{P} / \Phi(\mathrm{in})=1328.7 / 3598.1=0.369$ or 36.9% with reheater

With the reheater bypassed we have a standard Joule cycle.
$\eta=1-r_{p}^{\frac{1}{\gamma}-1}=1-\left(\frac{40}{10}\right)^{\frac{1}{1.667}-1}=0.426$
HEAT INPUT
$\Phi(\mathrm{in})=\mathrm{c}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=5.1966(973-518.9)=2360 \mathrm{~kW}$
Nett Power Out $=\eta \times 2360=1005 \mathrm{~kW}$ per kg/s of gas flow
5. A single-stage air compressor has a clearance volume of $15 \times 10^{-6} \mathrm{~m}^{3}$ and a swept volume of 750 x $10^{-6} \mathrm{~m}^{3}$. Air enters the compressor at a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 1 bar. The delivery pressure is 25 bar and the compressor speed is $600 \mathrm{rev} / \mathrm{min}$. Assume for the compression and expansion strokes that the polytropic indices are identical and equal to 1.45 respectively, and the gas constant for air is $0.287 \mathrm{~kJ} / \mathrm{kgK}$.
(a) Sketch the ideal indicator diagram.
(b) Determine
(i) The delivery temperature.
(ii) The mass flow rate.
(iii) The indicated power.
(c) Show how an actual indicator diagram would differ from the ideal diagram and explain why.

The ideal cycle is as shown.
DELIVERY TEMPERATURE
$\mathrm{T}_{2}=\mathrm{T}_{1} \mathrm{r}_{\mathrm{p}}^{\frac{\mathrm{n}-1}{\mathrm{n}}}=293 \times 25^{\frac{1.45-1}{1.45}}=293 \times 25^{0.310}=795.6$

VOLUMETRIC EFFICIENCY
Clearance ratio c $=15 / 750$
$\eta_{\mathrm{vol}}=1-\mathrm{c}\left(\mathrm{r}_{\mathrm{p}}^{\frac{1}{n}}-1\right)=1-\frac{15}{750}\left(25^{0.6896}-1\right)=1-\frac{15}{750}(8.2065)=0.8359$
Induced volume $=0.8359 \times 750=626.9 \mathrm{~cm}^{3}$
Induced flow rate $=626.9 \times 10^{-6} \times 600 \mathrm{rev} / \mathrm{min}=0.376 \mathrm{~m}^{3} / \mathrm{min}$
Mass flow rate
$\mathrm{m}=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{1 \times 10^{5} \times 0.376}{287 \times 293}=0.447 \mathrm{~kg} / \mathrm{min}=0.007455 \mathrm{~kg} / \mathrm{s}$

INDICATED POWER

There are various ways to find this. A derived formula for the standard cycle is as follows.
$\mathrm{P}=\operatorname{mRT}_{1}\left(\frac{\mathrm{n}}{\mathrm{n}-1}\right)\left\{\mathrm{r}_{\mathrm{p}} \frac{\mathrm{n}-1}{\mathrm{n}}-1\right\}=0.007455 \times 287 \times 293\left(\frac{1.45}{0.45}\right)\left\{25^{0.310}-1\right\}=3465 \mathrm{~W}$
or
$\mathrm{P}=\frac{\mathrm{nmR}}{\mathrm{n}-1}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=\frac{1.45 \times 0.007455 \times 287}{0.45}(795.6-293)=3465 \mathrm{~W}$
In practice there is restriction when the air is being sucked in and pushed out and the valves move on their springs so actual cycle is more like this.

6 A single-shaft gas-turbine jet engine is used as the propulsion unit on a small aircraft. The aircraft is flying at a velocity of $200 \mathrm{~m} / \mathrm{s}$ at sea level where atmospheric pressure p is 1 bar and temperature T is 293 K . The pressure ratio over the compressor is 30 . The compressor is adiabatic with an isentropic efficiency of 85%. After combustion, the hot gases enter the turbine with a temperature of 1200 K and expand adiabatically through the turbine. The turbine has an isentropic efficiency of 90% and it generates just sufficient power to drive the compressor. Finally the gases expand reversibly and adiabatically through a convergent propulsion nozzle, the outlet of which is choked.
(a) Determine the pressures at turbine and nozzle exits, the mass flow rate and the thrust developed if the nozzle has an exit area of $0.15 \mathrm{~m}^{2}$.
(b) Also determine the power being generated to propel the aircraft.

Assume that the engine intake is isentropic, the working fluid throughout the engine is air with a gas constant R of $0.287 \mathrm{~kJ} / \mathrm{kgK}$, a specific heat capacity at constant pressure C_{P} of $1.0 \mathrm{~kJ} / \mathrm{kgK}$ and an adiabatic constant γ of 1.4. Further assume that air is a perfect gas, and neglect all mechanical losses.

The critical temperature ratio in an isentropic nozzle is $\frac{2}{\gamma+1}$ and the velocity of sound is $\frac{\gamma \mathrm{p}}{\rho}$ Where ρ is density.

The stagnation and static pressures p_{o} and p respectively are linked to the Mach number M by

$$
\frac{\mathrm{p}}{\mathrm{p}_{\mathrm{o}}}=\left[1+\left(\frac{\gamma-1}{2}\right) \mathrm{M}^{2}\right]^{\frac{2}{\gamma-1}}
$$

(c) Show that an aircraft velocity of $200 \mathrm{~m} / \mathrm{s}$ has an effect on the engine cycle.

COMPRESSOR

$\mathrm{T}_{\mathrm{o}}=\mathrm{T}_{1}+\frac{\mathrm{u}_{1}^{2}}{2 \mathrm{c}_{\mathrm{p}}}=293+\frac{200^{2}}{2000}=313 \mathrm{~K}$
$\mathrm{T}_{2}{ }^{\prime}=\mathrm{T}_{\mathrm{o}}\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}=313 \times 30^{0.2857}=827 \mathrm{~K}$
$\eta_{\mathrm{i}}=0.85=\frac{827-313}{\mathrm{~T}_{2}-313} \quad \mathrm{~T}_{2}=917.7 \mathrm{~K}$
Specific Power Input $=c_{p} \Delta T=1 \times(917.7-313)=604.7 \mathrm{~kW}$
TURBINE
Power Out $=$ Power In $=604.7=\mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=1 \times\left(1200-\mathrm{T}_{4}\right) \quad \mathrm{T}_{4}=595.3 \mathrm{~K}$
This is the actual temperature. Find the ideal temperature.
$\eta_{\mathrm{i}}=0.9=\frac{1200-595.3}{1200-\mathrm{T}_{4}{ }^{\prime}} \quad \mathrm{T}_{4}{ }^{\prime}=528.1 \mathrm{~K}$
$\frac{\mathrm{T}_{4}{ }^{\prime}}{\mathrm{T}_{3}}=\left(\frac{\mathrm{p}_{4}}{\mathrm{p}_{3}}\right)^{\frac{\gamma-1}{\gamma}} \frac{528.1}{1200}=\left(\frac{\mathrm{p}_{4}}{30}\right)^{0.2857} \quad \mathrm{p}_{4}=1.696$ bar

NOZZLE

$\mathrm{T}_{5}=\mathrm{T}_{4}\left(\frac{2}{\gamma+1}\right)=595.3 \times 0.833=496.1 \mathrm{~K}$
$\frac{\mathrm{T}_{4}}{\mathrm{~T}_{5}}=\frac{595.3}{496.1}=\left(\frac{\mathrm{p}_{4}}{\mathrm{p}_{5}}\right)^{0.2857} \quad 1.2=\left(\frac{1.696}{\mathrm{p}_{5}}\right)^{0.2857} \quad \mathrm{p}_{5}=0.896 \mathrm{bar}$
or $\quad \mathrm{p}_{5}=\mathrm{p}_{4}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=1.696\left(\frac{2}{2.4}\right)^{3.5}=0.896 \mathrm{bar}$
This pressure is less than atmospheric so there must be shock waves????
Apply conservation of energy.
$\mathrm{c}_{\mathrm{p}} \mathrm{T}_{4}=\mathrm{c}_{\mathrm{p}} \mathrm{T}_{5}+\mathrm{u}^{2} / 2$
$1000 \times 595.3=1000 \times 496.1+u^{2} / 2 \quad u=951.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}=\mathrm{A}_{2} \mathrm{u}=0.15 \times 951.5=142.725 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{m}=\mathrm{pV} / \mathrm{RT}=\left(0.896 \times 10^{5} \times 142.725\right) /(287 \times 496.1)=\mathrm{kg} / \mathrm{s}$

THRUST

$\mathrm{F}_{\mathrm{T}}=\mathrm{m}(\mathrm{v}-\mathrm{u})+\mathrm{A}_{2}\left(\mathrm{p}_{2}-\mathrm{p}_{\mathrm{a}}\right)=89.82(951.5-200)+0.015(0.896-1.013) \times 10^{5}=67497-175.5$
$\mathrm{F}_{\mathrm{T}}=67.32 \mathrm{kN}$
NB I am not sure about the low pressure p_{5}. There must be some affect due to the pressure rise to atmospheric.
(b) POWER DEVELOPED
$\mathrm{P}=\mathrm{F}_{\mathrm{T}} \mathrm{v}=67.32 \times 200=13464 \mathrm{~kW}$ or 13.46 MW
(c) The entrance to the compressor must be a duct and a ram jet affect is achieved which affects the pressure rise and temperature rise over the compressor. I thought this was taken into account with the use of stagnation temperature and pressure so I don't see the relevance of this part of the question. Anyone knowing the answer, please let me know.

7 (a) Sketch the velocity diagram for the mean-diameter stator and rotor sections of a stage of an axial-flow reaction turbine. Assume equal inlet and outlet velocities to the stage and constant axial flow velocity. Indicate on the diagram all the angles which the absolute and relative velocity vectors make with the tangential, which is the whirl, direction.
(b) The degree of reaction $\mathbf{D R}$ is the ratio of the rotor enthalpy drop to the stage enthalpy drop. Prove that

$$
\mathrm{DR}=\frac{\mathrm{V}_{\mathrm{a}}}{2 \mathrm{U}}\left(\cot \beta_{2}-\cot \beta_{1}\right)
$$

where $\frac{V_{a}}{U}$ is the ratio of the axial flow velocity to the rotor blade velocity, and β_{1}, and β_{2}, are the rotor blade inlet and outlet angles respectively.
(c) The mean-diameter section of a stage with $\mathbf{D R}=0.5$, has a blade velocity of $150 \mathrm{~m} / \mathrm{s}$ and an axial gas velocity of $120 \mathrm{~m} / \mathrm{s}$. If the temperature drop across the stage is $25^{\circ} \mathrm{C}$ and the specific heat capacity at constant pressure C_{P} is $1.0 \mathrm{~kJ} / \mathrm{kgK}$, calculate all stator and rotor angles.

The stationary vane makes an angle α_{1} with the direction of rotation. The moving vane has an angle β_{1} at inlet and β_{2} at outlet. c is the absolute velocity of the steam and v is the relative velocity. The velocity diagram is as shown if the absolute velocity entering the stationary vanes is the same as the absolute velocity c_{2} at exit from the moving rotor. In this event it follows that $\beta_{1}=\alpha_{2}$ and $\beta_{2}=\alpha_{1}$.
$\mathrm{U}=$ blade velocity. $\mathrm{V}_{\mathrm{a}}=$ Axial velocity.
$\Delta \mathrm{v}_{\mathrm{w}}=$ change in velocity in whirl direction.
Enthalpy at entry to stage $=h_{0}$
Enthalpy at exit from stage $=h_{2}$

Change in enthalpy $=$ work given to the rotor $\mathrm{h}_{\mathrm{o}}-\mathrm{h}_{2}=\mathrm{U} \Delta \mathrm{v}_{\mathrm{w}} \quad \Delta \mathrm{v}_{\mathrm{w}}=\mathrm{V}_{\mathrm{a}}\left(\cot \beta_{1}+\cot \beta_{2}\right)$ $\mathrm{h}_{1}=$ enthalpy at entry to the rotor. Change in enthalpy over the rotor = change in KE over the rotor
$\mathrm{h}_{1}-\mathrm{h}_{2}=\frac{\mathrm{v}_{2}^{2}-\mathrm{v}_{1}^{2}}{2}$
$\mathrm{v}_{2}=\mathrm{V}_{\mathrm{a}} \operatorname{cosec} \beta_{2} \quad \mathrm{v}_{1}=\mathrm{V}_{\mathrm{a}} \operatorname{cosec} \beta_{1}$
$h_{1}-h_{2}=V_{a}^{2}\left\{\frac{\left(\operatorname{cosec}^{2} \beta_{2}-\operatorname{cosec}^{2} \beta_{1}\right)}{2}\right\}$ but since

$(\operatorname{cosec} \beta)^{2}=(\cot \beta)^{2}+1$
$\mathrm{h}_{1}-\mathrm{h}_{2}=\mathrm{V}_{\mathrm{a}}^{2}\left\{\frac{\left(\cot ^{2} \beta_{2}-\cot ^{2} \beta_{1}\right)}{2}\right\}$
$h_{1}-h_{2}=\frac{V_{a}^{2}}{2}\left(\cot \beta_{2}+\cot \beta_{1}\right)\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$\mathrm{DR}=\frac{\mathrm{h}_{1}-\mathrm{h}_{2}}{\mathrm{~h}_{\mathrm{o}}-\mathrm{h}_{2}}=\frac{\mathrm{V}_{\mathrm{a}}^{2}}{2}\left\{\frac{\left(\cot \beta_{2}+\cot \beta_{1}\right)\left(\cot \beta_{2}-\cot \beta_{1}\right)}{U \mathrm{~V}_{\mathrm{a}}\left(\cot \beta_{2}+\cot \beta_{1}\right)}\right\}=\frac{\mathrm{V}_{\mathrm{a}}}{2 \mathrm{U}}\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$\mathrm{DR}=0.5 \quad \mathrm{U}=150 \mathrm{~m} / \mathrm{s} \quad \mathrm{V}_{\mathrm{a}}=120 \mathrm{~m} / \mathrm{s} \quad \Delta \mathrm{T}=25 \mathrm{~K} \quad \mathrm{C}_{\mathrm{P}}$ is $1.0 \mathrm{~kJ} / \mathrm{kgK}$
$\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=$ change in enthalpy over the stage $=\mathrm{U} \Delta \mathrm{v}_{\mathrm{w}}$
$\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=$ change in enthalpy over the stage $=\Delta \mathrm{V}_{\mathrm{w}}$
$\Delta \mathrm{V}_{\mathrm{w}}=\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T} / \mathrm{U}=45000 / 150=300 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{v}_{\mathrm{w}}=\mathrm{V}_{\mathrm{a}}\left(\cot \beta_{1}+\cot \beta_{2}\right) \quad 300=120\left(\cot \beta_{1}+\cot \beta_{2}\right) \quad \cot \beta_{1}=2.5-\cot \beta_{2}$
$\mathrm{DR}=0.5=\frac{\mathrm{V}_{\mathrm{a}}}{2 \mathrm{U}}\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$0.5=\frac{120}{2 \times 150}\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$1.25=\left(\cot \beta_{2}-\cot \beta_{1}\right)$
$\cot \beta_{1}=\cot \beta_{2}-1.25$
$\cot \beta_{1}=2.5-\cot \beta_{2}=\cot \beta_{2}-1.25$
$2 \cot \beta_{2}=3.75 \quad \cot \beta_{2}=1.875$

$$
\cot \beta_{1}=2.5-\cot \beta_{2}=0.625
$$

$$
\begin{array}{ll}
\tan \beta_{2}=0.5333 & \beta_{2}=28^{\circ}=\alpha_{1} \\
\tan \beta_{1}=1.6 & \beta_{2}=58^{\circ}=\alpha_{2}
\end{array}
$$

APPLIED THERMODYNAMICS D201 2004

8 The analysis by mass of a solid fuel is as follows:
Carbon 70\%, Hydrogen 15\%, Oxygen 5\%, Ash 10 \%.
The fuel is burnt with 20% excess air. Assuming complete combustion, calculate
(a) the composition by mass of the products of combustion,
(b) the dewpoint,
(c) for each kg of fuel burnt, the mass of water which will condense when the products of combustion are cooled at a constant pressure to $20^{\circ} \mathrm{C}$.

Assume that the barometric pressure is 1 atm .

$\mathrm{C}+$	$\mathrm{O}_{2} \leftrightarrow$	CO_{2}	$2 \mathrm{H}_{2}+$	$\mathrm{O}_{2} \leftrightarrow$	$2 \mathrm{H}_{2} \mathrm{O}$
12	32	44	4	32	36
0.7	1.867	2.57	0.15	1.2	1.35

There are $.7 / 12=0.05833 \mathrm{kmol}$ of C and $0.15 / 2=0.075 \mathrm{kmol}$ of H_{2}
Total O_{2} needed $=1.867+1.2-0.05=3.0167 \mathrm{~kg}$
Air needed $=3.0167 / 0.233=12.947 \mathrm{~kg}$
Actual air $12.947 \times 1.2=15.537 \mathrm{~kg}$
Nitrogen in this air $=0.77 \times 15.537=11.963 \mathrm{~kg}$
oxygen in this air $=3.620 \quad$ Oxygen used $=3.0167 \quad$ Oxygen left over $=0.603 \mathrm{~kg}$

PRODUCTS

	kmol	mass	$\%$
$\mathrm{~N}_{2}$	0.427	11.963	72.6
CO_{2}	0.0584	2.57	15.6
$\mathrm{H}_{2} \mathrm{O}$	0.075	1.35	8.2
O_{2}	0.01884	0.603	3.6
Total	0.5792	16.486	100

If everything ends up as gas then the partial pressure of $\mathrm{H}_{2} \mathrm{O}$ is
$\mathrm{p}_{\text {нго }}=(0.075 / 0.5792) \times 1 \mathrm{~atm}=0.1295 \mathrm{~atm}=0.131 \mathrm{bar}$
The corresponding saturation temperature is $51.2^{\circ} \mathrm{C}$ (The dew Point)
If cooled to $20^{\circ} \mathrm{C}$ some condensation must occur and the vapour left will be dry saturated vapour. ps at $20^{\circ} \mathrm{C}$ is 0.02337 bar
Let the kmol of $\mathrm{H}_{2} \mathrm{O}$ vapour be x . The total kmol is the same $=.5792-0.075+\mathrm{x}=0.5042+\mathrm{x}$
$\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{x}}{0.5042+\mathrm{x}} \mathrm{x} 1.013=0.02337$ bar
$0.01163+0.02307 \mathrm{x}=\mathrm{x}$
$0.01163=0.9769 \mathrm{x} \quad \mathrm{x}=0.0119 \mathrm{kmol}$
The mass of vapour is $\mathrm{m}=0.0119 \times 18=0.2142 \mathrm{~kg}$
Condensate formed is $1.35-0.2142=1.1358 \mathrm{~kg}$

9 As hydrocarbon fuels become scarcer, and the cost of extraction from the earth increases, it is essential that all of us become efficient energy managers. In most factories, offices, apartment blocks and homes, energy is wasted, usually in the form of hot fluids. Heat recovery is not a new technology, but it is a technology which needs wider application with particular emphasis on smaller units.

There are various types of small scale recuperators in which the fluids exchanging heat are separated by a dividing wall. Some examples are parallel flow, counter flow, cross flow, multipass, mixed flow and extended surface.

Explain the basic operating principles of recuperators and indicate which is most advantageous for small scale application.

A recupurator is a heat exchanger that removes heat from a waste fluid and adds it to another fluid where it will be useful.

On large boiler plant they are used to remove heat from flue gas and add it to the air supplied for combustion. This could be applied to central heating boilers or boilers supplying process heat. The capital cost is high and hard to recover through the economy made.

Factories with a large amount of waste heat may find it economical to recover heat. Waste steam is relative easy to recover by condensing it and recycling it using it for space heating

Hot waste air and other gasses are more difficult to recover and recuperators are often better than other forms of heat exchangers for this purpose.

In domestic and office situations they are more likely to be used to remove heat from stale air being removed from the building (e.g. from kitchens venting the fumes from cooking) and added to the fresh air being drawn into the building hence saving on cost of heating the building.

The regenerative type is a rotating drum with half in the path of one fluid and half in the path of another. The hot fluid passes through a heat absorbent material in a drum. The drum rotates and the heated material rotates into the path of the cool fluid and warms it up.

Others work by conduction of heat from the warm fluid to the cool through metal plates with the maximum exposed surface area possible.

Heat pipes contain a fluid that transports heat from one fluid to the other and makes use of the latent heat of the fluid to transport large quantities of heat. These are very effective.

THE FOLLOWING IS TYPICAL OF INFORMATION THAT CAN BE FOUND ON THE INTERNET BY SIMPLY SEARCHING FOR RECUPERATORS.

Heat Recuperators

It is also possible to use the recuperated heat to heat water for cleaning purposes or air for heating rooms. In the following only preheating of the drying air is discussed.

In principle, there are two different recuperating systems:

- Air-to-Air
- Air-Liquid-Air

Air-to-Air Heat Recuperator

In the heat recuperator type air-to-air, see Fig. 98, the drying air is preheated by means of the outgoing air passing counter-currently over the heat surface of the recuperator. This surface is formed as a number of tubes, inside of which the outgoing warm air is passing while the cold air is passing on the outside.

Fig. 98 Heat recuperator type air-to-air
The incorporation of this equipment in an existing plant may prove difficult and ex-pensive, as it may require large and long air ducts from which part of the recuperated energy is lost due to radiation, if the ducts are not insulated. In new installations it is easier to incorporate this type of heat recuperator, as the arrangement can be optimized with short air ducts. See Fig. 99.

Fig. 99 One-stage spray dryer with hear recuperator type air-to-air

The temperature to which the air can be preheated depends upon the temperature of the outgoing air. Therefore, this type of heat recuperator is most beneficial in combination with a one-stage spray dryer where the temperature of the outgoing air is high. The figures mentioned below are based upon a onestage plant as mentioned in the table on page 139.

Ambient	air	preheated	from	$10^{\circ} \mathrm{C}$	to	$52^{\circ} \mathrm{C}$
Outgoing	air	cooled	from	$93^{\circ} \mathrm{C}$	to	$51^{\circ} \mathrm{C}$:

Air-Liquid-Air Heat Recuperator

Another system, more flexible regarding the installation, is the air-liquid-air heat re-cuperator, see Fig. 100. This system is divided in two heat exchangers, in between which a heat transfer liquid is circulated, for example water. See Fig. 100a. If, due to low air temperatures during winter, it may be expected that the temperature of the water gets below zero, an anti-freeze agent is added to the water. As the heat transfer co-efficient is higher for air-liquid than for air-air, this system is more efficient than the air-to-air heat recuperator despite the fact that two heat surfaces are needed.

Fig. 100 Heat recuperator type air-liquid-air

The heat transfer surface placed in the outgoing air is formed as a bundle of tubes inside which the dustloaded air is passed. On the outside of the tubes the water streams counter-currently. The heat transfer surface placed in the inlet air is a normal finned tube heat exchanger. Water is recycled by means of a centrifugal pump.

Fig. 100a One-stage spray dryer with heat recuperator type air-liquid-air

If indirect oil- or gas-fired air heaters are used, the heat transfer liquid can - after the passage through the exhaust air heat exchanger - be passed through a heat exchanger placed in the combustion air duct, whereby even further savings can be achieved.

Tubular Heat Recuperators

Exothermics Tubular Heat Recuperators (THR) are air-to-air heat recovery units that effectively reclaim heat from catalytic incinerators, furnaces, thermal oxidizers and many other high temperature process and environmental applications.

But that's just the beginning. They also help you lower energy costs, easily and effectively control process air temperatures and reclaim a fast return on investment.

No other company manufactures a more effective Tubular Heat Recuperator than Exothermics. Our units are installed in hundreds of sites around the world, and we are quickly becoming the preferred choice for high temperature heat recovery equipment. Here's why:

Our Tubular Heat Recuperators are accepted and endorsed worldwide because they simply perform better. Features include:

Boundary Layer Breakdown

Exothermics Tubular Heat Recuperators have a proprietary tubular core design in which the placement of the heat recovery tubes assures a breakdown of air boundary layers in and around the tubes. The design creates a turbulent movement of the hot gas and process airstreams, resulting in more efficient heat transfer and optimum heat recovery.

Multi-Pass Designs

Crossflow and multiple pass designs are available. Multiple pass designs are used when the application requires greater effectiveness. Units can be manufactured so that the multiple passes are on the shell side, where the gas stream passes over the tubes several times before exiting the recuperator. Other applications may require a multiple tube pass design.

Insulation

Various options are available. Our Tubular Heat Recuperators can be ordered without insulation or with external insulation when a hot flange connection is required. Where cold flange connections are involved, the unit is designed with internal ceramic fiber insulation.

Rugged Construction

Exothermics Tubular Heat Recuperators are all welded assemblies constructed from stainless steel or other high temperature alloys. Each unit is custom engineered, then carefully fabricated and quality tested by certified welders and experienced craftsmen. Where required, a mechanism for accommodating thermal expansion is provided. And because our tubular heat recuperators are of all welded construction, internal cross contamination is virtually eliminated.

