APPLIED THERMODYNAMICS D201

SELF ASSESSMENT SOLUTIONS

TUTORIAL 1

SELF ASSESSMENT EXERCISE No. 1

1. Steam is expanded adiabatically in a turbine from 100 bar and $600^{\circ} \mathrm{C}$ to 0.09 bar with an isentropic efficiency of 0.88 . The mass flow rate is $40 \mathrm{~kg} / \mathrm{s}$.
Calculate the enthalpy at exit and the power output.
$\mathrm{h}_{1}=3624 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{1}=6.902 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}_{2}{ }^{\prime} \mathrm{s}_{\mathrm{fg}}$ at 0.09 bar
$\mathrm{s}_{2}=\mathrm{s}_{1}=6.902=0.662+\mathrm{x}_{2}{ }^{\prime} 7.564$
$\mathrm{x}_{2}{ }^{\prime}=0.83$
$\mathrm{h}_{2}{ }^{\prime}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{2}{ }^{\prime} \mathrm{h}_{\mathrm{fg}}$ at 0.09 bar
$\mathrm{h}_{2}{ }^{\prime}=183+0.83(2397)=2173.1 \mathrm{~kJ} / \mathrm{kg}$

Ideal Power $=30(3624-2173.1=58$ MW
Actual Power $=\eta \times 58=0.88 \times 58=51$ MW
2. A gas compressor compresses gas adiabatically from 1 bar and $15^{\circ} \mathrm{C}$ to 10 bar with an isentropic efficiency of 0.89 . The gas flow rate is $5 \mathrm{~kg} / \mathrm{s}$.

Calculate the temperature after compression and the power input.
(Ans. -1.513 MW)
Take $\mathrm{c}_{\mathrm{V}}=718 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\mathrm{c}_{\mathrm{p}}=1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\gamma=\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}=1.4 \quad \mathrm{~T}_{2^{\prime}}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-1 / \gamma} \quad \mathrm{T}_{2^{\prime}}=288(10)^{-0.286}=556 \mathrm{~K}$
Ideal Power $=5 \times 1.005 \times(556-288)=1.347 \mathrm{MW}$
Actual Power $=P / \eta=1.347 / 0.89=1.513$ MW

(1)

SELF ASSESSMENT EXERCISE No. 2

A back pressure steam cycle works as follows. The boiler produces $8 \mathrm{~kg} / \mathrm{s}$ of steam at 40 bar and $500^{\circ} \mathrm{C}$. This is expanded to 2 bar with an isentropic efficiency of 0.88 . The pump is supplied with feed water at 0.5 bar and $30^{\circ} \mathrm{C}$ and delivers it to the boiler at $31^{\circ} \mathrm{C}$ and 40 bar.

Calculate the net power output of the cycle. (Answer 5.24 MW)

From tables $\mathrm{h}_{3}=3445 \mathrm{~kJ} / \mathrm{kg} \mathrm{s}_{3}=7.089 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
For an ideal expansion

$$
\begin{aligned}
& \mathrm{S}_{3}=\mathrm{s}_{4}=7.089=1.53+\mathrm{x}^{\prime} \text { sfg at } 3 \text { bar } \\
& 6.646=1.672+\mathrm{x}_{4}^{\prime}(5.597) \text { at } 2 \text { bar } \\
& \mathrm{x}_{4}^{\prime}=0.993 \\
& \mathrm{~h}_{4}^{\prime}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}^{\prime} \mathrm{hfg} \text { at } 2 \text { bar } \\
& \mathrm{h}_{4^{\prime}}=505+0.993(2202)=2693 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Ideal Power Out $=8(3445-2693)=6.024 \mathrm{MW}$
Actual Power $=0.88(6.024=5.3 \mathrm{MW}$
Next we examine the enthalpy change at the pump.

$$
\begin{aligned}
& \mathrm{h}_{1}=125.7 \mathrm{~kJ} / \mathrm{kg} \mathrm{~h}_{\mathrm{f}} \text { at } 30^{\circ} \mathrm{C} \\
& \mathrm{~h}_{2}=\mathrm{mc} \theta+\mathrm{pv}=1 \times 4186 \times 31+40 \times 10^{5} \times 0.001=133.7 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The power input to the pump is $8(133.7-125.7)=64 \mathrm{~kW}$
Net Power output of the cycle = 5300-64 = 5236 kW

1. A steam turbine plant is used to supply process steam and power. The plant comprises an economiser, boiler, superheater, turbine, condenser and feed pump. The process steam is extracted between intermediate stages in the turbine at 2 bar pressure. The steam temperature and pressure at outlet from the superheater are $500^{\circ} \mathrm{C}$ and 70 bar, and at outlet from the turbine the pressure is 0.1 bar. The overall isentropic efficiency of the turbine is 0.87 and that of the feed pump is 0.8 .
Assume that the expansion is represented by a straight line on the h-s chart. The make-up water is at $15^{\circ} \mathrm{C}$ and 1 bar and it is pumped into the feed line with an isentropic efficiency 0.8 to replace the lost process steam.
If due allowance is made for the feed pump-work, the net mechanical power delivered by the plant is 30 MW when the process steam load is $5 \mathrm{~kg} / \mathrm{s}$. Calculate the rate of steam flow leaving the superheater and the rate of heat transfer to the boiler including the economiser and superheater. Sketch clear T- s and h-s and flow diagrams for the plant. ($29.46 \mathrm{~kg} / \mathrm{s}$ 95.1 MW)
From the tables
$\mathrm{h}_{3}=3410 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{3}=6.796 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{5}{ }^{\prime}=\mathrm{s}_{3}=0.649+\mathrm{x}_{5}{ }^{\prime}$ (7.5)
$\mathrm{x}_{5}{ }^{\prime}=0.8196$
$\mathrm{h}_{5}{ }^{\prime}=192+0.8196(2392)=2152.5 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}$ (ideal) $=3410-2152.5=1257.5 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}($ actual $)=1257.5 \times 0.87=1094 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{5}=3410-1094=2316 \mathrm{~kJ} / \mathrm{kg}$
From the $\mathrm{T}-\mathrm{s}$ chart $\mathrm{h}_{4}=2710 \mathrm{~kJ} / \mathrm{kg}$
P (out) $=\mathrm{m}\left(\mathrm{h}_{3}-\mathrm{h}_{4}\right)+(\mathrm{m}-\mathrm{s})\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)$
P (out) $=m(3410-2710)+(m-s)(2710-2316)$
$P($ out $)=700 m+394 m-1970$

P (out) $=1094 \mathrm{~m}-1970$
Now consider the pumps.
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{f}}=192 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{6}=\mathrm{h}_{\mathrm{f}}$ at $15^{\circ} \mathrm{C}=62.9 \mathrm{~kJ} / \mathrm{kg}$
P1(ideal) $=5 \times 0.001 \times(70-0.1) \times 10^{5}=34.5 \mathrm{~kW}$ $\mathrm{P} 1($ actual $)=34.5 / 0.8=43.125 \mathrm{~kW}$

P2 $($ ideal $)=(m-5)(0.001)\left((70-0.1) \times 10^{5}\right.$
$\mathrm{P} 2($ ideal $)=6.99 \mathrm{~m}-34.95 \mathrm{~kW}$
P2(actual) $=(6.99 \mathrm{~m}-34.95) / 0.8=8.7375 \mathrm{~m}-43.6875$
$P($ net $)=30000 \mathrm{~kW}=(1094 \mathrm{~m}-1970)-43.125-8.7375 \mathrm{~m}-43.6875$
$30000=1085.3 \mathrm{~m}-1926.9+43.68$
$31970.6=1085.3 \mathrm{~m}$
$\mathrm{m}=29.45 \mathrm{~kg} / \mathrm{s}$
$\mathrm{P} 2=8.7375 \times 29.45-43.6875=213.63 \mathrm{~kW}$
$\mathrm{P} 1=43.125 \mathrm{~kW}$
$\mathrm{P} 1+\mathrm{P} 2=256=\mathrm{mh}_{2}-5 \mathrm{~h}_{6}-(\mathrm{m}-5) \mathrm{h}_{1}$
$256=29.45 \mathrm{~h}_{2}-5 \times 62.9-24.45 \times 192$
$\mathrm{h}_{2}=5255.3 / 29.45=178.4 \mathrm{~kJ} / \mathrm{kg}$
$\Phi=m\left(h_{3}-h_{2}\right)=29.45(3410-178.4)=95169 \mathrm{~kW}$
$\eta=30 \mathrm{MW} / 95.169 \mathrm{MW}=31.5 \%$

2. The demand for energy from an industrial plant is a steady load of 60 MW of process heat at $117^{\circ} \mathrm{C}$ and a variable demand of up to 30 MW of power to drive electrical generators. The steam is raised in boilers at 70 bar pressure and superheated to $500^{\circ} \mathrm{C}$. The steam is expanded in a turbine and then condensed at 0.05 bar. The process heat is provided by the steam bled from the turbine at an appropriate pressure, and the steam condensed in the process heat exchanger is returned to the feed water line.

Calculate the amount of steam that has to be raised in the boiler. Assume an overall isentropic efficiency of 0.88 in the turbine. The expansion is represented by a straight line on the h-s diagram. Neglect the feed pump work.

From the tables
$\mathrm{h}_{3}=3410 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{3}=6.796 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{5}{ }^{\prime}=\mathrm{s}_{3}=0.476+\mathrm{x}_{5}{ }^{\prime}$ (7.918)
$\mathrm{x}_{5}{ }^{\prime}=0.7982$
$\mathrm{h}_{5}{ }^{\prime}=138+0.7982(2423)$
$\mathrm{h}_{5}{ }^{\prime}=2072 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}($ ideal $)=3410-2072=1338 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}($ actual $)=1338 \times 0.88=1177 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{5}=3410-1174=2233 \mathrm{~kJ} / \mathrm{kg}$

From the $\mathrm{T}-\mathrm{s}$ chart $117^{\circ} \mathrm{C}$ is in the wet region at 1.8 bar so
$\mathrm{h}_{4}=2680 \mathrm{~kJ} / \mathrm{kg}$
Process Flow
$\mathrm{m}_{\mathrm{p}}\left(\mathrm{h}_{4}-\mathrm{h}_{6}\right)=60000$
Assume $\mathrm{h}_{6}=\mathrm{h}_{\mathrm{f}}$ at 1.8 bar $=491 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{m}_{\mathrm{p}}=60000 /\left(\mathrm{h}_{4}-\mathrm{h}_{6}\right)=60000 /(2680-491)=27.4 \mathrm{~kg} / \mathrm{s}$
TURBINE
$30000=m\left(h_{3}-h_{4}\right)+(m-27.4)\left(h_{4}-h_{5}\right)$
$30000=m(3410-2680)+(m-27.4)(2680-2233)$
$\mathrm{m}=36 \mathrm{~kg} / \mathrm{s}$

A simple steam plant uses a Rankine cycle with one regenerative feed heater. The boiler produces steam at 70 bar and $500^{\circ} \mathrm{C}$. This is expanded to 0.1 bar isentropically. Making suitable assumptions, calculate the cycle efficiency. (41.8\%)
$\mathrm{T}_{\text {bleed }}=\left\{\mathrm{t}_{\mathrm{s}}(\mathrm{hp})-\mathrm{t}_{\mathrm{s}}(\mathrm{lp})\right\} / 2$
$\mathrm{T}_{\text {bleed }}=(285.8+45.8) / 2=165.8^{\circ} \mathrm{C}$
The corresponding pressure is 7 bar

From the h - s chart
$\mathrm{h}_{2}=3410 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=2800 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=2150 \mathrm{~kJ} / \mathrm{kg}$
From tables
$\mathrm{h}_{5}=\mathrm{h}_{\mathrm{f}}=192 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{7}=\mathrm{h}_{\mathrm{f}}=697 \mathrm{~kJ} / \mathrm{kg}$

HEATER
$2800 \mathrm{y}+192(1-\mathrm{y})=\mathrm{h}_{7}=697 \quad \mathrm{y}=0.193$
BOILER
$\Phi(\mathrm{in})=3410-697=2713 \mathrm{~kJ} / \mathrm{kg}$
CONDENSER
$\Phi($ out $)=(1-0.193)(2150-192)=1579 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}($ net $)=\Phi($ in $)-\Phi($ out $)=2713-1579=1133 \mathrm{~kJ} / \mathrm{kg}$
$\eta=1133 / 2713=41.8 \%$

1. Explain how it is theoretically possible to arrange a regenerative steam cycle which has a cycle efficiency equal to that of a Carnot cycle.
In a regenerative steam cycle steam is supplied from the boiler plant at a pressure of 60 bar and a temperature of $500^{\circ} \mathrm{C}$. Steam is extracted for feed heating purposes at pressures of 30 bar and 3.0 bar and the steam turbine exhausts into a condenser operating at 0.035 bar.
Calculate the appropriate quantities of steam to be bled if the feed heaters are of the open type, and find the cycle efficiency; base all calculations on unit mass leaving the boiler.
Assume isentropic expansion in the turbine and neglect the feed pump work.
(Answers $0.169 \mathrm{~kg} / \mathrm{s}, 0.145 \mathrm{~kg} / \mathrm{s}$ and 45%)
If regenerative feed heating is conducted with an infinite number of heaters, the heat transfer would be isothermal thus producing the Carnot ideal. The only way this might be done is arranging a heat exchanger inside the turbine casing so that the temperature is the same on both sides at all points. (see the diagram in the next question).
$\mathrm{h}_{2}=3421 \mathrm{~kJ} / \mathrm{kg}$
From the h - s chart
$\mathrm{h}_{3}=3210 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=2680 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{5}=2050 \mathrm{~kJ} / \mathrm{kg}$
From tables
$\mathrm{h}_{6}=\mathrm{h}_{\mathrm{f}}$ at $0.035 \mathrm{~b}=112 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{7}=\mathrm{h}_{\mathrm{f}}$ at $3 \mathrm{~b}=561 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{f}}$ at $30 \mathrm{~b}=1008 \mathrm{~kJ} / \mathrm{kg}$

HEATER A

$\begin{array}{ll}3200 x+561(1-x)=1008 & x=0.169 \\ \text { HEATER B } & \\ 2680 y+112(0.831-y)=0.831(561) & y=0.145\end{array}$
BOILER
$\Phi(\mathrm{in})=3421-1008=2413 \mathrm{~kJ} / \mathrm{kg}$

CONDENSER
$\Phi($ out $)=0.686(2050-112)=1329.5 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}($ net $)=\Phi($ in $)-\Phi($ out $)=1083.5 \mathrm{~kJ} / \mathrm{kg}$
$\eta=1083.5 / 2413=45 \%$
2. The sketch shows an idealised regenerative steam cycle in which heat transfer to the feed water in the turbine from the steam is reversible and the feed pump is adiabatic and reversible. The feed water enters the pump as a saturated liquid at 0.03 bar, and enters the boiler as a saturated liquid at 100 bar, and leaves as saturated steam.

Draw a T-s diagram for the cycle and determine, not necessarily in this order, the dryness fraction in state 2 , the cycle efficiency and the work per unit mass.

Outline the practical difficulties which are involved in realising this cycle and explain how regenerative cycles are arranged in practice.

Note point (6) is the point in the steam expansion where the feed water enters and presumably the temperatures are equal. There is further expansion from (6) to (2).
$\Phi_{\mathrm{T}}=$ heat transfer inside the turbine from the steam to the feed water.

If the Carnot Efficiency is achieved
$\eta=1-\frac{T_{\text {cold }}}{T_{\text {hot }}}=1-\frac{273+24.1}{273+311}=50 \%$
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}$ at $100 \mathrm{bar}=2725 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}$ at $0.03 \mathrm{bar}=101 \mathrm{~kJ} / \mathrm{kg}$

$\mathrm{h}_{5}=\mathrm{h}_{\mathrm{f}}$ at $100 \mathrm{bar}=1408 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=\mathrm{h}_{1}-\mathrm{h}_{5}=1317 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}(\mathrm{net})=\eta \times \Phi(\mathrm{in})=0.5 \times 1317=658.5 \mathrm{~kJ} / \mathrm{kg}$
$\Phi($ out $)=\Phi($ in $)-\mathrm{P}($ net $)=658.5=\mathrm{h}_{2}-\mathrm{h}_{3}$
$\mathrm{h}_{2}=658.5+101=759.5 \mathrm{~kJ} / \mathrm{kg}$
$759.5=\mathrm{h}_{\mathrm{f}}+\mathrm{xh}_{\mathrm{fg}}=101+\mathrm{x}(2444)$
$x=0.269$ at point (2)

It is not practical to make a turbine with a heat exchanger inside the casing. In practice a series of regenerative feed heaters is used that raises the feed temperature in steps.

SELF ASSESSMENT EXERCISE No. 6

1. Repeat worked example No. 10 but this time do not ignore the feed pump term and assume an isentropic efficiency of 90% for each turbine and 80% for the pump.
$\mathrm{h}_{2}=3097 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{6}=251 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=3196 \mathrm{~kJ} / \mathrm{kg}$
HP TURBINE
P1 $=0.9\left(\mathrm{~h}_{2}-\mathrm{h}_{3}{ }^{ }\right)=150.3 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}{ }^{\text {f }}=2930 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{2}-150.3=2947 \mathrm{~kJ} / \mathrm{kg}$
LP TURBINE
P2 $=0.9\left(\mathrm{~h}_{4}-\mathrm{h}_{5}{ }^{`}\right)=906 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{5}{ }^{\text {' }}=2189 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{5}=\mathrm{h}_{4}-906=2290 \mathrm{~kJ} / \mathrm{kg}$

CONDENSER
$\Phi($ out $)=30\left(\mathrm{~h}_{5}-\mathrm{h}_{6}\right)=60.4 \mathrm{MW}$
PUMP
P3 $=0.001(100-0.02) \times 10^{5} / 0.8=12470 \mathrm{~J} / \mathrm{kg}$ or $12.47 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=251+12.5=263.5 \mathrm{~kJ} / \mathrm{kg}$
BOILER
$\Phi($ in $)=30(3097-263.5)+30(3196-2947)=92.5$ MW
TURBINES
P1 $=30(150.3)=4.51 \mathrm{mw}$
P2 $=30(906)=27.18 \mathrm{mw}$
$\mathrm{P}(\mathrm{NET})=4.51+27.18-0.374=31.3 \mathrm{mw}$
$\eta=31.3 / 92.5=33.8 \%$
2. A water-cooled nuclear reactor supplies dry saturated steam at a pressure of 50 bar to a twocylinder steam turbine. In the first cylinder the steam expands with an isentropic efficiency of 0.85 to a pressure of 10 bar , the power generated in this cylinder being 100 MW . The steam then passes at a constant pressure of 10 bar through a water separator from which all the water is returned to the reactor by mixing it with the feed water. The remaining dry saturated steam then flows at constant pressure through a reheater in which its temperature is raised to $250^{\circ} \mathrm{C}$ before it expands in the second cylinder with an isentropic efficiency of 0.85 to a pressure of 0.1 bar, at which it is condensed before being returned to the reactor.

Calculate the cycle efficiency and draw up an energy balance for the plant. Neglect the feed pump work.

Start with known points.
Point 250 bar dss $\quad \mathrm{h}_{2}=2794 \mathrm{~kJ} / \mathrm{kg} \mathrm{s}_{2}=5.973 \mathrm{~kJ} / \mathrm{kg}$
Point $4 \quad 10$ bar dss $\quad \mathrm{h}_{4}=2778 \mathrm{~kJ} / \mathrm{kg}$
Point $5 \quad 10$ bar $250^{\circ} \mathrm{C} \quad \mathrm{h}_{5}=2944 \mathrm{~kJ} / \mathrm{k} \quad \mathrm{s}_{5}=6.926 \mathrm{~kJ} / \mathrm{kg}$
Point $7 \quad 0.1$ bar \quad sw $\quad h_{7}=192 \mathrm{~kJ} / \mathrm{kg}$
Point $9 \quad 10$ bar sw $\quad h_{9}=763 \mathrm{~kJ} / \mathrm{kg}$
HP Turbine
Ideal expansion $\quad \mathrm{s}_{2}=\mathrm{s}_{3}{ }^{\prime}=5.973=2.138+\mathrm{x}_{3}{ }^{\prime}(4.448) \quad \mathrm{x}_{3}{ }^{\prime}=0.862$
$\mathrm{h}_{3},=763+0.862 \times 2015$ at $10 \mathrm{bar}=2500 \mathrm{~kJ} / \mathrm{kg}$
$\eta=0.85=\frac{2794-h_{3}}{2794-2500} \quad h_{3}=2544 \mathrm{~kJ} / \mathrm{kg}-$ the actual enthalpy
Power output $=100000 \mathrm{~kW}=\mathrm{m}_{1}(2794-2544)$
$\mathrm{h}_{3}=2544=763+\mathrm{x}_{3}(2015)$
$\mathrm{m}_{4}=0.884 \times 400.6=354.1 \mathrm{~kg} / \mathrm{s} \quad \mathrm{m}_{9}=400.6-354.1=46.52 \mathrm{~kg} / \mathrm{s}$

LP TURBINE

Ideal expansion $\quad \mathrm{s}_{5}=\mathrm{s}_{6}{ }^{6}=6.926=0.649+\mathrm{x}_{6}{ }^{\prime}(7.5) \quad \mathrm{X}_{6}{ }^{\prime}=0.837$
$\mathrm{h}_{6},=192+0.837 \times 2392=2194 \mathrm{~kJ} / \mathrm{kg}$
Power out $=354.1(2944-2194) \times 85 \%=225700 \mathrm{~kW}$
Power out $=\mathrm{m}(2648.1-2134.6)=513.45 \mathrm{mkW} \mathrm{m}=$ mass flowing to condenser.
FEED HEATER
$46.52 \mathrm{~h}_{9}+354.1 \mathrm{~h}_{7}=400.6 \mathrm{~h}_{1}$
$46.52 \times 763+354.1 \times 192=400.6 \mathrm{~h}_{1} \quad \mathrm{~h}_{1}=258.1 \mathrm{~kJ} / \mathrm{kg}$
BOILER
$\Phi(1)=400.6(2794-258.3) \quad \Phi(2)=354.1(2944-2778)$ Total $\Phi=1075$ MW
Total Power Out $=100+225.7=325.7$ MW
$\eta=P / \Phi=325.7 / 1075=30.3 \% \quad$ (pump powers ignored)
3. Steam is raised in a power cycle at the supercritical pressure of 350 bar and at a temperature of $600^{\circ} \mathrm{C}$. It is then expanded in a turbine to 15 bar with an overall isentropic efficiency of 0.90 . At that pressure some steam is bled to an open regenerative feed heater, and the remainder of the steam is, after reheating to $600^{\circ} \mathrm{C}$, expanded in a second turbine to the condenser pressure of 0.04 bar, again with an isentropic efficiency of 0.90 . The feed pumps each have an overall isentropic efficiency of 0.90 .

Calculate the amount of steam to be bled into the feed heater, making the usual idealising assumptions. Also calculate the cycle efficiency. Use the h-s chart wherever possible and do not neglect feed pump work.

Known Points
$\mathrm{h}_{2}=3397 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{6}=121 \mathrm{~kJ} / \mathrm{kg}$
(h_{f} at 0.04b)
$\mathrm{h}_{4}=3694 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{8}=845 \mathrm{~kJ} / \mathrm{kg}$
(h_{f} at 15b)

LP PUMP
$\mathrm{P}_{2}=0.001(15-0.04) \times 10^{5}$
$\mathrm{P}_{2}=1.496 \mathrm{~kJ} / \mathrm{kg}$
Actual $\mathrm{P}_{2}=1.496 / 0.9$
Actual $\mathrm{P}_{2}=1.662 \mathrm{~kJ} / \mathrm{kg}$
Energy Balance
$\mathrm{h}_{7}(1-\mathrm{x})=\mathrm{P}_{2}(1-\mathrm{x})+\mathrm{h}_{6}(1-\mathrm{x})$

$\mathrm{h}_{7}=\mathrm{P}_{2}+\mathrm{h}_{6}=122.62 \mathrm{~kJ} / \mathrm{kg}$

HP TURBINE
$\mathrm{h}_{2}=3397 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{2}=6.12 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=\mathrm{s}_{3}=2.315+\mathrm{x}_{3}{ }^{\prime}(4.13) \quad \mathrm{x}_{3}{ }^{\prime}=0.921$
$\mathrm{h}_{3}{ }^{\prime}=845+0.921(1947)=2638.8 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}$ (ideal) $=3397-2638.8=758.2 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}($ actual $)=758.2 \times 90 \%=682.4 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=3397-682.4=2714.6 \mathrm{~kJ} / \mathrm{kg}$

LP TURBINE

$\mathrm{h}_{4}=3694 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{4}=7.838 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}=\mathrm{s}_{5}=0.422+\mathrm{x}_{5}{ }^{\prime}(8.051) \quad \mathrm{x}_{5}{ }^{\prime}=0.921$
$\mathrm{h}_{5}{ }^{\prime}=121+0.921(2423)=2362 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}($ ideal $)=3694-2362=1331.9 \mathrm{~kJ} / \mathrm{kg}$
$\Delta \mathrm{h}($ actual $)=1331.9 \times 90 \%=1198.7 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{5}=3694-1198.7=2795.3 \mathrm{~kJ} / \mathrm{kg}$

HEATER
HP PUMP

BOILER
CONDENSER
EFFICIENCY
$\mathrm{h}_{8}=\mathrm{xh}_{3}+(1-\mathrm{x}) \mathrm{h}_{7} \quad 845=2714.6 \mathrm{x}+(1-\mathrm{x}) 1222.62 \quad \mathrm{x}=0.2787 \mathrm{~kg}$
$\mathrm{P}_{1}=0.001(350-15) \times 10^{5} / 90 \%=37220 \mathrm{~J} / \mathrm{kg}$ or $37.22 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{P}_{1}+\mathrm{h}_{8}=37.22+845=882.22 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=(3397-882.22)+(0.721(3694-2714.6)=3221 \mathrm{~kJ} / \mathrm{kg}$
$\Phi($ out $)=(1-\mathrm{x})\left(\mathrm{h}_{5}-\mathrm{h}_{6}\right)=0.721(2495.5-121)=1712.6 \mathrm{~kJ} / \mathrm{kg}$
$\eta=1-\Phi($ out $) / \Phi($ in $)=1-1712.6 / 3221=46.8 \%$

APPLIED THERMODYNAMICS D201

SELF ASSESSMENT SOLUTIONS

TUTORIAL 2

SELF ASSESSMENT EXERCISE No. 1

Show how the volumetric efficiency of an ideal single stage reciprocating air compressor may be represented by the equation

$$
\eta_{\mathrm{vol}}=1-\mathrm{c}\left[\left(\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{pL}}\right)^{(1 / \mathrm{n})}-1\right]
$$

Where c is the clearance ratio, p_{H} the delivery pressure and p_{L} the induction pressure.
A reciprocating air compressor following the ideal cycle has a free air delivery of $60 \mathrm{dm}^{3} / \mathrm{s}$. The clearance ratio is 0.05 . The inlet is at atmospheric pressure of 1 bar. The delivery pressure is 7 bar and the compression is polytropic with an index of 1.3. Calculate the following.
i. The ideal volumetric efficiency. (82.7\%)
ii. The ideal indicated power. (14.7 kW)

Swept volume $=V_{1}-V_{3}$ Induced volume $=V_{1}-V_{4}$
Clearance volume $=\mathrm{V}_{3}$
Swept volume $=V_{1}-V_{3}$ Induced volume $=V_{1}-V_{4}$
Clearance volume $=\mathrm{V}_{3}$
$\eta_{\text {vol }}=\frac{V_{1}-V_{4}}{V_{1}-V_{3}} \quad c=\frac{V_{3}}{V_{1}-V_{3}}$
$\mathrm{V}_{1}-\mathrm{V}_{3}=\frac{\mathrm{V}_{3}}{\mathrm{c}} \quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{3}}=\frac{(1+\mathrm{c})}{\mathrm{c}}$
$\eta_{\text {vol }}=\frac{\mathrm{c}\left(\mathrm{V}_{1}-\mathrm{V}_{3}\right)}{\mathrm{V}_{3}}=\mathrm{c}\left\{\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{3}}\right)-\left(\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}\right)\right\}$
$\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}=\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{4}}\right)^{1 / n}=\left(\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{p}_{\mathrm{L}}}\right)^{1 / n}$
$\eta_{\mathrm{vol}}=\mathrm{c}\left[\left\{\left(\frac{1+\mathrm{c}}{\mathrm{c}}\right)\right\}-\left(\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{p}_{\mathrm{L}}}\right)^{1 / \mathrm{n}}\right]$
$\eta_{\mathrm{vol}}=1+\mathrm{c}-\mathrm{c}\left(\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{p}_{\mathrm{L}}}\right)^{1 / n}$
$\eta_{\mathrm{vol}}=1-\mathrm{c}\left\{\left(\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{p}_{\mathrm{L}}}\right)^{1 / \mathrm{n}}-1\right\}$
$\eta_{\text {vol }}=1-\mathrm{c}\left\{\left(\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{p}_{\mathrm{L}}}\right)^{1 / n}-1\right\}=1-0.05\left\{(7)^{1 / 1.3}-1\right\}=82.7 \%$
$\mathrm{W}=\left(\frac{\mathrm{n}}{\mathrm{n}-1}\right) \mathrm{p}_{1}\left\{\mathrm{r}^{\frac{\mathrm{n}-1}{\mathrm{n}}}-1\right\} \mathrm{xF} . \mathrm{A} \cdot \mathrm{D}=\left(\frac{1.3}{1.3-1}\right) 1 \times 10^{5}\left\{7^{\frac{1.3-1}{1,3}}-1\right\}[0.06]=14.73 \mathrm{~kW}$

SELF ASSESSMENT EXERCISE No. 2

1. A single acting 2 stage compressor draws in $8.5 \mathrm{~m}^{3} / \mathrm{min}$ of free air and compresses it to 40 bar. The compressor runs at $300 \mathrm{rev} / \mathrm{min}$. The atmospheric conditions are 1.013 bar and $15^{\circ} \mathrm{C}$. There is an intercooler between stages which cools the air back to $15^{\circ} \mathrm{C}$. The polytropic index for all compressions is 1.3 . The volumetric efficiency is 90% for the low pressure stage and 85% for the high pressure stage. Ignore the effect of the clearance volume. Calculate the following.

The intermediate pressure for minimum indicated work. (6.365 bar)
The theoretical indicated power for each stage. (32.85 kW)
The heat rejected in each cylinder. (6.31 kW)
The heat rejected by the intercooler. (26.53 kW)
The swept volumes of both stages. ($31.4 \mathrm{dm}^{3}$ and $5.3 \mathrm{dm}^{3}$)
What advantage is there in using an after-cooler?
State the effect on your answers of not ignoring the clearance volume and leakages.
$\mathrm{V}=8.5 \mathrm{~m}^{3} / \mathrm{min}=0.14166 \mathrm{~m}^{3} / \mathrm{s} \quad \mathrm{N}=5 \mathrm{rev} / \mathrm{s}$
Induced volume $=V_{1}-V_{4} 0.14166 / 5=0.02833 \mathrm{~m}^{3} /$ stroke
$\mathrm{k}=\sqrt{ }(40 / 1.103)=6.283$
$\mathrm{p}_{1}=1.013 \mathrm{~b} \quad \mathrm{p}_{2}=6.365 \mathrm{bar}$
$\mathrm{IP}=\frac{\mathrm{n}}{\mathrm{n}-1} \mathrm{mR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\mathrm{T}_{2}=288(6.283)^{\frac{0.3}{1.3}}=440.1 \mathrm{~K}$

$\mathrm{m}=\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}=\frac{1.103 \times 10^{5} \times 0.14166}{287 \times 288}=0.1736 \mathrm{~kg} / \mathrm{s}$
Note that there is a conflict here. If the clearance volume is neglected then
$V_{1}-V_{4}=90 \%\left(V_{1}-V_{3}\right)$ and $V_{3}=0$ so $V_{1}=0.03148 \mathrm{~m}^{3} / \mathrm{s}$ and this will give different answers.
$\mathrm{IP}=\frac{1.3}{0.3} \times 0.1736 \times 287 \times(440.1-\mathrm{T} 288)=32.85 \mathrm{~kW}$
Apply the SFEE to the compressor
$\mathrm{h}_{\mathrm{A}}+\mathrm{P}=\mathrm{h}_{\mathrm{B}}+\Phi_{1}$
$\Phi_{1}=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}\right)+\mathrm{P}$
$\Phi_{1}=0.1736 \times 1.005(288-440.1)+32.85=6.31 \mathrm{~kW}$
Apply the SFEE to the whole system
$\mathrm{h}_{\mathrm{A}}+\mathrm{P}-\Phi_{1}-\Phi_{2}=\mathrm{h}_{\mathrm{C}} \quad \mathrm{h}_{\mathrm{A}}=\mathrm{h}_{\mathrm{C}}$
$\Phi_{2}=32.85-6,31=26.53 \mathrm{~kW}$
LP CYLINDER
Vol/Stroke $=0.0283 \mathrm{~m}^{3}$
$\eta_{\text {vol }}=$ Actual volume/Swept Volume

$$
\mathrm{SV}=0.0283 / 0.9=0.0314 \mathrm{~m}^{3}
$$

HP CYLINDER
$\frac{\mathrm{p}_{1}\left(\mathrm{~V}_{1}-\mathrm{V}_{4}\right)}{\mathrm{RT}_{1}}=\mathrm{m}=\frac{\mathrm{p}_{5}\left(\mathrm{~V}_{5}-\mathrm{V}_{8}\right)}{\mathrm{RT}_{5}}$ But since $\mathrm{T}_{1}=\mathrm{T}_{5} \quad 1.013 \times 10^{5} \frac{0.02833}{6.365}=\left(\mathrm{V}_{5}-\mathrm{V}_{8}\right)$
$\left(\mathrm{V}_{5}-\mathrm{V}_{8}\right)=0.004504 \mathrm{~m}^{3}$
$S V=0.004504 / 0.85=0.0053 \mathrm{~m}^{3}$
2. A single acting 2 stage compressor draws in free air and compresses it to 8.5 bar. The compressor runs at $600 \mathrm{rev} / \mathrm{min}$. The atmospheric conditions are 1.013 bar and $15^{\circ} \mathrm{C}$.
The interstage pressure is 3 bar and the intercooler cools the air back to $30^{\circ} \mathrm{C}$. The polytropic index for all compressions is 1.28 .
Due to the effect of warming from the cylinder walls and the pressure loss in the inlet valve, the pressure and temperature at the start of the low pressure compression stroke is 0.96 bar and $25^{\circ} \mathrm{C}$. The high pressure cycle may be taken as ideal.
The clearance volume for each stages is 4% of the swept volume of that stage. The low pressure cylinder is 300 mm diameter and the stroke for both stages is 160 mm . Calculate the following.
The free air delivery. The volumetric efficiency of the low pressure stage.
The diameter of the high pressure cylinder. The indicated power for each stage.

LOW PRESSURE STAGE

$\mathrm{N}=600 \mathrm{rev} / \mathrm{min} \quad \mathrm{D}_{1}=300 \mathrm{~mm}$
$\mathrm{L}_{1}=\mathrm{L}_{2}=160 \mathrm{~mm} \quad \mathrm{CV}=4 \% \mathrm{SV}$
$\mathrm{SV}=\pi \times 0.3^{2} / 4 \times 0.16$
$\mathrm{SV}=0.01131 \mathrm{~m}^{3}=11.31 \mathrm{dm}^{3}$
$C V=4 \% \times 11.31=0.452 \mathrm{~m}^{3}$
For an ideal cycle $\mathrm{V}_{1}-\mathrm{V}_{4}=$ induced volume

Find V_{4}
$\mathrm{p}_{3} \mathrm{~V}_{3}{ }^{1.28}=\mathrm{p}_{4} \mathrm{~V}_{4}{ }^{1.28} 3 \times 0.452^{1.28}=0.96 \times \mathrm{V}_{4}{ }^{1.28} \quad \mathrm{~V}_{4}=1.1 \mathrm{dm}^{3}$
$\mathrm{V}_{1}-\mathrm{V}_{3}=11.31 \quad \mathrm{~V}_{3}=0.452 \quad \mathrm{~V}_{1}=11.31+0.452=11.762 \mathrm{dm}^{3} \quad \mathrm{~V}_{1}-\mathrm{V}_{4}=10.662 \mathrm{dm}^{3}$
Change this to FAD (volume at 1.103 b and $15^{\circ} \mathrm{C}$)
FAD/stroke $=10.662 \times(288 / 298) \times(0.96 / 1.013)=9.765 \mathrm{dm}^{3} /$ stroke
FAD $=9.765 \times 600=5859 \mathrm{dm}^{3} / \mathrm{min}$ or $5.859 \mathrm{~m}^{3} / \mathrm{min}$
Ideal FAD $=11.31 \times 600=6786 \mathrm{dm}^{3} / \mathrm{min}$ or $6.786 \mathrm{~m}^{3} / \mathrm{min}$
$\eta_{\text {vol }}=5.859 / 6.786=86.3 \% \quad$ If we neglect the work of the induction stroke
$W=\left(\frac{n}{n-1}\right) p_{1}\left\{r^{\frac{n-1}{n}}-1\right\} x F . A . D=\left(\frac{1.28}{0.28}\right) \times 0.96 \times 10^{5}\left\{(3 / 0.96)^{\frac{1.28-1}{1.28}}-1\right\} 0.010662=1324 \mathrm{~J} /$ cycle
$\mathrm{IP}=\mathrm{W} \mathrm{N} / 60=1324 \times 600 / 60=13240 \mathrm{~W}$ or 13.24 kW
HIGH PRESSURE STAGE
Induced mass $=$ mass of the FAD
$\mathrm{m}=\mathrm{pV} / \mathrm{RT}=1.013 \times 10^{5} \times 9.765 \times 10^{-3} /(283 \times 288)$
$\mathrm{m}=0.01197 \mathrm{~kg} /$ stroke
$\mathrm{T}_{6}=303\left(\frac{8.5}{3}\right)^{\frac{0.28}{1.28}}=380.5 \mathrm{~K}$

$\mathrm{p}_{5} \mathrm{~V}_{5}{ }^{1.28}=\mathrm{p}_{6} \mathrm{~V}_{6}{ }^{1.28} \mathrm{~V}_{6} / \mathrm{V}_{5}=(3 / 8.5) 1^{1 / 1.28}=0.4432$
$\mathrm{V}_{6}=0.4452 \mathrm{~V}_{5}$
The mass expelled in process 6 to 7 is 0.01197 kg
$0.01197=\frac{\mathrm{p}_{6}\left(\mathrm{~V}_{6}-\mathrm{V}_{7}\right)}{\mathrm{RT}_{6}}=\frac{8.5 \times 10^{5} \times\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right)}{287 \times 380.5} \quad \mathrm{~V}_{6}-\mathrm{V}_{7}=0.001537 \mathrm{~m}^{3}=1.537 \mathrm{dm}^{3}$.
$\mathrm{V}_{7}=0.04\left(\mathrm{~V}_{5}-\mathrm{V}_{7}\right)=0.04 \mathrm{~V}_{5}-0.04 \mathrm{~V}_{7} \quad 1.04 \mathrm{~V}_{7}=0.04 \mathrm{~V}_{5} \quad \mathrm{~V}_{5}=26 \mathrm{~V}_{7} \ldots \ldots .(\mathrm{C})$
Put (A) into (C) $\quad \mathrm{V}_{6}=0.4452 \times 26 \mathrm{~V}_{7}=11.523 \mathrm{~V}_{7} \ldots \ldots$ (D)
Put (D) into (B) $\quad 11.523 \mathrm{~V}_{7}-\mathrm{V}_{7}=0.001537 \quad \mathrm{~V}_{7}=0.146 \mathrm{dm}^{3}$
Put V_{7} into $(\mathrm{C}) \quad \mathrm{V}_{5}=26 \times 0.146=3.798 \mathrm{dm}^{3}$
Put V_{5} into (A) $\quad V_{6}=1.683 \mathrm{dm}^{3}$
$\mathrm{SV}=\mathrm{V}_{5}-\mathrm{V}_{7}=0.00365 \mathrm{~m}^{3}=\pi \mathrm{D}^{2} \mathrm{~L} / 4$ hence $\mathrm{D}=0.17 \mathrm{~m}$ or 170 mm
$\mathrm{V}_{8}=\mathrm{V}_{7}\left(\frac{\mathrm{p}_{7}}{\mathrm{p}_{8}}\right)^{\frac{1}{1.28}}=0.146\left(\frac{8.5}{3}\right)^{\frac{1}{1.28}}=0.333 \mathrm{dm}^{3}$
$I P=\left(\frac{n}{n-1}\right) p_{5}\left\{r^{\frac{n-1}{n}}-1\right\} \times\left(V_{5}-V_{8}\right) \frac{N}{60}=\left(\frac{1.28}{0.28}\right) \times 3 \times 10^{5}\left\{\left(\frac{8.5}{3}\right)^{\frac{1.28-1}{1.28}}-1\right\} 0.003469 \times \frac{600}{60}=12.17 \mathrm{~kW}$
3. A 2 stage reciprocating air compressor has an intercooler between stages. The induction and expulsion for both stages are at constant pressure and temperature. All the compressions and expansions are polytropic.
Neglecting the effect of the clearance volume show that the intermediate pressure, which gives minimum, indicated work is

$$
\mathrm{p}_{\mathrm{M}}=\left(\mathrm{p}_{\mathrm{L}} \mathrm{p}_{\mathrm{H}}\right)^{1 / 2}
$$

Explain with the aid of a sketch how the delivery temperature from both cylinders varies with the intermediate pressure as it changes from p_{L} to p_{H}.
$\mathrm{W}=\mathrm{W}_{1}+\mathrm{W}_{2} \quad$ where W_{1} is the work done in the low pressure stage and W_{2} is the work done in the high pressure stage.
$\mathrm{W}=\frac{\mathrm{mRn}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{(\mathrm{n}-1)}+\frac{\operatorname{mRn}\left(\mathrm{T}_{6}-\mathrm{T}_{5}\right)}{(\mathrm{n}-1)} \quad$ Since $\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{(1-1 / \mathrm{n})}$ and $\mathrm{T}_{6}=\mathrm{T}_{5}\left(\frac{\mathrm{p}_{6}}{\mathrm{p}_{5}}\right)^{(1-1 / \mathrm{n})}$
then assuming the same value of n for each stage
$\mathrm{W}=\mathrm{mR}\left[\left\{\frac{\mathrm{nT}_{1}}{(\mathrm{n}-1)}\right\}\left\{\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right\}^{1-(1 / \mathrm{n})}-1\right]+\mathrm{mR}\left[\left\{\frac{\mathrm{nT}_{6}}{(\mathrm{n}-1)}\right\}\left\{\frac{\mathrm{p}_{6}}{\mathrm{p}_{5}}\right\}^{1-(1 / \mathrm{n})}-1\right]$
Since $p_{2}=p_{5}=p_{m}$ and $p_{6}=p_{H} \quad$ and $p_{1}=p_{L}$
$\mathrm{W}=\mathrm{mR}\left[\left\{\frac{\mathrm{nT}_{1}}{(\mathrm{n}-1)}\right\}\left\{\frac{\mathrm{p}_{\mathrm{M}}}{\mathrm{p}_{\mathrm{L}}}\right\}^{1-(1 / \mathrm{n})}-1\right]+\mathrm{mR}\left[\left\{\frac{\mathrm{nT}_{6}}{(\mathrm{n}-1)}\right\}\left\{\frac{\mathrm{p}_{\mathrm{H}}}{\mathrm{p}_{\mathrm{M}}}\right\}^{1-(1 / \mathrm{n})}-1\right]$
For a minimum value of W we differentiate with respect to p_{M} and equate to zero.
$\frac{d W}{d p_{M}}=m R T_{1} \mathrm{p}_{\mathrm{L}}^{(1-\mathrm{n}) / n} \mathrm{p}_{\mathrm{M}}^{-1 / n} \quad-\mathrm{mRT}_{5} \mathrm{p}_{\mathrm{H}}^{(\mathrm{n}-1) / n} \mathrm{p}_{\mathrm{M}}^{(1-2 \mathrm{n}) / \mathrm{n}}$
If the intercooler returns the air to the original inlet temperature so that $\mathrm{T}_{1}=\mathrm{T}_{5}$, then equating to zero reveals that for minimum work

$$
\mathbf{p}_{\mathbf{M}}=\left(\mathbf{p}_{\mathrm{L}} \mathbf{p}_{\mathrm{H}}\right)^{1 / 2}
$$

It can further be shown that when this is the case, the work done by both stages is equal.
The relationship between the temperatures and pressures are:

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{p}_{\mathrm{m}} / \mathrm{p}_{\mathrm{L}}\right)^{1-1 / \mathrm{n}} \quad \mathrm{~T}_{6}=\mathrm{T}_{1}\left(\mathrm{p}_{\mathrm{H}} / \mathrm{p}_{\mathrm{m}}\right)^{1-1 / \mathrm{n}}
$$

This produces the plot shown.

4.a. Prove that the ideal volumetric efficiency of a single stage reciprocating compressor is

$$
\eta_{\mathrm{vol}}=1-\mathrm{c}\left(\mathrm{r}^{1 / \mathrm{n}}-1\right)
$$

r is the pressure ratio, n is the polytropic index and c the clearance ratio.
Sketch curves of $\eta_{\text {vol }}$ against r for typical values of n and c.
b. A two stage reciprocating air compressor works between pressure limits of 1 and 20 bar. The inlet temperature is $15^{\circ} \mathrm{C}$ and the polytropic index is 1.3 . Intercooling between stages reduces the air temperature back to $15^{\circ} \mathrm{C}$.
Find the free air delivery and mass of air that can be compressed per kW h of work input.
Find the ratio of the cylinder diameters if the piston have the same stroke. Neglect the effect of the clearance volume.

Part (a) Derivation as in Q3 The sketch is shown below.

Part (b)
$\mathrm{p}_{2}=\sqrt{ }(20 \times 1)=4.472$ bar
Since the work in both stages is equal
$\mathrm{W}=2\left(\frac{\mathrm{n}}{\mathrm{n}-1}\right) \mathrm{p}_{1} \mathrm{~V}_{1}\left\{\mathrm{r}^{\frac{\mathrm{n}-1}{\mathrm{n}}}-1\right\}$

$1 \mathrm{kWh}=100 \times 60 \times 60=3.6 \times 10^{6} \mathrm{~J}$
$3.6 \times 10^{6}=357800 \mathrm{~V} \quad \mathrm{~V}=10.06 \mathrm{~m}^{3}$ per kWh
$\mathrm{m}=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{100 \times 10^{3} \times 10.06}{287 \times 288}=2.2513 \mathrm{~kg} / \mathrm{kWh}$
$\mathrm{V}_{5}=\frac{\mathrm{mRT}_{5}}{\mathrm{p}_{5}}=\frac{12.171 \times 287 \times 288}{4.47 \times 10^{5}} 2.2513 \mathrm{~m}^{3} / \mathrm{kWh}$
$\mathrm{V}_{5}=$ swept volume of HP stage $\mathrm{V}_{5}=\mathrm{V}_{1} / 4.472=2.25 \mathrm{~m}^{3} / \mathrm{kWh}$ (confirmation)
$\mathrm{V}_{1}=$ swept volume of LP stage
$\frac{\mathrm{V}_{5}}{\mathrm{~V}_{1}}=\frac{\pi \mathrm{d}^{2} \mathrm{~L} / 4}{\pi \mathrm{D}^{2} \mathrm{~L} / 4}=\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}=\frac{2.2513}{10.06}=0.224 \quad \mathrm{~d} / \mathrm{D}=0.473$

1. Show that for any compression process the overall efficiency is given by $\eta_{O}=\frac{r^{\frac{\gamma-1}{\gamma}}-1}{r^{\frac{\gamma-1}{\gamma \eta_{\infty}}}-1}$ where η_{∞} is the polytropic efficiency.

Determine the index of compression for a gas with an adiabatic index of 1.4 and a polytropic efficiency of 0.9. (1.465)
Determine the overall efficiency when the pressure compression ratio is $4 / 1$ and $8 / 1$. (0.879 and 0.866)

Gas Laws plus Compression Laws are $\mathrm{pV} / \mathrm{T}=\mathrm{V}$ and $\mathrm{pV}^{\gamma}=\mathrm{C}$
Combining these we have $\mathrm{T}=\mathrm{Cxp} \mathrm{p}^{1-1 / \gamma} \quad \mathrm{p}^{1-1 / \gamma}=\frac{\mathrm{T}}{\mathrm{C}}$
Differentiate $\quad d T=C\left(\frac{\gamma-1}{\gamma}\right) \mathrm{p}^{-1 / \gamma} \mathrm{dp}$ Next divide by $\mathrm{p} \quad \frac{\mathrm{dT}}{\mathrm{p}^{1-1 / \gamma}}=\mathrm{C}\left(\frac{\gamma-1}{\gamma}\right) \frac{\mathrm{dp}}{\mathrm{p}}$
Substitute $\mathrm{p}^{1-1 / \gamma}=\frac{\mathrm{T}}{\mathrm{C}}$

$$
\frac{\mathrm{dT}}{\mathrm{~T}}=\left(\frac{\gamma-1}{\gamma}\right) \frac{\mathrm{dp}}{\mathrm{p}}
$$

For an isentropic process designate the final temperature as T^{\prime} and the differential as dT^{\prime}
$\frac{\mathrm{dT}^{\prime}}{\mathrm{T}}=\left(\frac{\gamma-1}{\gamma}\right) \frac{\mathrm{dp}}{\mathrm{p}}$.
Isentropic Efficiency is defined as
$\eta_{\text {is }}=\frac{T_{2^{\prime}}-T_{1}}{T_{2}-T_{1}}$ Let the change be infinitesimally small.
$\mathrm{T}_{2}=\mathrm{T}_{1}+\mathrm{dT}$ and $\mathrm{T}_{2^{\prime}}=\mathrm{T}_{1}+\mathrm{dT}, \quad \eta_{\infty}=\frac{\mathrm{dT}_{2^{\prime}}}{\mathrm{dT}}$
Suppose the compression is made from many tiny step changes.
$\eta_{\infty}=\frac{\mathrm{dT}^{\prime}}{\mathrm{dT}} \quad \mathrm{dT} \mathrm{T}^{\prime}=\eta_{\infty} \frac{\mathrm{dT}}{\mathrm{T}} \quad$ Substitute (1) into this.

$\left(\frac{\gamma-1}{\gamma}\right) \frac{d p}{p}=\eta_{\infty} \frac{d T}{T}$ Integrate and $\left(\frac{\gamma-1}{\gamma}\right)_{\mathrm{P}_{1}}^{\mathrm{p}_{2}} \int_{\mathrm{dp}}^{\mathrm{d}}=\eta_{\infty} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{dT}}{\mathrm{T}}$
$\left(\frac{\gamma-1}{\gamma}\right)[\ln]_{\mathrm{p}_{1}}^{\mathrm{p}_{2}}=\eta_{\infty}[\operatorname{lnT}]_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \quad\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma-1}{\gamma}} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma \eta_{\infty}}}$
η_{∞} is called the Polytropic Efficiency The overall efficiency is $\eta_{o}=\frac{T_{2^{\prime}}-T_{1}}{T_{2}-T_{1}}$
$\begin{array}{ll}\text { adiabatic process } & \mathrm{T}_{2^{\prime}}=\mathrm{T}_{1} \mathrm{r}^{\frac{\gamma-1}{\gamma}} \\ \text { Substitution gives } & \eta_{\mathrm{O}}=\frac{\mathrm{r}^{\frac{\gamma-1}{\gamma}}-1}{\frac{\mathrm{r}^{\frac{\gamma-1}{\eta_{\infty}}}-1}{}}\end{array}$
Compare $\frac{T_{2}}{T_{1}}=r^{\frac{n-1}{n}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma \eta_{\infty}}}$ and it follows that $\eta_{\infty}=1$
Now put $\eta_{\infty}=0.9$ and $\gamma=1.4 \quad \frac{n-1}{n}=\frac{\gamma-1}{\gamma \eta_{\infty}}=\frac{1.4-1}{1.4 \times 0.9}=0.3175$
$n-1=0.3175 n$

$$
0.6825 n=1 \quad n=1.465
$$

Now put r $=4$

$$
\begin{aligned}
& \frac{\gamma-1}{\gamma}=0.2857 \frac{\mathrm{n}-1}{\mathrm{n}}=0.3175 \\
& \eta_{\mathrm{O}}=\frac{\mathrm{r}^{\frac{\gamma-1}{\gamma}}-1}{\mathrm{r}^{\frac{\gamma-1}{\eta_{\infty}}}-1}=\frac{4^{0.2857}-1}{4^{0.3175}-1}=0.879
\end{aligned}
$$

Now put r $=8$

$$
\eta_{\mathrm{O}}=\frac{8^{0.2857}-1}{8^{0.3175}-1}=0.866
$$

2. A compressor draws in air at 223.3 K temperature and 0.265 bar pressure. The compression ratio is 6 . The polytropic efficiency is 0.86 . Determine the temperature after compression. Take $\gamma=1.4$

From the previous question we have
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma_{\infty}}}=222.3(6) \frac{1.4-1}{1.4 \times 0.86}=405 \mathrm{~K} 1$

APPLIED THERMODYNAMICS D201

SELF ASSESSMENT SOLUTIONS

TUTORIAL 3
SELF ASSESSMENT EXERCISE No. 1

1. A gas turbine expands $6 \mathrm{~kg} / \mathrm{s}$ of air from 8 bar and $700^{\circ} \mathrm{C}$ to 1 bar isentropically. Calculate the exhaust temperature and the power output. $\gamma=1.4 \quad \mathrm{c}_{\mathrm{p}}=1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\mathrm{T}_{2}=\mathrm{T}_{1}(1 / 12)^{1-1 / 1.4}=973(1 / 8)^{0.2958}=537.1 \mathrm{~K}$
$\mathrm{P}=\Delta \mathrm{H} / \mathrm{s}=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=6 \times 1005 \times(537.1-973)$
$\mathrm{P}=-2.628 \times 106 \mathrm{~W}$ (Leaving the system)

$$
P(\text { out })=2.628 \mathrm{MW}
$$

2. A gas turbine expands $3 \mathrm{~kg} / \mathrm{s}$ of air from 10 bar and $920^{\circ} \mathrm{C}$ to 1 bar adiabatically with an isentropic efficiency of 92%. Calculate the exhaust temperature and the power output.
$\gamma=1.41 \mathrm{c}_{\mathrm{p}}=1010 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\mathrm{T}_{2^{\prime}}=\mathrm{T}_{1}(1 / 12)^{1-1 / 1.4}=1193(1 / 10)^{0.2958}=610.7 \mathrm{~K}$
P (out) $=\eta \mathrm{m} \mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=0.92 \times 3 \times 1.01 \times(1610.7$ - 1193)
$\mathrm{P}($ out $)=1.682 \times 106 \mathrm{~W} \quad \mathbf{P}($ out $)=\mathbf{1 . 6 8 2} \mathbf{~ M W}$
3. A gas turbine expands $7 \mathrm{~kg} / \mathrm{s}$ of air from 9 bar and $850{ }^{\circ} \mathrm{C}$ to 1 bar adiabatically with an isentropic efficiency of 87%. Calculate the exhaust temperature and the power output.
$\gamma=1.4 \quad \mathrm{c}_{\mathrm{p}}=1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\mathrm{T}_{2},=\mathrm{T}_{1}(1 / 12)^{1-1 / 1.4}=1123(1 / 9)^{0.2958}=599.4 \mathrm{~K}$
P (out) $=\eta \mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=0.87 \times 7 \times 1.005 \times(1123-599.4)$
P (out) $=3.2 \times 10^{6} \mathrm{~W}$
$3.2 \times 106=7 \times 1.005 \times\left(1123-\mathrm{T}_{2}\right) \quad \mathrm{T}_{2}=667.5 \mathrm{~K}$ (The true temperature)

SELF ASSESSMENT EXERCISE No. 2

A gas turbine uses the Joule cycle. The inlet pressure and temperature to the compressor are respectively 1 bar and $-10^{\circ} \mathrm{C}$. After constant pressure heating, the pressure and temperature are 7 bar and $700{ }^{\circ} \mathrm{C}$ respectively. The flow rate of air is $0.4 \mathrm{~kg} / \mathrm{s}$. Calculate the following.

1. The cycle efficiency.
2. The heat transfer into the heater.
3. the net power output.
$\gamma=1.4 \quad \mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
(Answers 42.7%, 206.7 kW and 88.26 kW)
$\eta=1-r_{p}{ }^{1 / \gamma-1}=1-7^{-0.286}=42.7 \%$
$\mathrm{T}_{2}=263 \times 7^{0.286}=459 \mathrm{~K} \quad \mathrm{~T}_{3}=973 \mathrm{~K}$
$\Phi=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=0.4 \times 1.005 \times(973-459)=206.7 \mathrm{~kW}$ (into the system)
$P($ net $)=\eta x$ ©in $=0.427 \times 206.7=88.26 \mathrm{~kW}$

SELF ASSESSMENT EXERCISE No. 3

A gas turbine uses a standard Joule cycle but there is friction in the compressor and turbine. The air is drawn into the compressor at 1 bar $150^{\circ} \mathrm{C}$ and is compressed with an isentropic efficiency of 94% to a pressure of 9 bar. After heating, the gas temperature is $1000{ }^{\circ} \mathrm{C}$. The isentropic efficiency of the turbine is also 94%. The mass flow rate is $2.1 \mathrm{~kg} / \mathrm{s}$. Determine the following.

1. The net power output.
2. The thermal efficiency of the plant.
$\gamma=1.4$ and $\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
COMPRESSOR $\mathrm{T}_{2},=288 \times 9^{0.286}=539.9 \mathrm{~K} \eta_{\text {IS }}=0.94=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{539.9-288}{\mathrm{~T}_{2}-288} \quad \mathrm{~T}_{2}=556 \mathrm{~K}$
TURBINE $\mathrm{T}_{4^{\prime}}=1273 \times 9^{-0.286}=679.1 \mathrm{~K} \eta_{\text {IS }}=0.94=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}}{\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}}=\frac{1273-\mathrm{T}_{4}}{1273-679.1} \quad \mathrm{~T}_{4}=714.7 \mathrm{~K}$
HEAT REJECTED $\quad \Phi$ (out) $=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=2.1 \times 1.005 \times(714.7-288)=900 \mathrm{~kW}$
HEAT SUPPLY $\quad \Phi(\mathrm{in})=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=2.1 \times 1.005 \times(1273-679.1)=1513 \mathrm{~kW}$
THERMAL EFFICIENCY

$$
\eta_{\mathrm{th}}=1-\frac{\Phi(\mathrm{out})}{\Phi(\mathrm{in})}=1-\frac{900}{1513}=40.5 \%
$$

Net Power $\mathrm{P}($ net $)=\Phi(\mathrm{in})-\Phi(\mathrm{out})=613.2 \mathrm{~kW}$
You could calculate the turbine and compressor powers and obtain the same answer.

SELF ASSESSMENT EXERCISE No. 4

A gas turbine draws in air from atmosphere at 1 bar and $150^{\circ} \mathrm{C}$ and compresses it to 4.5 bar with an isentropic efficiency of 82%. The air is heated to 1100 K at constant pressure and then expanded through two stages in series back to 1 bar. The high pressure turbine is connected to the compressor and produces just enough power to drive it. The low pressure stage is connected to an external load and produces 100 kW of power. The isentropic efficiency is 85% for both stages.
For the compressor $\gamma=1.4$ and for the turbines $\gamma=1.3$. The gas constant R is $0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ for both.
Neglect the increase in mass due to the addition of fuel for burning.
Calculate the mass flow of air, the inter-stage pressure of the turbines and the thermal efficiency of the cycle.
(Answers $0.642 \mathrm{~kg} / \mathrm{s}$ and 20.1 \%)
COMPRESSOR $\mathrm{T}_{2},=288 \times 4.5^{0.286}=442.8 \mathrm{~K}$
$\eta_{\text {IS }}=0.82=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{442.8-288}{\mathrm{~T}_{2}-288} \quad \mathrm{~T}_{2}=476.8 \mathrm{~K}$
$\mathrm{c}_{\mathrm{p}}=\mathrm{R} /(1-1 / \gamma)=287 /(1-1 / 1.4)=1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\mathrm{P}(\mathrm{in})=\mathrm{m}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{mx} 1.005(476.8-288)=189.65 \mathrm{~m} \mathrm{~kW}$
HP TURBINE $c_{p}=\mathrm{R} /(1-1 / \gamma)=287 /(1-1 / 1.3)=1243.7 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
P (out) $=\mathrm{m}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{m} \times 1.243\left(1100-\mathrm{T}_{4}\right)=189.65 \mathrm{~m} \mathrm{~kW}$

Hence $\mathrm{T}_{4}=947.5 \mathrm{~K}$
$\eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}}{\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}}=\frac{1100-947.5}{1100-\mathrm{T}_{4^{\prime}}} \quad \mathrm{T}_{4^{\prime}}=920.6 \mathrm{~K}$
$\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4^{\prime}}}=\frac{1100}{920.6}=\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{4}}\right)^{0.2307}=\left(\frac{4.5}{\mathrm{p}_{4}}\right)^{0.2307} \mathrm{p}_{4}=2.08 \mathrm{bar}$
L.P. TURBINE $\frac{947.5}{\mathrm{~T}_{5^{\prime}}}=\left(\frac{2.08}{1}\right)^{0.2307} \mathrm{~T}_{5^{\prime}}=800.2 \mathrm{~K} \eta_{\text {IS }}=0.85=\frac{947.5-T_{5}}{947.5-800.2} \quad \mathrm{~T}_{5}=822.3 \mathrm{~K}$
$\mathrm{P}($ out $)=100 \mathrm{~kW}=\mathrm{m} \times 1.243(947.5-822.3) \quad \mathrm{m}=0.6422 \mathrm{~kg} / \mathrm{s}$
HEAT SUPPLY $\quad \Phi(\mathrm{in})=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}=0.6422 \times 1.243 \times(1100-476.8)=497.7 \mathrm{~kW}$
THERMAL EFFICIENCY $\quad \eta_{\text {th }}=\frac{P)(\text { net })}{\Phi(\mathrm{in})}=497.7=20.1 \%$

SELF ASSESSMENT EXERCISE No. 5

1. A gas turbine uses a pressure ratio of $7 / 1$. The inlet temperature and pressure are respectively $10{ }^{\circ} \mathrm{C}$ and 100 kPa . The temperature after heating in the combustion chamber is $1000{ }^{\circ} \mathrm{C}$. The specific heat capacity C_{p} is $1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and the adiabatic index is 1.4 for air and gas. Assume isentropic compression and expansion. The mass flow rate is $0.7 \mathrm{~kg} / \mathrm{s}$.

Calculate the net power output and the thermal efficiency when an exhaust heat exchanger with a thermal ratio of 0.8 is used.

Referring to the numbers used on diagram the solution is as follows.
$\mathrm{T}_{2}=\mathrm{T}_{1} \mathrm{r}_{\mathrm{p}}{ }^{(1-1 / \gamma)}=283(7)^{0.286}=493.4 \mathrm{~K}$
$\mathrm{T}_{5}=\mathrm{T}_{4} / \mathrm{r}_{\mathrm{p}}^{(1-1 / \gamma)}=1273 /(7)^{0.25}=730 \mathrm{~K}$
Use the thermal ratio to find T_{3}.

$$
0.8=\frac{\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)}{\left(\mathrm{T}_{5}-\mathrm{T}_{2}\right)}=\frac{\left(\mathrm{T}_{3}-493.4\right)}{(730-493.4)} \quad \mathrm{T}_{3}=682 . \mathrm{k} \mathrm{~K}
$$

Heat Exchanger
$\Phi(\mathrm{in})=\mathrm{m} \mathrm{c}_{\mathrm{pg}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)=0.7 \times 1.005(1273-682.5)=415 \mathrm{~kW}$
In order find the thermal efficiency, it is best to solve the energy transfers.

```
P(in)= mc pa (T2-T T ) = 0.7 x 1.005 (493.4-283) = 148 kW
P(out) = mc pg (T4-T T ) = 0.7 x 1.005 (1273-730) = 382 kW
P(nett) = P(out) - P(in) = 234 kW
\etath = P(nett)/\Phi(in) = 234/415 = 0.56 or 56%
```

2. A gas turbine uses a pressure ratio of $6.5 / 1$. The inlet temperature and pressure are respectively $15{ }^{\circ} \mathrm{C}$ and 1 bar. The temperature after heating in the combustion chamber is $1200{ }^{\circ} \mathrm{C}$. The specific heat capacity c_{p} for air is $1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and for the exhaust gas is $1.15 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The adiabatic index is 1.4 for air and 1.333 for the gas. The isentropic efficiency is 85% for both the compression and expansion process. The mass flow rate is $1 \mathrm{~kg} / \mathrm{s}$.
Calculate the thermal efficiency when an exhaust heat exchanger with a thermal ratio of 0.75 is used.Refer to the same circuit diagram as Q1.
COMPRESSOR $\mathrm{T}_{2},=288 \times 6.5^{0.286}=491.6 \mathrm{~K} \eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{491.6-288}{\mathrm{~T}_{2}-288} \mathrm{~T}_{2}=527.5 \mathrm{~K}$
TURBINE $\mathrm{T}_{5^{\prime}}=1473 \times 6.5^{-0.286}=922.8 \mathrm{~K} \quad \eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{4}-\mathrm{T}_{5}}{\mathrm{~T} 4-\mathrm{T}_{5^{\prime}}}=\frac{1473-\mathrm{T}_{5}}{1473-922.8} \quad \mathrm{~T}_{5}=1005 \mathrm{~K}$
Use the thermal ratio to find $\mathrm{T}_{3} . \mathrm{T}_{2}=\mathrm{T}_{6}$

$$
\begin{aligned}
& 0.75=\frac{1.005\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)}{1.15\left(\mathrm{~T}_{5}-\mathrm{T}_{2}\right)}=\frac{1.005\left(\mathrm{~T}_{3}-527.5\right)}{1.15(1005-527.5)} \quad \mathrm{T}_{3}=937.3 \mathrm{~K} \\
& \mathrm{P}(\text { in })=\mathrm{mc}_{\mathrm{pa}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=1 \times 1.005(527.5-288)=240.7 \mathrm{~kW} \\
& \mathrm{P}(\text { out })=\mathrm{m}_{\mathrm{pg}}\left(\mathrm{~T}_{4}-\mathrm{T}_{5}\right)=1 \times 1.15(1473-1005)=538.2 \mathrm{~kW} \\
& \mathrm{P}(\text { nett })=\mathrm{P}(\mathrm{out})-\mathrm{P}(\mathrm{in})=297.5 \mathrm{~kW} \\
& \Phi(\text { in })=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right)=1 \times 1.15(1473-37.3)=616 \mathrm{~kW}
\end{aligned}
$$

$$
\eta_{\text {th }}=\mathrm{P}(\text { nett }) / \Phi(\mathrm{in})=297.5 / 616=\mathbf{0 . 4 8 3} \text { or } \mathbf{4 8 . 3 \%}
$$

SELF ASSESSMENT EXERCISE No. 6

1. List the relative advantages of open and closed cycle gas turbine engines.

Sketch the simple gas turbine cycle on a T-s diagram. Explain how the efficiency can be improved by the inclusion of a heat exchanger.

In an open cycle gas turbine plant, air is compressed from 1 bar and 150 C to 4 bar. The combustion gases enter the turbine at $800{ }^{\circ} \mathrm{C}$ and after expansion pass through a heat exchanger in which the compressor delivery temperature is raised by 75% of the maximum possible rise. The exhaust gases leave the exchanger at 1 bar. Neglecting transmission losses in the combustion chamber and heat exchanger, and differences in compressor and turbine mass flow rates, find the following.
(i) The specific work output.
(ii) The work ratio
(iii) The cycle efficiency

The compressor and turbine polytropic efficiencies are both 0.84 .
Compressor
$\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad \gamma=1.4$
Turbine
$\mathrm{c}_{\mathrm{p}}=1.148 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad \gamma=1.333$
Note for a compression $T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\eta_{\infty}}} \quad$ and for an expansion $T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(\gamma-1) \eta_{o}}{\gamma}}$
An open cycle can burn any convenient fuel in the air and requires simpler plant.
A closed cycle may use a gas with a higher specific heat capacity than air, such as helium and so produce a better performance. The fluid must be contained so heat must be supplied with a heat exchanger instead of a combustion chamber and this produces limitations.

In a simple gas turbine, the temperature at point (4) is usually hotter than the temperature at point (2) so it is possible to reduce the heat supply to the heater or combustion chamber by transferring

heat from point (4) to point (3).
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\eta_{\eta_{\infty}}}}=288(4) \frac{1.4-1}{1.4 \times 0.84}=461.5 \mathrm{~K}$
$\mathrm{T}_{5}=\mathrm{T}_{4}\left(\frac{\mathrm{p}_{5}}{\mathrm{p}_{4}}\right)^{\frac{(\gamma-1) \eta_{\infty}}{\gamma}}=1073\left(\frac{1}{4}\right)^{\frac{(1.33-1) 0.84}{1.33}}=803.7 \mathrm{~K}$

HEAT EXCHANGER

$0.75=\frac{1.005\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)}{1.148\left(\mathrm{~T}_{5}-\mathrm{T}_{2}\right)}=\frac{1.005\left(\mathrm{~T}_{3}-461.6\right)}{1.148(802.6-461.5)} \quad \mathrm{T}_{3}=754.7 \mathrm{~K}$
$\mathrm{P}(\mathrm{in})=\mathrm{mc}_{\mathrm{pa}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times 1.005(461.5-288)=174.4 \mathrm{~kW}$
$\mathrm{P}($ out $)=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{4}-\mathrm{T}_{5}\right)=1 \times 1.148(1073-802.6)=310 \mathrm{~kW}$
$\mathrm{P}($ nett $)=\mathrm{P}($ out $)-\mathrm{P}($ in $)=135 \mathrm{~kW}$
$\Phi(\mathrm{in})=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)=1 \times 1.148(1073-754.7)=365 \mathrm{~kW}$
Work Ratio $=\mathrm{P}(\mathrm{nett}) / \mathrm{P}(\mathrm{in})=135 / 310=0.44$
$\eta_{\text {th }}=\mathrm{P}($ nett $) / \Phi(\mathrm{in})=135 / 365=\mathbf{0 . 3 7 1}$ or $\mathbf{3 7 . 1 \%}$
2. A gas turbine for aircraft propulsion is mounted on a test bed. Air at 1 bar and 293 K enters the compressor at low velocity and is compressed through a pressure ratio of 4 with an isentropic efficiency of 85%. The air then passes to a combustion chamber where it is heated to 1175 K . The hot gas then expands through a turbine which drives the compressor and has an isentropic efficiency of 87%. The gas is then further expanded isentropically through a nozzle leaving at the speed of sound. The exit area of the nozzle is $0.1 \mathrm{~m}^{2}$. Determine the following.
(i) The pressures at the turbine and nozzle outlets.
(ii) The mass flow rate.
(iii) The thrust on the engine mountings.

Assume the properties of air throughout.
The sonic velocity of air is given by $a=(\gamma R T)^{1 / 2}$.
The temperature ratio before and after the nozzle is given by

$$
\mathrm{T}(\mathrm{in}) / \mathrm{T}(\text { out })=2 /(\gamma+1)
$$

$\mathrm{T}_{2^{\prime}}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma_{\infty}}}=293(4) \frac{1.4-1}{1.4 \times 0.84}=435.4 \mathrm{~K}$
$\eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{435.4-293}{\mathrm{~T}_{2}-293} \quad \mathrm{~T}_{2}=460.5 \mathrm{~K}$
$\mathrm{P}(\mathrm{in})=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times 1.005$ (167.5)
$\mathrm{P}($ out $)=\mathrm{P}($ in $)=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)$ hence
$\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)=167.5$ and $\mathrm{T}_{4}=1175-167.5=1007.5 \mathrm{~K}$

5
$\eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}}{\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}}=\frac{1175-1007.5}{1175-\mathrm{T}_{4^{\prime}}} \quad \mathrm{T}_{4^{\prime}}=982.5 \mathrm{~K}$
$\mathrm{T}_{4^{\prime}}=1175(\mathrm{r})^{\frac{\gamma-1}{\gamma}}=1175(\mathrm{r})^{\frac{1.4-4}{1.4} 0.84} \quad \mathrm{r}=0.5346=\frac{\mathrm{p}_{4^{\prime}}}{\mathrm{p}_{3}}=\frac{\mathrm{p}_{4}}{4} \quad \mathrm{P}_{4^{\prime}}=\mathrm{p}_{4}=2.138 \mathrm{bar}$
$\frac{\mathrm{T}_{5}}{\mathrm{~T}_{4}}=\frac{2}{\gamma+1}=0.833 \quad \mathrm{~T}_{5}=839.6 \mathrm{~K}$
$\frac{839.6}{1007.5}=0.833=\left(\frac{\mathrm{p}_{5}}{4}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\mathrm{p}_{5}}{4}\right)^{0.286} \mathrm{p}_{5}=1.13$ bar
When the nozzle is choked, $v=\sqrt{ }(\gamma \rho \mathrm{T})=\sqrt{ }(1.4 \times 287 \times 839.6)=580.8 \mathrm{~m} / \mathrm{s}$
Volume flow rate $=\mathrm{V}=\mathrm{A} \mathrm{v}=0.1 \times 580.8=58.08 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{m}=\mathrm{pV} / \mathrm{RT}=1.13 \times 10^{5} \times 55.08 /(287 \times 839.6)=27.23 \mathrm{~kg} / \mathrm{s}$
$\mathrm{F}=\mathrm{A} \Delta \mathrm{p}+\mathrm{m} \Delta \mathrm{v}=0.1 \times 0.13 \times 10^{5}+27.23 \times 580.8=17 \mathrm{kN}$
3. (A). A gas turbine plant operates with a pressure ratio of 6 and a turbine inlet temperature of $9270^{\circ} \mathrm{C}$. The compressor inlet temperature is $27{ }^{\circ} \mathrm{C}$. The isentropic efficiency of the compressor is 84% and of the turbine 90%. Making sensible assumptions, calculate the following.
(i) The thermal efficiency of the plant.
(ii) The work ratio.

Treat the gas as air throughout.
(B). If a heat exchanger is incorporated in the plant, calculate the maximum possible efficiency which could be achieved assuming no other conditions are changed.

Explain why the actual efficiency is less than that predicted.

PART A

$\mathrm{T}_{2^{\prime}}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=300(6) \frac{1.4-1}{1.4 \times 0.84}=500.8 \mathrm{~K}$
$\eta_{\text {IS }}=0.84=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{500.8-300}{\mathrm{~T}_{2}-300} \quad \mathrm{~T}_{2}=539 \mathrm{~K}$
$\mathrm{T}_{4^{\prime}}=1200(1 / 6)^{\frac{\gamma-1}{\gamma}}=1200(1 / 6)^{0.286}=719 \mathrm{~K}$

$\eta_{\text {IS }}=0.9=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}}{\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}}=\frac{1200-\mathrm{T}_{4}}{1200-719} \quad \mathrm{~T}_{4}=767 \mathrm{~K}$
$\Phi(\mathrm{in})=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=\mathrm{mx} 1.005(1200-539)=664 \mathrm{mkW}$
$\Phi($ out $)=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)=\mathrm{mx} 1.005(767-300)=469.3 \mathrm{~m} \mathrm{~kW}$
$\eta_{\text {th }}=1-\frac{\Phi(\text { out })}{\Phi(\text { in })}=1-\frac{469.3 \mathrm{~m}}{664 \mathrm{~m}}=0.293$ or 29.3%
$\mathrm{P}(\mathrm{in})=\mathrm{mc}_{\mathrm{pa}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\mathrm{mx} 1.005(539-300)=340.2 \mathrm{~m} \mathrm{~kW}$
$\mathrm{P}($ out $)=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)=\mathrm{mx} 1.005(1200-767)=435.2 \mathrm{~m} \mathrm{~kW}$
$\mathrm{P}($ nett $)=\mathrm{P}($ out $)-\mathrm{P}($ in $)=95 \mathrm{~kW}$
Work Ratio $=P($ nett $) / \mathrm{P}(\mathrm{in})=95 / 340.2=0.279$

PART B

HEAT EXCHANGER

For max possible efficiency the thermal ratio is 1 hence
$1=\frac{\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)}{\left(\mathrm{T}_{5}-\mathrm{T}_{2}\right)}$

$\mathrm{T}_{5}=\mathrm{T}_{3}=767 \mathrm{~K} \mathrm{~T}_{6}=\mathrm{T}_{2}=539 \mathrm{~K}$
$\Phi(\mathrm{in})=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)=\mathrm{mx} 1.005(1200-300)=435.2 \mathrm{mkW}$
$\Phi($ out $)=\mathrm{mc}_{\mathrm{pg}}\left(\mathrm{T}_{6}-\mathrm{T}_{1}\right)=\mathrm{mx} 1.005(539-300)=240.2 \mathrm{~m} \mathrm{~kW}$
$\eta_{\mathrm{th}}=1-\frac{\Phi(\mathrm{out})}{\Phi(\mathrm{in})}=1-\frac{240.2 \mathrm{~m}}{435.2 \mathrm{~m}}=0.448$ or 44.8%

In practical cases $T_{6}>T_{2}$ and $T_{5}>T_{2}$ so a smaller efficiency is obtained.

APPLIED THERMODYNAMICS D201

SELF ASSESSMENT SOLUTIONS

TUTORIAL 4

SELF ASSESSMENT EXERCISE No. 1

1. A 4 stroke carburetted engine runs at $3000 \mathrm{rev} / \mathrm{min}$. The engine capacity is 4 litres. The air is supplied at 0.7 bar and $10{ }^{\circ} \mathrm{C}$ with an efficiency ratio of 0.5 . The air fuel ratio is $13 / 1$. The calorific value is $45 \mathrm{MJ} / \mathrm{kg}$. Calculate the heat released by combustion. (149 KW)

Induced volume $=(3000 / 2) \times 0.004=6 \mathrm{~m}^{3} / \mathrm{min}$ or $0.1 \mathrm{~m}^{3} / \mathrm{s}$
Actual volume $=0.1 \times 0.5=0.05 \mathrm{~m}^{3} / \mathrm{s}$
Mass $=\mathrm{pV} / \mathrm{RT}=0.7 \times 10^{5} \times 0.05 /(287 \times 283)=0.0431 \mathrm{~kg} / \mathrm{s}$
Fuel used $=0.0431 / 13=0.00331 \mathrm{~kg} / \mathrm{s}$
Heat released $=0.00331 \times 45000=149.2 \mathrm{~kW}$

SELF ASSESSMENT EXERCISE No. 2

1. A 4 stroke spark ignition engine gave the following results during a test.

Number of cylinders 6
Bore of cylinders 90 mm
Stroke $\quad 80 \mathrm{~mm}$
Speed $5000 \mathrm{rev} / \mathrm{min}$
Fuel consumption rate
$0.3 \mathrm{dm}^{3} / \mathrm{min}$
Fuel density
Calorific value
$750 \mathrm{~kg} / \mathrm{m}^{3}$
Nett brake load
$44 \mathrm{MJ} / \mathrm{kg}$
Torque arm
Nett indicated area
Base length of indicator diagram
180 N
0.5 m
$720 \mathrm{~mm}^{2}$
Pressure scale
60 mm
$40 \mathrm{kPa} / \mathrm{mm}$
Calculate
i) the Brake Power. (47.12 kW)
ii) the Mean effective Pressure. ((480 kPa$)$.
iii) the Indicated Power. (61 kW).
iv) the Mechanical Efficiency. (77.2\%).
v) the Brake Thermal efficiency. (28.6 \%).
$\mathrm{BP}=2 \pi(5000 / 60) \times 180 \times 0.5=47.12 \mathrm{~kW}$
MEP $=(720 / 60) \times 40=480 \mathrm{kPa}$
IP $=$ PLAN $=480 \times 0.08 \times\left(\pi \times 0.09^{2} / 4\right) \times(5000 / 60) \times(6 / 2)=61 \mathrm{~kW}$
Fuel flow rate $=0.3 \mathrm{l} / \mathrm{min}=0.00036 \mathrm{~m}^{3} / \mathrm{min}$
Mass flow rate $=(0.0003 / 60) \times 750=0.00375 \mathrm{~kg} / \mathrm{s}$
$\mathrm{FP}=0.00375 \times 44000=165 \mathrm{~kW}$
$\eta_{\mathrm{m}}=47.12 / 61.07=77.1 \%$
$\eta_{\text {ВTh }}=47.12 / 165=28.6 \%$
2. A two stroke spark ignition engine gave the following results during a test.

Number of cylinders 4
Bore of cylinders 100 mm
Stroke
Speed
Fuel consumption rate
100 mm

Calorific value
$2000 \mathrm{rev} / \mathrm{min}$

Net brake load
$5 \mathrm{~g} / \mathrm{s}$
$46 \mathrm{MJ} / \mathrm{kg}$
Torque arm
Net indicated area
Base length of indicator diagram
Pressure scale

500 N
0.5 m
$1500 \mathrm{~mm}^{2}$
66 mm
$25 \mathrm{kPa} / \mathrm{mm}$

Calculate i) the Indicated thermal efficiency. (26.3 \%)
ii) the Mechanical Efficiency. (87\%).
iii) the Brake Thermal efficiency. (22.8\%).

```
MEP \(=(1500 / 66) \times 25=568 \mathrm{kPa}\)
IP = PLAN \(=568 \times 0.1 \times\left(\pi \times 0.1^{2} / 4\right) \times(2000 / 60) \times 4=59.5 \mathrm{~kW}\)
\(\mathrm{FP}=0.005 \mathrm{x} 46000=230 \mathrm{~kW}\)
\(\mathrm{BP}=2 \pi \mathrm{NT}=2 \pi(3000 / 60) \mathrm{x} 500 \times 0.5=52.4 \mathrm{~kW}\)
\(\eta_{\text {ITh }}=59.5 / 230=26 \%\)
\(\eta_{\mathrm{m}}=52.4 / 59.5=88 \%\)
```

3. A two stroke spark ignition engine gave the following results during a test.

4. A four stroke spark ignition engine gave the following results during a test.

Number of cylinders	4
Bore of cylinders	90 mm
Stroke	80 mm
Speed	$5000 \mathrm{rev} / \mathrm{min}$
Fuel consumption rate	$0.09 \mathrm{~kg} / \mathrm{min}$
Calorific value	$44 \mathrm{MJ} / \mathrm{kg}$
Nett brake load	60 N
Torque arm	0.5 m
MEP	280 kPa

Calculate i) the Mechanical Efficiency. (66.1\%).
ii) the Brake Thermal efficiency. (23.8\%).

```
\(\mathrm{BP}=2 \pi(5000 / 60) \times 60 \times 0.5=15.7 \mathrm{~kW}\)
\(\mathrm{FP}=(0.09 / 60) \times 44000=66 \mathrm{~kW}\)
MEP = 280 kPa
\(\mathrm{IP}=\mathrm{PLAN}=280 \times 0.08 \times\left(\pi \times 0.09^{2} / 4\right) \times(5000 / 60) \times(4 / 2)=23.75 \mathrm{~kW}\)
\(\eta_{\mathrm{m}}=15.7 / 23.75=66.1 \%\)
\(\eta_{\text {BTh }}=15.7 / 66=23.8 \%\)
```


5.Define Indicated Mean Effective Pressure and Brake Mean Effective Pressure.

The BMEP for a 4 cylinder, 4 stroke spark ignition engine is 8.4 bar. The total capacity is $1.3 \mathrm{dm}^{3}$ (litres). The engine is run at $4200 \mathrm{rev} / \mathrm{min}$.

Calculate the Brake Power. (38.22 kW)
There are 10 kW of mechanical losses in the engine.
Calculate the Indicated Mean effective Pressure. (10.6 bar).
The Volumetric Efficiency is 85% and the Brake Thermal Efficiency of the engine is 28%. The air drawn in to the engine is at $5^{\circ} \mathrm{C}$ and 1.01 bar . The fuel has a calorific value of $43.5 \mathrm{MJ} / \mathrm{kg}$. Calculate the air/fuel ratio. (12.3/1).

MEP is based on indicated power.
BMEP is based on brake power.
$B P=(B M E P)(L A) N / 2=8.5 \times 10^{5} \times 1.3 \times 10^{-3} \times(4200 / 60)(1 / 2)=38.22 \mathrm{~kW}$
$\mathrm{IP}=38.22+10=48.22$
$\mathrm{IMEP}=\mathrm{IP} \times 60 \times 2 / \mathrm{LAN}=48220 \times 60 \times 2 /\left(1.3 \times 10^{-3} \times 4200\right)=10.6 \mathrm{bar}$
$\eta_{\text {BTh }}=0.28=\mathrm{BP} / \mathrm{FP}$
Q(in) - 38.22/0.28 = 136.5 kJ
Fuel Heat released $=\mathrm{mx} 43500 \mathrm{~m}=136.5 / 43500=0.00313 \mathrm{~kg} / \mathrm{s}$
Swept Volume $=1.3$ litre $\quad \eta_{\text {vol }}=85 \%$
Actual air $=0.85 \times 1.3=1.105$ litre
Air flow $=0.0011 \times 4200 /(60 \times 2)=0.038675 \mathrm{~m}^{3} / \mathrm{s}$
Mass flow $=\mathrm{pV} / \mathrm{RT}=1.01 \times 10^{5} \times 0.038675 /(287 \times 278)=0.04874 \mathrm{~kg} / \mathrm{s}$
Air/Fuel ratio $=0.04874 / 0.00313=15.6 / 1$

SELF ASSESSMENT EXERCISE No. 3

Take $\mathrm{Cv}=0.718 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.4$ throughout.
1.In an Otto cycle air is drawn in at $20^{\circ} \mathrm{C}$. The maximum cycle temperature is $1500^{\circ} \mathrm{C}$. The volume compression ratio is $8 / 1$. Calculate the following.
i. The thermal efficiency. (56.5\%)
ii. The heat input per kg of air. ($789 \mathrm{~kJ} / \mathrm{kg}$).
iii. The net work output per kg of air. ($446 \mathrm{~kJ} / \mathrm{kg}$).
$\eta=1-r_{v}{ }^{-0.4}=1-8^{-0.4}=56.5 \%$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-1 / \gamma}=\mathrm{T}_{1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=193 \times 8^{0.4}=673.1 \mathrm{~K}$
$\mathrm{Q}(\mathrm{in})=1 \times 0.718 \times(1773-673.1)=789 \mathrm{~kJ} / \mathrm{kg}$
$W($ net $)=\eta \times Q(\mathrm{in})=0.565 \times 789=446 \mathrm{~kJ} / \mathrm{kg}$
2.An Otto cycle has a volume compression ratio of $9 / 1$. The heat input is $500 \mathrm{~kJ} / \mathrm{kg}$. At the start of compression the pressure and temperature are 100 kPa and $40^{\circ} \mathrm{C}$ respectively. Calculate the following.
i. The thermal efficiency. ((58.5\%)
ii. The maximum cycle temperature. (1450 K).
iii. The maximum pressure. (4.17 MPa).
iv. The net work output per kg of air. ($293 \mathrm{~kJ} / \mathrm{kg}$).
$\eta=1-r_{v}{ }^{-0.4}=1-9^{-0.4}=58.5 \%$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-1 / \gamma}=\mathrm{T}_{1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=313 \times 9^{0.4}=753.8 \mathrm{~K}$
$\mathrm{Q}(\mathrm{in})=500=1 \times 0.718 \times\left(\mathrm{T}_{3}-673.1\right) \quad \mathrm{T}_{3}=1450 \mathrm{~K}$
$\mathrm{p}_{3}=\left(\frac{\mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{3}}{\mathrm{~T}_{1} \mathrm{~V}_{3}}\right)=\frac{100 \times 9 \times 1450}{313}=4169 \mathrm{kPa}$
$\mathrm{W}($ net $)=\eta \times \mathrm{Q}(\mathrm{in})=0.585 \times 500=292.5 \mathrm{~kJ} / \mathrm{kg}$
3. Calculate the volume compression ratio required of an Otto cycle which will produce an efficiency of 60%. (9.88/1)

The pressure and temperature before compression are 105 kPa and $25^{\circ} \mathrm{C}$ respectively. The net work output is $500 \mathrm{~kJ} / \mathrm{kg}$). Calculate the following.
i. The heat input. ($833 \mathrm{~kJ} / \mathrm{kg}$).
ii. The maximum temperature. (1906 K)
iii. The maximum pressure. (6.64 MPa).
$\eta=0.6=1-r^{-0.4} \quad 0.4=r^{-0.4} \quad r=9.882$
Q(in) $=500 / 0.6=833.3 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{T}_{2}=298(9.882)^{0.4}=745 \mathrm{~K}$

$$
\begin{aligned}
& 833.3=0.718\left(\mathrm{~T}_{3}-745\right) \mathrm{T}_{3}=1906 \mathrm{~K} \\
& \mathrm{p}_{3}=\left(\frac{\mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{3}}{\mathrm{~T}_{1} \mathrm{~V}_{3}}\right)=\frac{105 \times 9.882 \times 1906}{298}=6635 \mathrm{kPa}
\end{aligned}
$$

4. An Otto cycle uses a volume compression ratio of $9.5 / 1$. The pressure and temperature before compression are 100 kPa and $40^{\circ} \mathrm{C}$ respectively. The mass of air used is 11.5 grams/cycle. The heat input is $600 \mathrm{~kJ} / \mathrm{kg}$. The cycle is performed 3000 times per minute. Determine the following.
i. The thermal efficiency. (59.4\%).
ii. The net work output. ($4.1 \mathrm{~kJ} / \mathrm{cycle}$)
iii. The net power output. (205 kW).
$\eta=1-\mathrm{r}^{-0.4}=1-9.5^{-0.4}=59.4 \%$
$Q(i n)=600 \times 0.0115=6.9 \mathrm{~kJ}$
$\mathrm{W}=0.594 \times 6.9=4.098 \mathrm{KJ}$
$\mathrm{T}_{2}=298(9.882)^{0.4}=745 \mathrm{~K}$
Power $=4.098 \times 3000 / 60=204.9 \mathrm{~kW}$
5. An Otto cycle with a volume compression ratio of 9 is required to produce a net work output of $450 \mathrm{~kJ} / \mathrm{cycle}$. Calculate the mass of air to be used if the maximum and minimum temperatures in the cycle are $1300^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively.
(1.235 kg).
$\eta=1-r^{-0.4}=1-9^{-0.4}=58.5 \%$
$\mathrm{T}_{2}=293(9)^{0.4}=705.6 \mathrm{~K}$
$Q(i n)=450 / 0.585=769 \mathrm{~kJ}$
$769=\mathrm{mx} 0.718$ (1573-705.6)
$\mathrm{m}=1.235 \mathrm{~kg}$
6.The air standard cycle appropriate to the reciprocating spark ignition engine internal-combustion engine is the Otto. Using this, find the efficiency and output of a 2 litre (dm^{3}), 4 stroke engine with a compression ratio of 9 running at $3000 \mathrm{rev} / \mathrm{min}$. The fuel is supplied with a gross calorific value of $46.8 \mathrm{MJ} / \mathrm{kg}$ and an air fuel ratio of 12.8 .
Calculate the answers for two cases.
a. The engine running at full throttle with the air entering the cylinder at atmospheric conditions of 1.01 bar and $10{ }^{\circ} \mathrm{C}$ with an efficiency ratio of 0.49 .
b. The engine running at part throttle with the air entering the cylinder at 0.48 bar and efficiency ratio 0.38. (

PART (A)
p $=1.10$ bar $\mathrm{V}=0.002 \mathrm{~m}^{3} \mathrm{~T}=283 \mathrm{~K}$ Eff Ratio $=0.49$
Allowing for the efficiency ratio $\mathrm{V}=0.002 \times 0.49=0.00098 \mathrm{~m}^{3}$
$\mathrm{m}_{\text {air }}=\left(\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}\right)=\frac{1.01 \times 10^{5} \times 0.00098}{287 \times 283}=0.001218 \mathrm{~kg} / \mathrm{rev}$
$\mathrm{m}_{\text {fuel }}=0.001218 / 12.8=95.2 \times 10^{-6} \mathrm{~kg} / \mathrm{rev}$
$\mathrm{Q}(\mathrm{in})=95.2 \times 10^{-6} \mathrm{x} 46800=4.45 \mathrm{~kJ} /$ cycle
$\eta=1-9^{0.4}=58.5 \%$

$$
\begin{aligned}
& \Phi(\mathrm{in})=4.45 \times 3000 /(60 \times 2)=111.39 \mathrm{~kW} \\
& \mathrm{P}(\mathrm{net})=111.39 \times 58.5 \%=65.16 \mathrm{~kW}
\end{aligned}
$$

PART (B)
$p=0.48$ bar $V=0.002 \mathrm{~m}^{3} \mathrm{~T}=283 \mathrm{~K}$ Eff Ratio $=0.38$
Allowing for the efficiency ratio $\mathrm{V}=0.002 \times 0.38=0.00076 \mathrm{~m}^{3}$
$\mathrm{m}_{\text {air }}=\left(\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}\right)=\frac{0.48 \times 10^{5} \times 0.00076}{287 \times 283}=0.000449 \mathrm{~kg} / \mathrm{rev}$
$m_{\text {fuel }}=0.000449 / 12.8=35.09 \times 10^{-6} \mathrm{~kg} / \mathrm{rev} \quad \mathrm{Q}(\mathrm{in})=35.09 \times 10^{-6} \times 46800=1.642 \mathrm{~kJ} / \mathrm{cycle}$
$\Phi(\mathrm{in})=1.642 \times 3000 /(60 \times 2)=41 \mathrm{~kW}$
$\eta=1-9^{0.4}=58.5 \%$
$P($ net $)=41 \times 58.5 \%=24 \mathrm{~kW}$
7 The working of a petrol engine can be approximated to an Otto cycle with a compression ratio of 8 using air at 1 bar and 288 K with heat addition of $2 \mathrm{MJ} / \mathrm{kg}$. Calculate the heat rejected and the work done per kg of air.
$\eta=1-8^{0.4}=56.5 \%$
$\mathrm{W}=0.565 \times 2000=1129 \mathrm{~kJ} / \mathrm{kg}$
$\eta=1-Q($ out $) / Q($ in $)$
$Q($ out $)=(1-0.565) \times 2000=870 \mathrm{~kJ}$

ASSIGNMENT 4

1. A Dual Combustion Cycle uses a compression ratio of $20 / 1$. The cut off ratio is $1.6 / 1$. The temperature and pressure before compression is $30^{\circ} \mathrm{C}$ and 1 bar respectively. The maximum cycle pressure is 100 bar. Calculate
i. the maximum cycle temperature.
ii. the nett work output per cycle.
iii. the thermal efficiency.
$\mathrm{r}=20 \quad \beta=1.6 \quad \mathrm{~T}_{2}=\mathrm{T}_{1} \mathrm{r}^{0.4}=303 \times 20^{0.4}=1004.3 \mathrm{~K}$
$\mathrm{T}_{3}=\frac{\mathrm{p}_{3} \mathrm{~V}_{3} \mathrm{~T}_{1}}{\mathrm{p}_{1} \mathrm{~V}_{1}}=\frac{100 \times 1 \times 303}{1 \times 20}=1515 \mathrm{~K}$
$\mathrm{T}_{4}=1.6 \mathrm{~T}_{3}=2424 \mathrm{~K}$
$\mathrm{T}_{5}=\mathrm{T}_{4}\left(\frac{1.6}{20}\right)^{0.4}=2424 \times 0.08^{0.4}=882.6 \mathrm{~K}$
$Q($ in $)=1 \times 1.005 \times(2424-1515)+1 \times 0.718 \times(1515-1004.3)=1280 \mathrm{~kJ}$
$Q($ out $)=0.718 \times(882.6-303)=416 \mathrm{~kJ}$
$\mathrm{W}($ net $)=\mathrm{Q}($ net $)=1280-416=864 \mathrm{~kJ}$
$\eta=W(n e t) / Q(i n)=67.5 \%$
2. A Dual Combustion Cycle uses a compression ratio of $12 / 1$. The cut off ratio is $2 / 1$. The temperature and pressure before compression is 280 K and 1 bar respectively. The maximum temperature 2000 K. Calculate
i. the nett work output per cycle. ($680 \mathrm{~kJ} / \mathrm{kg}$).
ii. the thermal efficiency. (57.6 \%).

$$
\begin{aligned}
& \mathrm{r}=12 \quad \beta=2 \quad \mathrm{~T}_{2}=\mathrm{T}_{1} \mathrm{r}^{0.4}=280 \times 12^{0.4}=756 \mathrm{~K} \\
& \mathrm{~T}_{3}=\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}} \mathrm{~T}_{4}=\frac{1}{2} 2000=1000 \mathrm{~K} \\
& \mathrm{~T}_{4}=1.6 \mathrm{~T}_{3}=2424 \mathrm{~K} \\
& \mathrm{~T}_{5}=\mathrm{T}_{4}\left(\frac{\mathrm{~V}_{4}}{\mathrm{~V}_{5}}\right)^{0.4}=2000 \times\left(\frac{1}{6}\right)^{0.4}=977 \mathrm{~K} \\
& \mathrm{Q}(\text { out })=500 \mathrm{~kJ} \quad \mathrm{Q}(\mathrm{in})=1180 \mathrm{~kJ} \\
& \mathrm{~W}(\text { net })=\mathrm{Q}(\text { net })=1180-500=680 \mathrm{~kJ} \\
& \eta=W(\text { net }) / \mathrm{Q}(\text { in })=57.6 \%
\end{aligned}
$$

3. Similar to Q8 1988

Draw a p - V and T-s diagram for the Dual Combustion Cycle.
A reciprocating engine operates on the Dual Combustion Cycle. The pressure and temperature at the beginning of compression are 1 bar and $15{ }^{\circ} \mathrm{C}$ respectively. The compression ratio is 16 . The heat input is $1800 \mathrm{~kJ} / \mathrm{kg}$ and the maximum pressure is 80 bar. Calculate
i. the pressure, volume and specific volume at all points in the cycle.
ii. the cycle efficiency.62.8\%).
iii. the mean effective pressure. (14.52 bar).

$\mathrm{T}_{1}=288 \mathrm{~K} \quad \mathrm{p} 1=1$ bar $\mathrm{p} 3=\mathrm{p} 4=80 \mathrm{bar} \quad \mathrm{Q}(\mathrm{in})=1800 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{r}=16 \quad \mathrm{~V}_{2}=\mathrm{V}_{3}$
$\mathrm{T} 2=298 \times 18^{\left(\gamma^{-1}\right)}=947 \mathrm{~K}$
$\mathrm{p}_{2}=\mathrm{p}_{1} \mathrm{r}^{\gamma}=1 \times 16^{1.4}=48.5 \mathrm{bar}$
$\mathrm{T}_{2}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{p}_{1} \mathrm{~V}_{1}} \mathrm{~T}_{1}=\frac{48.5 \times 1}{1 \times 16} \times 288=873 \mathrm{~K}$
$\mathrm{T}_{3}=\frac{\mathrm{p}_{3}}{\mathrm{p}_{2}} \mathrm{~T}_{2}=\frac{80}{48.5} \times 873=1440 \mathrm{~K}$
$\mathrm{Q}(\mathrm{in})=1800=0.718(1440-873)+1.005\left(\mathrm{~T}_{4}-1440\right) \quad \mathrm{T}_{4}=2826 \mathrm{~K}$
$\mathrm{V}_{4} / \mathrm{V}_{3}=\mathrm{T}_{4} / \mathrm{T} 3=2826 / 1440=1.9625$
$\mathrm{V}_{3} / \mathrm{V}_{4}=1 / 1.9625=0.509$
$\mathrm{V}_{5} / \mathrm{V}_{4}=\left(\mathrm{V}_{3} / \mathrm{V}_{4}\right)\left(\mathrm{V}_{5} / \mathrm{V}_{3}\right)=0.509 \times 16=8.15$
$\mathrm{P}_{4} \mathrm{~V}_{4}{ }^{\gamma}=\mathrm{P}_{5} \mathrm{~V}_{3}{ }^{\gamma} \quad \mathrm{P}_{5}=80(1 / 8.15)^{1.4}=4.238 \mathrm{bar}$
$\frac{\mathrm{P}_{5}}{\mathrm{~T}_{5}}=\frac{\mathrm{p}_{1}}{\mathrm{~T}_{4}} \quad \mathrm{~T}_{5}=\frac{4.238 \times 288}{1}=1221 \mathrm{~K}$
$Q($ out $)=0.718(1221-288)=670 \mathrm{~kJ} / \mathrm{g}$
$\mathrm{W}($ nett $)=1800-670=1130 \mathrm{~kJ} / \mathrm{kg}$
$\eta=1130 / 1800=62.8 \%$
$\mathrm{V}_{1}=\frac{\mathrm{mRT}_{1}}{\mathrm{p}_{1}}=\frac{1 \times 287 \times 288}{1 \times 10^{5}}=0.83 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{V}_{2}=\frac{\mathrm{mRT}_{2}}{\mathrm{p}_{2}}=\frac{\mathrm{V}_{1}}{16}=0.0519 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{MEP}=\mathrm{W}(\mathrm{nett}) / \mathrm{SV}=\mathrm{W}(\mathrm{nett}) /\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)=1130 \times 10^{3} /(0.778)=1452 \mathrm{kPa}$

APPLIED THERMODYNAMICS D201

SELF ASSESSMENT SOLUTIONS

TUTORIAL 5

SELF ASSESSMENT EXERCISE No. 1

1. A simple vapour compression refrigerator comprises an evaporator, compressor, condenser and throttle. The condition at the 4 points in the cycle are as shown.

Point	Pressure	Temperature
After evaporator	0.8071 bar	$-20^{\circ} \mathrm{C}$
After compressor	5.673 bar	$50^{\circ} \mathrm{C}$
After condenser	5.673 bar	$150^{\circ} \mathrm{C}$
After throttle	0.8071 bar	$-30^{\circ} \mathrm{C}$

The refrigerant is R12 which flows at $0.05 \mathrm{~kg} / \mathrm{s}$. The power input to the compressor is 2 kW . Compression is reversible and adiabatic.
Calculate the following.
i. The theoretical power input to the compressor.
ii. The heat transfer to the evaporator.
iii. The coefficient of performance based answer (i.)
iv. The mechanical efficiency of the compressor.
v . The coefficient of performance based on the true power input.
Is the compression process isentropic?
$\mathrm{h}_{1}=180.45 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{2}=216.75 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{4}=50.1 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=0.05(180.45-50.1)=6.517 \mathrm{~kW}$
$\mathrm{P}(\mathrm{in})=0.05(216.75-180.45)=1.815 \mathrm{~kW}$
C of $P=6.517 / 1.815=3.59$
$\eta=1.818 / 2=90.75 \%$
C of $\mathrm{P}=6.517 / 2=3.25$
$\mathrm{s}_{1}=0.7568 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{2}=0.7567 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
The compression is Isentropic since $\mathrm{s}_{1}=\mathrm{s}_{2}$

2. A vapour compression cycle uses R12. the vapour is saturated at $-20^{\circ} \mathrm{C}$ at entry to the compressor. At exit from the compressor it is at 10.84 bar and $75{ }^{\circ} \mathrm{C}$. The condenser produces saturated liquid at 10.84 bar. The liquid is throttled, evaporated and returned to the compressor.

Sketch the circuit and show the cycle on a p-h diagram.
Calculate the coefficient of performance of the refrigerator. (2.0)
Calculate the isentropic efficiency of the compressor. (71\%)
Using the same diagram as Q1 for the point numbers the $\mathrm{T}-\mathrm{s}$ and $\mathrm{p}-\mathrm{h}$ diagrams are as shown.

Point $1 \mathrm{p}=1.509$ bar $\theta=-20^{\circ} \mathrm{C} \quad \mathrm{h}=\mathrm{h}_{\mathrm{g}}=178.73 \mathrm{~kJ} / \mathrm{kg}$
Point $2 \mathrm{p}=10.84$ bar ts $=45^{\circ} \mathrm{C} \quad \theta=75^{\circ} \mathrm{C}$ hence there is 30 K of superheat $\mathrm{h}=228.18 \mathrm{~kJ} / \mathrm{kg}$
Point $3 \mathrm{p}=10.84$ bar $\theta=\mathrm{ts}=45^{\circ} \mathrm{C} \quad \mathrm{h}=\mathrm{h}_{\mathrm{f}}=79.71 \mathrm{~kJ} / \mathrm{kg}$
Point $4 \mathrm{p}=1.509$ bar $\theta=\mathrm{ts}=-20^{\circ} \mathrm{C} \quad \mathrm{h}=\mathrm{h}_{\mathrm{f}}=79.71 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f}}+\mathrm{xh}_{\mathrm{fg}}=79.71+17.82+\mathrm{x}(178.73-17.82) \quad \mathrm{x}=0.385$
$\Phi(\mathrm{in})=\mathrm{h}_{1}-\mathrm{h}_{4}=99.02 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}($ in $)=\mathrm{h}_{2}-\mathrm{h}_{1}=49.45 \mathrm{~kJ} / \mathrm{kg}$
C of $\mathrm{P}=99.02 / 49.45=2.0$
Compression process $\quad \mathrm{s}_{1}=\mathrm{s}_{\mathrm{g}}=0.7087 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Ideally $\mathrm{s}_{1}=\mathrm{s}_{2}$ at 10.84 bar
Interpolation from tables gives
$\frac{0.7087-0.6811}{0.7175-0.6811}=\frac{\mathrm{h}_{2}{ }^{\prime}-204.87}{216.74-204.87} \mathrm{~h}_{2}{ }^{\prime}=213.87 \mathrm{~kJ} / \mathrm{kg}$
Ideal $\mathrm{P}(\mathrm{in})=213.87-178.87=35.14 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {is }}=35.14 / 49.45=71 \%$

SELF ASSESSMENT EXERCISE No. 2

1. A refrigerator operates with ammonia. The plant circuit is shown below. The conditions at the relevant points of the cycle are as follows.
1 saturated liquid at $-30^{\circ} \mathrm{C}$

3,4 and 7 saturated liquid at $10^{\circ} \mathrm{C}$
5 saturated vapour at $-30^{\circ} \mathrm{C}$
The pump and compressor have an isentropic efficiency of 80%.
There are no heat losses. The specific volume of ammonia liquid is $0.0015 \mathrm{~m} 3 / \mathrm{kg}$.
Determine the coefficient of performance and the mass flow rate if the refrigeration effect is 10 kW .

Point $1 \quad \mathrm{p}=1.196$ bar $\theta=-30^{\circ} \mathrm{C}$
Points 3,4 and $7 \quad \mathrm{p}=6.149$ bar $\quad \mathrm{h}=\mathrm{h}_{\mathrm{f}}=227.8 \mathrm{~kJ} / \mathrm{kg}$
Point 5

PUMP $\quad \mathrm{P}(\mathrm{in})=\mathrm{V} \Delta \mathrm{p} / \eta=0.0015(6.149-1.196) \times 10^{5} / 0.8=928 \mathrm{~W}$ per unit mass flow rate.
$\mathrm{h}_{2}=\mathrm{h}_{1}+$ energy added $=44.7+0.928=45.628 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=\mathrm{h}_{3}-\mathrm{h}_{2}=227.8-45.628=182.17 \mathrm{~kW}$ per unit mass flow rate.
$\mathrm{s}_{5}=\mathrm{s}_{6}{ }^{\prime}=5.785 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Interpolate at 6.149 bar $\quad \frac{5.785-5.634}{5.967-5.634}=\frac{\mathrm{h}_{6}{ }^{\prime}-1583.1}{1702.2-1583.1} \mathrm{~h}_{6}{ }^{\prime}=1637.2 \mathrm{Kj} / \mathrm{kg}$
COMPRESSOR $\quad \mathrm{P}(\mathrm{in})=\left(\mathrm{h}_{6}{ }^{\prime}-\mathrm{h}_{5}\right) / \eta=(1637.2-1405.6) / 0.8=289.54 \mathrm{~kW}$ per unit mass flow rate.
FLASH VESSEL
$\mathrm{h}_{4}=\mathrm{yh}_{5}+(1-\mathrm{y}) \mathrm{h}_{1} \quad 227.8=1405.6 \mathrm{y}+(1-\mathrm{y}) 44.7 \quad \mathrm{y}=0.134 \mathrm{~kg} \quad 1-\mathrm{y}=0.865 \mathrm{~kg}$
For a total flow of $1 \mathrm{~kg} / \mathrm{s}$
Pump Power $=0.928 \times 0.865=0.803 \mathrm{~kW}$
Compressor Power $=289.54 \times 0.134=38.95 \mathrm{~kW}$
$\Phi($ in $)=182.17 \times 0.865=157.58 \mathrm{~kW}$
C of $\mathrm{P}=157.58 / 39.75=3.964$
$\Phi(\mathrm{in})=10 \mathrm{~kW}=\mathrm{m} \times 182.17$ hence $\mathrm{m}=0.05489 \mathrm{~kg} / \mathrm{s}$ but this is 0.865 of the total flow
Mass flow $=0.05489 / 0.865=0.06346 \mathrm{~kg} / \mathrm{s}$
2. A heat pump consists of a compressor, condenser, throttle, and evaporator. The refrigerant is R12. The refrigerant is at $0^{\circ} \mathrm{C}$ at entry to the compressor and $80^{\circ} \mathrm{C}$ at exit. The condenser produces saturated liquid at $50{ }^{\circ} \mathrm{C}$. The throttle produces wet vapour at $-10^{\circ} \mathrm{C}$. The mass flow rate is 0.02 kg / s. The indicated power to the compressor is 1 kW .
Sketch the T - s diagram and p - h diagram for the cycle.
Calculate the coefficient of performance for the heat pump.
Calculate the rate of heat loss from the compressor.
Calculate the coefficient of performance again for when the refrigerant is sub cooled to $45{ }^{\circ} \mathrm{C}$ at exit from the condenser.
Calculate the temperature at exit from the compressor if the compression is reversible and adiabatic.
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}$ at $50^{\circ} \mathrm{C}=84.94 \mathrm{~kJ} / \mathrm{kg} \mathrm{p}_{3}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{s}} \mathrm{at} 50^{\circ} \mathrm{C}=12.19 \mathrm{~b}$
h_{1} with 10 K superheat is $190 \mathrm{~kJ} / \mathrm{kg}$
s_{1} is $0.725 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{P}(\mathrm{in})=0.02(230-190)=0.8 \mathrm{~kW} \quad$ Loss is 0.2 kW
$\Phi($ out $)=0.02(230-85)=2.9 \mathrm{~kW}$
$\Phi(\mathrm{in})=0.02(190-85)=2.1 \mathrm{~kW}$
C of $\mathrm{P}=2.9 / 0.8=3.625$ based on the cycle.
C of $P=2.9 / 1=2.9$ based on the Indicated Power.
At $45^{\circ} \mathrm{C} \quad \mathrm{h}_{3}=79.71 \mathrm{~kJ} / \mathrm{kg}$
$\Phi($ out $)=0.02(230-79.71)=3 \mathrm{~kW}$
C of $\mathrm{P}=3 / 0.8=3.75$ based on the cycle and $3 / 1=3$
 based on the IP

REVERSIBLE COMPRESSION

$\mathrm{s}_{2}=0.725 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \mathrm{h}{ }_{2}=230 \mathrm{~kJ} / \mathrm{kg}$
Interpolation $\frac{0.725-0.7166}{0.7503-0.7166}=\frac{\Delta \mathrm{T}}{30-15} \Delta \mathrm{~T}=3.73 \quad \theta=50+3.73+15=68.7^{\circ} \mathrm{C}$
3. A refrigeration cycle uses R12. The evaporator pressure is 1.826 bar and the condenser pressure is 10.84 bar. There is 5 K of superheat at inlet to the compressor. The compressor has an isentropic efficiency of 90%. the condensed liquid is under-cooled by 5 K and is throttled back to the evaporator.
Sketch the cycle on a T-s and p-h diagram.
Calculate the coefficient of performance. (3.04)
Explain why throttles are used rather than an expansion engine.
POINT $1 \quad \theta=-10^{\circ} \mathrm{C}$
$\mathrm{p}=1.826$ bar $\mathrm{ts}=-15^{\circ} \mathrm{C}$
hence 5 K superheat.

Interpolation

$\mathrm{h}_{1}=\frac{5}{15}(190.15-180.97)+180.97=184.03 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{1}=\frac{5}{15}(0.7397-0.7051)+0.7051=0.7166 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
POINT $2 \mathrm{p}=10.84$ bar $\mathrm{s}=0.7166 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad \frac{\Delta \mathrm{T}}{15}=\frac{0.7166-0.6811}{0.7175-0.6811} \quad \Delta \mathrm{~T}=14.64 \mathrm{~K}$
$\frac{14.64}{15}=\frac{\mathrm{h}_{2}{ }^{\prime}-204.87}{216.74-204.87} \mathrm{~h}_{2}{ }^{\prime}=216.46 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\text {IS }}=0.9=\frac{\mathrm{h}_{2}{ }^{\prime}-\mathrm{h}_{1}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{216.46-184.03}{\mathrm{~h}_{2}-184.03} \quad \mathrm{~h}_{2}=220 \mathrm{~kJ} . \mathrm{kg}$
POINT $3 \theta=40^{\circ} \mathrm{C}$ (liquid) $\quad \mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}=74.59 \mathrm{~kJ} / \mathrm{kg}$

POINT $4 \quad h_{4}=h_{3}$
C of $\mathrm{P}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{184.03-74.59}{220-184.03}=3$
Throttles are used because they are simple with no moving parts. Expansion engines are expensive and difficult to use with wet vapour being present.

SELF ASSESSMENT EXERCISE No. 3

1. Why is it preferable that vapour entering a compressor superheated?

A vapour compression refrigerator uses R12. The vapour is evaporated at $-10^{\circ} \mathrm{C}$ and condensed at $30^{\circ} \mathrm{C}$. The vapour has 15 K of superheat at entry to the compressor. Compression is isentropic. The condenser produces saturated liquid.

The compressor is a reciprocating type with double action. The bore is 250 mm and the stroke is 300 mm . The speed is $200 \mathrm{rev} / \mathrm{min}$. The volumetric efficiency is 85%. You may treat superheated vapour as a perfect gas. Determine

> i. the mass flow rate $(0.956 \mathrm{~kg} / \mathrm{s})$
> ii. the coefficient of performance. (5.51)
> iii. the refrigeration effect. (122.7 kW$)$
(Note that double acting means it pumps twice for each revolution. The molecular mass for R12 is given in the tables.)
(a) Liquid refrigerant must be prevented from entering the compressor as it would damage the piston and cylinders and contaminate the lubricant.
(b) $\mathrm{h}_{1}=192.53 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{1}=0.7365 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{1}=\mathrm{s}_{2}$ at 7.449 bar
$\frac{\Delta \mathrm{T}}{15}=\frac{0.7365-0.7208}{0.754-0.7208} \quad \Delta \mathrm{~T}=7.09 \mathrm{~K}$
$\frac{7.09}{15}=\frac{\mathrm{h}_{2}-210.63}{221.44-210.63} \mathrm{~h}_{2}=215.74 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{P}(\mathrm{in})=215.74-192,53=23.21 \mathrm{~kJ} / \mathrm{kg}$

$\mathrm{h}_{3}=\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f}}$ at $7.449 \mathrm{bar}=64.59 \mathrm{~kJ} / \mathrm{kg}$
$\Phi(\mathrm{in})=\mathrm{h}_{1}-\mathrm{h}_{4}=129.9 \mathrm{~kJ} / \mathrm{kg}$
C of $\mathrm{P}=127.9 / 23.21=5.51$
Swept Volume $=\pi \times\left(0.25^{2} / 4\right) \times 0.3=0.014726 \mathrm{~m}^{3}$
$\eta_{\text {vol }}=85 \%$
Induced volume $=2 \times 0.014726 \times 0.85 \times 200 / 60=0.08344 \mathrm{~m}^{3} / \mathrm{s}$
At inlet $m=\frac{p V \tilde{N}}{R_{o} T}=\frac{2.191 \times 10^{5} \times 0.08344 \times 120.92}{8314.4 \times 278}=0.956 \mathrm{~kg} / \mathrm{s}$
$\Phi(\mathrm{in})=127.9 \times 0.956=122.27 \mathrm{~kW}$

APPLIED THERMODYNAMICS D201

SELF ASSESSMENT SOLUTIONS

TUTORIAL 6

SELF ASSESSMENT EXERCISE No. 1

1. Repeat the worked example 2 but this time the relative humidity 0.8 at inlet. Is water condensed or evaporated? $\quad\left(\mathrm{m}_{\mathrm{s} 1}=0.01609 \mathrm{~kg}\right.$ so water is condensed $)$
$\phi_{1}=0.8=\mathrm{p}_{\mathrm{s} 1} / \mathrm{p}_{\mathrm{g} 1} \quad \mathrm{p}_{\mathrm{s} 1}=0.8 \mathrm{p}_{\mathrm{g} 1}$
$\mathrm{p}_{\mathrm{s} 1}=0.8 \times 0.03166=0.025328$ bar
$\mathrm{pa}_{\mathrm{a} 1}=1-0.025328=0.974672$ bar
$\omega_{1}=0.622 \mathrm{p}_{\mathrm{s} 1} / \mathrm{pa}_{\mathrm{a} 1}=0.622(0.025328 / 0.974672)=0.01616$
Condensate formed $=0.01616-\mathrm{m}_{\mathrm{s} 2}$

$\omega_{2}=0.622 \mathrm{p}_{\mathrm{s} 2} / \mathrm{p}_{\mathrm{a} 2}$
$\mathrm{p}_{\mathrm{s} 2}$ at $18^{\circ} \mathrm{C}=0.02063 \mathrm{bar} \quad \mathrm{p}_{\mathrm{a} 2}=1-0.02063=0.97937 \mathrm{bar}$
$\omega_{2}=0.622(0.02063 / 0.97937)=0.013$
Condensate formed $=0.01616-0.013=0.00316 \mathrm{~kg}$
2. Define specific humidity ω and prove that
$\omega=p_{s} \tilde{N}_{s} / \tilde{N}_{\mathrm{a}}\left(\mathrm{p}-\mathrm{p}_{\mathrm{s}}\right)$
Humid air at 1 bar flows through an insulated vessel over a pool of water and emerges saturated. The temperatures are $250^{\circ} \mathrm{C}$ and $18{ }^{\circ} \mathrm{C}$ at inlet and outlet respectively. The mass of water is maintained constant at $180^{\circ} \mathrm{C}$ all the time. Calculate the relative humidity at inlet assuming constant pressure throughout. (Ans. 0.651)

Specific humidity ω refers to a mixture of dry air and steam $\omega=$ mass of steam/mass of air.
Relative humidity ϕ refers to the mass of steam as a \% of the maximum possible.
Maximum steam $=\mathrm{m}_{\mathrm{g}} \quad \phi=\mathrm{m}_{\mathrm{s}} / \mathrm{m}_{\mathrm{g}} \quad \mathrm{m}=\mathrm{V} / \mathrm{v} \quad \phi=\mathrm{v}_{\mathrm{g}} / \mathrm{v}_{\mathrm{s}} \quad \omega=$ mass of water vapour/mass of dry air

Starting with the gas law
$\mathrm{m}=\frac{\mathrm{pVN}}{\mathrm{RoT}}$
$\omega=\frac{\mathrm{p}_{\mathrm{s}} \operatorname{VRoT}_{\mathrm{N}} \tilde{N}_{s}}{\mathrm{p}_{\mathrm{a}} \operatorname{VRoTN}_{\mathrm{a}}}=\frac{\mathrm{p}_{\mathrm{s}} \tilde{\mathrm{N}}_{\mathrm{s}}}{\mathrm{p}_{\mathrm{a}} \tilde{\mathrm{N}}_{\mathrm{a}}}=\frac{\mathrm{p}_{\mathrm{s}}}{\mathrm{p}_{\mathrm{a}}} \times \frac{18}{28.96}=0.622 \frac{\mathrm{p}_{\mathrm{s}}}{\mathrm{p}_{\mathrm{a}}}$
$\omega=0.622 \frac{p_{s}}{p-p_{s}}$

Assuming no evaporation or condensation if p is constant then m_{s} is constant and it follows that
$\omega_{1}=\omega_{2}$
$\mathrm{p}_{\mathrm{s}}=\mathrm{pg}_{\mathrm{g}}$ at $18^{\circ} \mathrm{C}=0.02063$ bar $\quad \mathrm{Pa}=1-0.02063=0.97937$ bar
$\omega_{1}=0.622 \frac{\mathrm{p}_{\mathrm{s}}}{\mathrm{p}-\mathrm{p}_{\mathrm{s}}}=0.622 \frac{0.02063}{0.97937}=0.0131$
$p_{s 1}=p_{s} 2$
At inlet $\mathrm{p}_{\mathrm{g}}=\mathrm{p}_{\mathrm{s}}$ at $25^{\circ} \mathrm{C}=0.03166$ bar
$\phi_{1}=\mathrm{p}_{\mathrm{s} 1} / \mathrm{pg}_{\mathrm{g}}=0.02063 / 0.03166=0.6516$

SELF ASSESSMENT EXERCISE No. 2

Air having a pressure, temperature and relative humidity of 1 bar, $26^{\circ} \mathrm{C}$ and 0.65 respectively, flows into an air conditioner at a steady rate and is dehumidified by cooling and removing water from it. The air is then heated to produce an outlet temperature and relative humidity of 240 C and 0.359 respectively. The pressure is constant throughout. Determine the heat transfers in the cooler and heater per kg of conditioned air at exit. Draw up a complete mass balance.
($36.22 \mathrm{~kJ} / \mathrm{kg}$ and $16.24 \mathrm{~kJ} / \mathrm{kg}$)

INLET

pg_{g} at $26^{\circ} \mathrm{C}=0.0336$ bar $\quad \mathrm{p}_{\mathrm{s} 1}=0.02184$ bar
$\mathrm{p}_{\mathrm{a} 1}=1-0.02184=0.97816$ bar
$\phi_{1}=0.65=\mathrm{p}_{\mathrm{s} 1} / \mathrm{pg}_{\mathrm{g}}$
$\omega_{1}=0.622\left(\mathrm{p}_{\mathrm{s} 1} / \mathrm{pa}_{\mathrm{a} 1}\right)=0.0138878$

OUTLET
pg_{g} at $24^{\circ} \mathrm{C}=0.02982$ bar $\quad \mathrm{p}_{\mathrm{s} 3}=0.010705$ bar
$\mathrm{p}_{\mathrm{a} 3}=1-0.010705=0.98929 \mathrm{bar}$
$\phi_{3}=0.359=\mathrm{p}_{\mathrm{s} 3} / \mathrm{pg}_{\mathrm{g}}$
$\omega_{3}=0.622\left(\mathrm{p}_{\mathrm{s} 3} / \mathrm{p}_{\mathrm{a} 3}\right)=0.0067306$
$\mathrm{m}_{\mathrm{s} 1}=0.0138878 \mathrm{~m}_{\mathrm{a}} \quad \mathrm{m}_{\mathrm{s} 3}=0.0067306 \mathrm{~m}_{\mathrm{a}}$
Condensate formed at (2) $=\mathrm{m}_{\mathrm{s} 1}-\mathrm{m}_{\mathrm{s} 3}=0.0071572 \mathrm{~m}_{\mathrm{a}}$
Temperature of the condensate is t_{s} at 0.010705 bar and is $8{ }^{\circ} \mathrm{C}$
$\mathrm{m}_{\mathrm{s} 2}=\mathrm{m}_{\mathrm{s} 3}=0.0067306 \mathrm{~m}_{\mathrm{a}}$

COOLER

$\mathrm{m}_{\mathrm{a}} \times 1.005 \times 26+\mathrm{m}_{\mathrm{s} 1} \mathrm{~h}_{\mathrm{s} 1}=\mathrm{m}_{\mathrm{a}} \times 1.005 \times 8+\mathrm{m}_{\mathrm{s} 2} \mathrm{~h}_{\mathrm{s} 2}+\mathrm{m}_{\mathrm{w}} \mathrm{x} 4.186 \times 8+\Phi_{1}$
$\mathrm{h}_{\mathrm{s} 1}=2545 \mathrm{~kJ} / \mathrm{kg}$ (from the $\mathrm{h}-\mathrm{s}$ chart) $\quad \mathrm{h}_{\mathrm{s} 2}=\mathrm{h}_{\mathrm{g}}$ at $8{ }^{\circ} \mathrm{C}=2515.5 \mathrm{~kJ} / \mathrm{kg}$
$2613 \mathrm{~m}_{\mathrm{a}}+35.325 \mathrm{~m}_{\mathrm{a}}=8.04 \mathrm{~m}_{\mathrm{a}}+16.93 \mathrm{~m}_{\mathrm{a}}+0.24 \mathrm{~m}_{\mathrm{a}}+\Phi_{1}$
$\Phi_{1}=36.245 \mathrm{~m}_{\mathrm{a}} \mathrm{kJ}$ per kg of dry air
m_{a} is 1 kg dry air. The mass of conditioned air is more.
$\omega_{3}=0.0067306=\mathrm{m}_{\mathrm{a}} / \mathrm{m}_{\mathrm{s} 3} \quad \mathrm{~m}_{\mathrm{s} 3}=0.0067306 \mathrm{~m}_{\mathrm{a}}$
Mass of conditioned air $=1.0067306 \mathrm{~m}_{\mathrm{a}}$

$$
\mathrm{m}_{\mathrm{a}}=0.9933 \mathrm{M}
$$

$\Phi_{1}=36 \mathrm{~kJ}$ per kg of conditioned air.

HEATER

$\mathrm{m}_{\mathrm{a}} \times 1.005 \times 24+\mathrm{m}_{\mathrm{s} 3} \mathrm{~h}_{\mathrm{s} 3}+\Phi_{2}=\mathrm{m}_{\mathrm{a}} \times 1.005 \times 8+\mathrm{m}_{\mathrm{s} 2} \mathrm{~h}_{\mathrm{s} 3}$
$h_{s 3}=2540$ (from the $h-s$ chart) $\quad m_{s 3}=0.0067306 \mathrm{~m}_{\mathrm{a}}$
$\Phi_{2}=24.12 m_{a}+17.09 m_{a}-8.04 m_{a}-16.93 m_{a}$
$\Phi_{2}=16.24 \mathrm{~kJ}$ per kg of dry air or 16.16 kJ per kg of conditioned air.

SELF ASSESSMENT EXERCISE No. 3

1. Derive the expression for specific humidity $\omega=0.622\left(\mathrm{p}_{\mathrm{s}} / \mathrm{pa}_{\mathrm{a}}\right)$

Water flows at $5000 \mathrm{~kg} / \mathrm{h}$ and $40^{\circ} \mathrm{C}$ into a cooling tower and is cooled to $26{ }^{\circ} \mathrm{C}$. The unsaturated air enters the tower at $20^{\circ} \mathrm{C}$ with a relative humidity of 0.4 . It leaves as saturated air at $30^{\circ} \mathrm{C}$. The pressure is constant at 1 bar throughout. Calculate
i. the mass flow of air
per hour. (4 $636 \mathrm{~kg} / \mathrm{h}$)
ii. the mass of water evaporated per hour. ($100.5 \mathrm{~kg} / \mathrm{h}$)

INLET AIR

$\mathrm{pg}_{\mathrm{g} 1}=0.02337$ bar at $20^{\circ} \mathrm{C}$
$\phi_{1}=0.4=\mathrm{Ps} 1 / \mathrm{Pg}$
Ps1 $=0.4 \times 0.02337=0.009348$ bar
hence $\mathrm{p}_{\mathrm{a} 1}=1.0-0.009348=0.99065 \mathrm{bar}$
$\omega_{1}=0.622 \frac{0.009348}{0.99065}=0.0058693$
$\mathrm{m}_{\mathrm{s} 1}=0.0058693 \mathrm{~m}_{\mathrm{a}}$

OUTLET AIR

$\phi 2=1.0$
$\mathrm{Ps} 2=\mathrm{Pg} 2=0.0424242$ bar hence $\mathrm{pa}_{\mathrm{a} 2}=0.95758$ bar
$\omega_{2}=0.622 \frac{0.004242}{0.95758}=0.02755$
$\mathrm{m}_{\mathrm{s} 2}=0.02755 \mathrm{x} \mathrm{m}_{\mathrm{a}}$

MASS BALANCE

$\mathrm{m}_{\mathrm{w} 4}=\mathrm{m}_{\mathrm{w} 3}-\left(\mathrm{m}_{\mathrm{s} 2}-\mathrm{m}_{\mathrm{s} 1}\right)=5000-\left(0.02755 \mathrm{~m}_{\mathrm{a}}-0.0058693 \mathrm{~m}_{\mathrm{a}}\right)=5000-0.02168 \mathrm{~m}_{\mathrm{a}}$

ENERGY BALANCE

$\mathrm{h}_{\mathrm{s} 2}=\mathrm{hg}_{\mathrm{g}}=2555.7 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{\mathrm{s} 1}=2535 \mathrm{~kJ} / \mathrm{kg} \mathrm{h}$ (from h-s chart)
Balancing energy we get
$(5000 \times 4.86 \times 40)+\left(\mathrm{m}_{\mathrm{a}} \times 1.005 \times 20\right)+\left(0.0058693 \times \mathrm{m}_{\mathrm{a}} \times 2538\right)=$
$\left\{\left(5000-0.02168 \mathrm{~m}_{\mathrm{a}}\right) \times 4.186 \times 26\right\}+\left(0.02755 \times 2555.7 \mathrm{~m}_{\mathrm{a}}\right)+\left(\mathrm{m}_{\mathrm{a}} \times 1.005 \times 30\right)$
$837200+20.1 m_{a}+14.896 m_{a}=544180-2.359 m_{a}+70.4 m_{a}+30.15 m_{a}$
$293020=63.195 \mathrm{ma}_{\mathrm{a}}$
$\mathrm{m}_{\mathrm{a}}=4636 \mathrm{~kg} /$ hour
$\mathrm{m}_{\mathrm{s} 2}=127.74 \mathrm{~kg} /$ hour
$\mathrm{m}_{\mathrm{s} 1}=27.21 \mathrm{~kg} /$ hour
Evaporation rate is $100.5 \mathrm{~kg} /$ hour
2. The cooling water for a small condenser is sent to a small cooling tower. $7 \mathrm{~m} / \mathrm{s}$ of air enters the tower with a pressure, temperature and relative humidity of $1.013 \mathrm{bar}, 15{ }^{\circ} \mathrm{C}$ and 0.55 respectively. It leaves saturated at $32^{\circ} \mathrm{C}$. The water flows out of the tower at $7.5 \mathrm{~kg} / \mathrm{s}$ at $13{ }^{\circ} \mathrm{C}$. Using a mass and energy balance, determine the temperature of the water entering the tower.
(Answer $33.9^{\circ} \mathrm{C}$)

INLET AIR

$\mathrm{pg}_{\mathrm{g}}=0.01704$ bar at $150^{\circ} \mathrm{C}$
$\phi_{1}=0.55=p_{\mathrm{s} 1} / \mathrm{p}_{\mathrm{g} 1} \quad \mathrm{p}_{\mathrm{s} 1}=0.009372$ bar
hence $\mathrm{p}_{\mathrm{a} 1}=1.01325-0.009372=1.003878 \mathrm{bar}$
$\omega_{1}=0.622 \mathrm{p}_{\mathrm{s} 1} / \mathrm{p}_{\mathrm{a} 1}=0.005807$
$\mathrm{m}_{\mathrm{a}}=\mathrm{pV} / \mathrm{RT}=1.003125 \times 105 \times 7 /(287 \times 288)=8.5 \mathrm{~kg} / \mathrm{min}$ $\mathrm{m}_{\mathrm{s} 1}=0.005807 \mathrm{x} 8.5=0.04937 \mathrm{~kg} / \mathrm{s}$

OUTLET AIR

$\mathrm{Pg} 2=0.04754$ bar at $32{ }^{\circ} \mathrm{C}$

$\mathrm{p}_{\mathrm{a} 2}=0.96571 \mathrm{bar}$
$\omega_{2}=0.622 \mathrm{p}_{\mathrm{s} 2} / \mathrm{p}_{\mathrm{a} 2}=0.03062=\mathrm{m}_{\mathrm{s} 2} / \mathrm{m}_{\mathrm{a}}$
$\mathrm{m}_{\mathrm{s} 2}=0.03062 \times 8.5=0.26 \mathrm{~kg} / \mathrm{s}$
MASS BALANCE $\quad \mathrm{m}_{\mathrm{s} 1}+\mathrm{m}_{3}=\mathrm{m}_{\mathrm{s} 2}+\mathrm{m}_{4}$
$\mathrm{m}_{3}=7.5+0.26-0.04937=7.71 \mathrm{~kg} / \mathrm{s}$

ENERGY BALANCE

$m_{s 1} h_{s 1}+m_{a} h_{a 1}+m_{3} h_{w 3}=m_{s 2} h_{s 2}+m_{a} h_{a 2}+m_{4} h_{w 4}$
$\mathrm{h}_{\mathrm{s} 1}=\mathrm{h} @ 0.009372$ bar \& $15^{\circ} \mathrm{C}=2525 \mathrm{~kJ} / \mathrm{kg}$ (from h-s chart)
$\mathrm{h}_{\mathrm{s} 2}=\mathrm{h} @ 0.04759$ bar and $32{ }^{\circ} \mathrm{C}=2559.3 \mathrm{~kJ} / \mathrm{kg}$
Balancing energy we get

$$
\begin{aligned}
& (0.04937 \times 2525)+(8.5 \times 1.005 \times 15)+\left(7.71 \times 4.186 \times \theta_{3}\right) \\
& =(0.26 \times 2559)+(8.51 \times 1.005 \times 32)+(7.5 \times 4.186 \times 13)
\end{aligned}
$$

Hence $\theta_{3}=33.9^{\circ} \mathrm{C}$
3. A fan supplies $600 \mathrm{dm} 3 / \mathrm{s}$ of air with a relative humidity of 0.85 , temperature $30^{\circ} \mathrm{C}$ and pressure 1.04 bar into an air conditioner. Moisture is removed from the air by cooling and both the air and condensate leave at the same temperature. The air is then heated to $20^{\circ} \mathrm{C}$ and has a relative humidity of 0.6 . Determine the following.
i. The mass of dry air and water at entrance to the conditioner.
ii. The mass of water vapour delivered at exit.
iii. The mass of water extracted from the cooler.
iv. The temperature at exit from the cooler.
v . The heat transfer in the cooler.
INLET
$\mathrm{V}_{1}=0.6 \mathrm{~m}^{3} \quad \mathrm{~T}_{1}=303 \mathrm{~K} \quad \mathrm{p}_{1}=1.04$ bar $\phi_{1}=0.85$
$\phi_{1}=0.85=p_{s 1} / p_{g}$
Pg at $30^{\circ} \mathrm{C}=0.04242 \mathrm{bar}$
$\mathrm{p}_{\mathrm{s} 1}=0.03606 \mathrm{bar}$
$\mathrm{p}_{\mathrm{a} 1}=1.04-0.03606=1.0039$ bar
$\mathrm{m}_{\mathrm{a}}=\mathrm{pV} / \mathrm{RT}=1.0039 \times 10^{5} \times 0.6 /(287 \times 303)=0.6927 \mathrm{~kg}$
$\mathrm{m}_{\mathrm{S}}=\mathrm{pV} / \mathrm{RT}=0.03606 \times 105 \times 0.6 /(462 \times 303)=0.01546 \mathrm{~kg}$
$\omega_{1}=\mathrm{m}_{\mathrm{S}} / \mathrm{m}_{\mathrm{a}}=0.02232$
$\omega_{1}=0.622\left(\mathrm{p}_{\mathrm{s} 1} / \mathrm{p}_{\mathrm{a} 1}\right)=0.02232$ (checks out)

OUTLET

$\phi_{3}=0.6=\mathrm{p}_{\mathrm{s} 3} / \mathrm{p}_{\mathrm{g} 3}=\mathrm{p}_{\mathrm{s} 3} / 0.02337 \quad \mathrm{p}_{\mathrm{s} 3}=0.014$ bar
$\mathrm{p}_{\mathrm{a} 3}=1.04-0.014=1.026$ bar
$\omega_{3}=0.622\left(\mathrm{p}_{\mathrm{s} 3} / \mathrm{p}_{\mathrm{a} 3}\right)=0.622(0.014 / 1.026)=0.00849$
$\mathrm{m}_{\mathrm{s} 3}=0.00849 \mathrm{~m}_{\mathrm{a}}=0.00849 \times 0.6927=0.00588 \mathrm{~kg}$
Condensate $=0.01546-0.00588=0.00958 \mathrm{~kg}$

ENERGY BALANCE

$\mathrm{p}_{\mathrm{S} 2}=\mathrm{p}_{\mathrm{s} 3}=\mathrm{pg} 2=$ at $12^{\circ} \mathrm{C}=0.04 \mathrm{bar}$
$\mathrm{h}_{\mathrm{S} 1}=2555$ (from chart) $\mathrm{h}_{\mathrm{S} 2}=2523$
$\mathrm{m}_{\mathrm{a}} \mathrm{c}_{\mathrm{a}}\left(\mathrm{T}_{\mathrm{a} 1}-\mathrm{T}_{\mathrm{a} 2}\right)-\mathrm{m}_{\mathrm{w}} \mathrm{c}_{\mathrm{w}} \mathrm{T}_{\mathrm{w}}+\mathrm{m}_{\mathrm{s} 1} \mathrm{~h}_{\mathrm{s} 1}-\mathrm{m}_{\mathrm{s} 2} \mathrm{~h}_{\mathrm{s} 2}=\Phi_{1}$
$\{0.6927 \times 1.005(30-12)\}-(0.00958 \times 4.186 \times 12)+(0.01546 \times 2555)-(0.00588 \times 2523)=\Phi_{1}$
$\Phi_{1}=36.2 \mathrm{~kJ}$
a. Discuss the reasons why air mixed with steam in a condenser is not desirable.
b. Wet steam with a dryness fraction of 0.9 enters a condenser at 0.035 bar pressure at a rate of 10 $000 \mathrm{~kg} / \mathrm{h}$. The condensate leaves at $25^{\circ} \mathrm{C}$. Air also enters with the steam at a rate of $40 \mathrm{~kg} / \mathrm{h}$. The air is extracted and cooled to $20^{\circ} \mathrm{C}$. The partial pressure of the air at inlet is negligible and the process is at constant pressure. The cooling water is at $10^{\circ} \mathrm{C}$ at inlet and $21^{\circ} \mathrm{C}$ at outlet.
i. Determine the mass of vapour extracted with the air. ($50 \mathrm{~kg} / \mathrm{h}$)
ii. Calculate the flow rate of the cooling water required. ($475484 \mathrm{~kg} / \mathrm{h}$)

Air mixed with steam changes the partial pressure of the steam and lowers the saturation temperature thus reducing the temperature of the steam and reducing the cycle efficiency. Air dissolved in water is also a problem in the feed water plant and needs to be removed.

Air + vapour is saturated $\mathrm{p}_{\mathrm{s}}=\mathrm{pg}_{\mathrm{g}}$ at $20{ }_{0} \mathrm{C}$
$p_{s}=0.02337$ bar $\phi=1$
$\mathrm{p}_{\mathrm{a}}+\mathrm{p}_{\mathrm{s}}=0.035 \mathrm{p}_{\mathrm{a}}=0.0116 \mathrm{bar}$
$\omega_{3}=0.622\left(\mathrm{pa}_{\mathrm{a}} / \mathrm{pa}_{\mathrm{a}}\right)=1.25$
$\omega_{3}=1.25=\mathrm{m}_{\mathrm{s}} / \mathrm{m}_{\mathrm{a}} \mathrm{m}_{\mathrm{s}}=50 \mathrm{~kg}$

ALTERNATIVELY

Volume of vapour removed $=\mathrm{mRT} / \mathrm{p}$
Volume of air removed $=\mathrm{mRT} / \mathrm{p}=40 \times 287 \times 293 /\left(0.0116 \times 10^{5}\right)=2900 \mathrm{~m}^{3}$
Volumes are the same vg_{g} at $0.02337 \mathrm{bar}=57.84 \mathrm{~m}^{3} / \mathrm{kg}$
Mass of steam $=\mathrm{V} / \mathrm{v}_{\mathrm{g}}=2900 / 57.84=50.1 \mathrm{~kg}$
$\mathrm{M}_{\mathrm{w}}=10000-509950 \mathrm{~kg}$

ENERGY BALANCE

$m_{s 1} h_{s 1}+c_{p} T_{1} m_{a}-c_{w} T_{2} m_{w}-c_{p} T_{2} m_{a}-m_{s 3} h_{s 3}=\Phi$
$\mathrm{h}_{\mathrm{s} 1}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{fx}}$ at 0.035 bar $=112+0.9 \times 2438=2306 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{\mathrm{s} 3}=\mathrm{h}_{\mathrm{g}}$ at $20^{\circ} \mathrm{C}=2537.6 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{T}_{1}=\mathrm{T}_{\mathrm{s}}$ at $0.035 \mathrm{bar}=26.7={ }^{\circ} \mathrm{C}$
$10000 \times 2306+1.005 \times 26.7 \times 40-9950 \times 4.186 \times 25-1.005 \times 20 \times 40-50 \times 2537.6=\Phi$
$\Phi=21.894 \mathrm{~kJ} /$ hour $=\mathrm{M}$ (cooling water) $\times 4.186 \times 11$
Mass of cooling water $=475484 \mathrm{~kg} /$ hour

SELF ASSESSMENT SOLUTIONS

TUTORIAL 7

SELF ASSESSMENT EXERCISE No. 1

1. Calculate the specific entropy change when a perfect gas undergoes a reversible isothermal expansion from 500 kPa to $100 \mathrm{kPa} . \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.

T is constant so $\Delta \mathrm{s}=\mathrm{mRln}\left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)=1 \times 287 \times \ln (5 / 1)=462 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
2. Calculate the total entropy change when 2 kg of perfect gas is compressed reversibly and isothermally from $9 \mathrm{dm}^{3}$ to $1 \mathrm{dm}^{3}$. $\mathrm{R}=300 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
$\Delta s=m R \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)=1 \times 300 \times \ln (1 / 9)=470 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
3. Calculate the change in entropy when 2.5 kg of perfect gas is heated from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant volume. Take $\mathrm{c}_{\mathrm{v}}=780 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ (Answer $470 \mathrm{~J} / \mathrm{K}$)
$\Delta s=m c_{v} \ln \left(T_{2} / T_{1}\right)=2.5 \times 780 \times \ln (373 / 293)=-1318 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
4. Calculate the total entropy change when 5 kg of gas is expanded at constant pressure from $30^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C} . \mathrm{R}=300 \mathrm{~J} / \mathrm{kg} \mathrm{K} \mathrm{c} \mathrm{c}_{\mathrm{v}}=800 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ (Answer $2.45 \mathrm{~kJ} / \mathrm{K}$)
$\Delta \mathrm{s}=\mathrm{m} \mathrm{c}_{\mathrm{p}} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right) \quad \mathrm{c}_{\mathrm{p}}=\mathrm{R}+\mathrm{c}_{\mathrm{v}}=1100 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\Delta s==5 \times 1100 \times \ln (473 / 303)=2450 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
5. Derive the formula for the specific change in entropy during a polytropic process using a constant volume process from (A) to (2).

$$
\begin{aligned}
& \mathrm{s}_{2}-\mathrm{s}_{1}=\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{1}\right)-\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{2}\right) \\
& \mathrm{s}_{2}-\mathrm{s}_{1}=\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{1}\right)+\left(\mathrm{s}_{2}-\mathrm{s}_{\mathrm{A}}\right)
\end{aligned}
$$

For the constant temperature process

$$
\left(\mathrm{s}_{\mathrm{A}}-\mathrm{s}_{1}\right)=\mathrm{R} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{\mathrm{A}}\right)
$$

For the constant volume process

$$
\left(\mathrm{s}_{2}-\mathrm{s}_{\mathrm{A}}\right)=\left(\mathrm{c}_{\mathrm{v}} / \mathrm{R}\right) \ln \left(\mathrm{T}_{2} / \mathrm{T}_{\mathrm{A}}\right)
$$

Hence

$$
\Delta s=R \ln \frac{p_{1}}{p_{A}}+C_{p} \ln \frac{T_{2}}{T_{A}}+\mathrm{s}_{2}-\mathrm{s}_{1} \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{1}
$$

Then

$$
\Delta \mathrm{s}=\mathrm{s}_{2}-\mathrm{s}_{1}=\Delta \mathrm{s}=\mathrm{R} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{\mathrm{A}}}\right)+\mathrm{c}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{\mathrm{A}}}\right)
$$

Divide through by R $\quad \Delta \mathrm{s} / \mathrm{R}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{\mathrm{A}}}\right)+\frac{\mathrm{c}_{\mathrm{v}}}{\mathrm{R}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{A}}}\right)$
From the relationship between c_{p}, c_{v}, R and γ we have $c_{p} / R=\gamma /(\gamma-1)$
From the gas laws we have $\mathrm{p}_{\mathrm{A}} / \mathrm{T}_{\mathrm{A}}=\mathrm{p}_{2} / \mathrm{T}_{2} \quad \mathrm{p}_{\mathrm{A}}=\mathrm{p}_{2} \mathrm{~T}_{\mathrm{A}} / \mathrm{T}_{2}=\mathrm{p}_{2} \mathrm{~T}_{1} / \mathrm{T}_{2}$
Hence

$$
\frac{\Delta \mathrm{s}}{\mathrm{R}}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)+\frac{1}{\gamma-1} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{1+\frac{1}{\gamma-1}}=\ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}
$$

6. A perfect gas is expanded from 5 bar to 1 bar by the law $\mathrm{pV}^{1.6}=\mathrm{C}$. The initial temperature is $200^{\circ} \mathrm{C}$. Calculate the change in specific entropy.

$$
\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{~K} \quad \gamma=1.4 .
$$

$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-1 / \mathrm{n}}=473(1 / 5)^{\mathrm{l}-1 / 1.6}=258.7 \mathrm{~K}$
$\Delta \mathrm{s}=\mathrm{R} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}=287 \ln (5)\left(\frac{258.7}{473}\right)^{\frac{1.4}{0.4}}=-144 \mathrm{~J} / \mathrm{K}$
7. A perfect gas is expanded reversibly and adiabatically from 5 bar to 1 bar by the law $\mathrm{pV}^{\gamma}=\mathrm{C}$. The initial temperature is $200^{\circ} \mathrm{C}$. Calculate the change in specific entropy using the formula for a polytropic process. $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K} \quad \gamma=1.4$.
$\mathrm{T}_{2}=473(1 / 5)^{1-1 / 1.4}=298.6 \mathrm{~K}$
$\Delta \mathrm{s}=\mathrm{R} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}=287 \ln (5)\left(\frac{298.6}{473}\right)^{\frac{1.4}{0.4}}=0$

SELF ASSESSMENT EXERCISE No. 2

Take $\gamma=1.4$ and $\mathrm{R}=283 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ in all the following questions.

1. An aeroplane flies at Mach 0.8 in air at $150^{\circ} \mathrm{C}$ and 100 kPa pressure. Calculate the stagnation pressure and temperature. (Answers 324.9 K and 152.4 kPa)
$\frac{\Delta \mathrm{T}}{\mathrm{T}}=\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}=0.8^{2} \frac{1.4}{2}=0.128 \quad \Delta \mathrm{~T}=0.128 \times 288=36.86 \mathrm{~K}$
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}+1\right)^{\frac{k}{k-1}}=1.128^{3.5}=1.5243 \quad \mathrm{p}_{2}=100 \times 1.5243=152.43 \mathrm{kPa}$
2. Repeat problem 1 if the aeroplane flies at Mach 2.
$\frac{\Delta \mathrm{T}}{\mathrm{T}}=\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}=2^{2} \frac{1.4}{2}=0.8 \quad \Delta \mathrm{~T}=0.8 \times 288=230.4 \mathrm{~K}$
$\mathrm{~T}_{2}=288+230.4=518.4 \mathrm{~K}$
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}+1\right)^{\frac{k}{k-1}}=1.8^{3.5}=7.824 \quad \mathrm{p}_{2}=100 \times 7.824=782.4 \mathrm{kPa}$
3. The pressure on the leading edges of an aircraft is 4.52 kPa more than the surrounding atmosphere. The aeroplane flies at an altitude of 5000 metres. Calculate the speed of the aeroplane. (Answer $109.186 \mathrm{~m} / \mathrm{s}$)

From fluids tables, find that $\mathrm{a}=320.5 \mathrm{~m} / \mathrm{s} \quad \mathrm{p}_{1}=54.05 \mathrm{kPa} \quad \gamma=1.4$
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{58.57}{54.05}=1.0836=\left(\mathrm{M}^{2} \frac{\mathrm{k}-1}{2}+1\right)^{\frac{k}{k-1}}$
$1.0836=\left(\mathrm{M}^{2} \frac{1.4-1}{2}+1\right)^{\frac{1.4}{1.4-1}}=\left(0.2 \mathrm{M}^{2}+1\right)^{3.5}$
$1.0232=0.2 \mathrm{M}^{2}+1 \quad \mathrm{M}=0.3407=\mathrm{v} / \mathrm{a} \quad \mathrm{v}=109.2 \mathrm{~m} / \mathrm{s}$
4. An air compressor delivers air with a stagnation temperature 5 K above the ambient temperature. Determine the velocity of the air. (Answer $100.2 \mathrm{~m} / \mathrm{s}$)
$\frac{\Delta \mathrm{T}}{\mathrm{T}_{1}}=\frac{\mathrm{v}_{1}^{2}(\mathrm{k}-1)}{2 \gamma \mathrm{RT}_{1}} \quad \Delta \mathrm{~T}=\frac{\mathrm{v}_{1}^{2}(1.4-1)}{2 \times 1.4 \times 287}=5 \mathrm{~K} \quad \mathrm{v}_{1}=100.2 \mathrm{~m} / \mathrm{s}$

SELF ASSESSMENT EXERCISE No. 3

1. A Venturi Meter must pass $300 \mathrm{~g} / \mathrm{s}$ of air. The inlet pressure is 2 bar and the inlet temperature is $120^{\circ} \mathrm{C}$. Ignoring the inlet velocity, determine the throat area. Take C_{d} as 0.97 .
Take $\gamma=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ (assume choked flow)
$\mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{A}_{2} \sqrt{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}} \quad \quad \mathrm{r}_{\mathrm{c}}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=\left(\frac{2}{2.4}\right)^{3.5}=0.528$
$\rho_{1}=\mathrm{p}_{1} / \mathrm{RT}_{1}=2 \times 10^{5} /(287 \times 393)=1.773 \mathrm{~kg} / \mathrm{m}^{3}$
$0.3=0.97 \mathrm{~A}_{2} \sqrt{7 \times 2 \times 10^{5} \times 1.773\left\{(0.528)^{1.428}-(0.528)^{1.714}\right\}}=0.97 \mathrm{~A}_{2} \sqrt{166307}$
$\mathrm{A}_{2}=758 \times 10^{-6} \mathrm{~m}^{2}$ and the diameter $=31.07 \mathrm{~mm}$
2. Repeat problem 1 given that the inlet is 60 mm diameter and the inlet velocity must not be neglected.
$\begin{array}{ll}\mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{A}_{2} \sqrt{\frac{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}}{1-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{2 / \gamma}}} & 0.3=\mathrm{C}_{\mathrm{d}} \mathrm{A}_{2} \sqrt{\frac{166307}{1-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}(0.4)}} \\ 1-\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right)^{2} \times 0.4=1738882 \mathrm{~A}_{2}{ }^{2} & \mathrm{~A}_{1}{ }^{2}=\left(\pi \times 0.06^{2} / 4\right)^{2}=7.99 \times 10^{-6} \mathrm{~m}^{2} \\ 1-50062 \mathrm{~A}_{2}{ }^{2}=1738882 \mathrm{~A}_{2}{ }^{2} & \mathrm{~A}_{2}{ }^{2}=559 \times 10^{-9} \quad \mathrm{~A}_{2}=747.6 \times 10^{-6} \mathrm{~m}^{2}\end{array}$
The diameter is 30.8 mm . Neglecting the inlet velocity made very little difference.
3. A nozzle must pass $0.5 \mathrm{~kg} / \mathrm{s}$ of steam with inlet conditions of 10 bar and $400^{\circ} \mathrm{C}$. Calculate the throat diameter that causes choking at this condition. The density of the steam at inlet is 3.263 $\mathrm{kg} / \mathrm{m}^{3}$. Take γ for steam as 1.3 and C_{d} as 0.98 .

$$
\begin{aligned}
& \mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{~A}_{2} \sqrt{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}} \quad \mathrm{r}_{\mathrm{c}}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=\left(\frac{2}{2.3}\right)^{4.33}=0.5457 \\
& 0.5=0.98 \mathrm{~A}_{2} \sqrt{8.667 \times 3.2626 \times 10 \times 10^{5}\left\{(0.5457)^{1.538}-(0.5457)^{1.538}\right\}}=0.98 \mathrm{~A}_{2} \sqrt{1.4526 \times 10^{6}}
\end{aligned}
$$

$\mathrm{A}_{2}=423 \times 10^{-6} \mathrm{~m}^{2}$ and the diameter $=23.2 \mathrm{~mm}$
4. A Venturi Meter has a throat area of $500 \mathrm{~mm}^{2}$. Steam flows through it, and the inlet pressure is 7 bar and the throat pressure is 5 bar. The inlet temperature is $400^{\circ} \mathrm{C}$. Calculate the flow rate. The density of the steam at inlet is $2.274 \mathrm{~kg} / \mathrm{m}^{3}$. Take $\gamma=1.3 . \mathrm{R}=462 \mathrm{~J} / \mathrm{kg} \mathrm{K} . \mathrm{C}_{\mathrm{d}}=0.97$.
From the steam tables $\mathrm{v}_{1}=0.4397 \mathrm{~m}^{3} / \mathrm{kg}$ so $\rho_{1}=1 / 0.4397=2.274 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{~A}_{2} \sqrt{\left[\frac{2 \gamma}{\gamma-1}\right] \mathrm{p}_{1} \rho_{1}\left\{\left(\mathrm{r}_{\mathrm{c}}\right)^{\frac{2}{\gamma}}-\left(\mathrm{r}_{\mathrm{c}}\right)^{1+\frac{1}{\gamma}}\right\}} \\
& \mathrm{m}=0.97 \times 500 \times 10^{-6} \sqrt{\left[\frac{2 \times 1.3}{1.3-1}\right] 7 \times 10^{5} \times 2.274\left\{(5 / 7)^{1.538}-(5 / 7)^{1.764}\right\}} \\
& \mathrm{m}=485 \times 10^{-6} \times 783 \quad \mathrm{~m}=0.379 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

5. A pitot tube is pointed into an air stream which has an ambient pressure of 100 kPa and temperature of $20^{\circ} \mathrm{C}$. The pressure rise measured is 23 kPa . Calculate the air velocity. Take $\gamma=$ 1.4 and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
$\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{123}{100}=1.23=\left(\mathrm{M}^{2} \frac{\gamma-1}{2}+1\right)^{\frac{\gamma}{\gamma-1}} \quad 1.23=\left(0.2 \mathrm{M}^{2}+1\right)^{3.5}$
$1.0609=0.2 \mathrm{M}^{2}+1 \quad 0.0609=0.2 \mathrm{M}^{2} \quad \mathrm{M} 0.5519$
$\mathrm{a}=\gamma \mathrm{RT}^{1 / 2}=(1.4 \times 287 \times 293)^{1 / 2}=343.1 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=0.5519 \times 343.1=189.4 \mathrm{~m} / \mathrm{s}$
6. A fast moving stream of gas has a temperature of $25^{\circ} \mathrm{C}$. A thermometer is placed into it in front of a small barrier to record the stagnation temperature. The stagnation temperature is $28{ }^{\circ} \mathrm{C}$. Calculate the velocity of the gas. Take $\gamma=1.5$ and $\mathrm{R}=300 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. (Answer $73.5 \mathrm{~m} / \mathrm{s}$)
$\Delta \mathrm{T}=3 \mathrm{~K} \quad \Delta \mathrm{~T} / \mathrm{T}_{1}=\mathrm{v}^{2} / \gamma \mathrm{RT} \quad \mathrm{C}_{\mathrm{p}}=\gamma \mathrm{R} /(\gamma-1)$
$\Delta \mathrm{T}=3=\mathrm{v}^{2} / 2 \mathrm{c}_{\mathrm{p}}=\mathrm{v}^{2}(\gamma-1) /(2 \gamma \mathrm{R})=\mathrm{v}^{2}(1.5-1) /(2 \times 1.5 \times 300)$
$\mathrm{v}^{2}=5400 \quad \mathrm{v}=73.48 \mathrm{~m} / \mathrm{s}$

SELF ASSESSMENT SOLUTIONS

TUTORIAL 7

SELF ASSESSMENT EXERCISE No. 4

1. Similar to Q6 1990

A nozzle is used with a rocket propulsion system. The gas is expanded from complete stagnation conditions inside the combustion chamber of 20 bar and 3000 K . expansion is isentropic to 1 bar at exit. The molar mass of the gas is $33 \mathrm{~kg} / \mathrm{kmol}$. The adiabatic index is 1.2 . The throat area is $0.1 \mathrm{~m}^{2}$. Calculate the thrust and area at exit. ($0.362 \mathrm{~m}^{2}$ and 281.5 kN)
Recalculate the thrust for an isentropic efficiency of 95%. (274.3 kN)
Note that expansion may not be complete at the exit area.

$$
\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{\mathrm{o}}=\{2 /(\gamma+1)\} \gamma /(\gamma-1)
$$

STAGNATION CONDITIONS

$\mathrm{p}_{\mathrm{o}}=20$ bar $\quad \mathrm{T}_{\mathrm{o}}=3000 \mathrm{~K}$
$\gamma=1.4 \quad \mathrm{p}_{2}=1$ bar $\mathrm{R}=\mathrm{R}_{0} / \mathrm{N}=8314.4 / 33=251.94 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\mathrm{c}_{\mathrm{p}}=\gamma \mathrm{R} /(\gamma-1)=1511 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
$\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{t}}}=1+\frac{\gamma-1}{2} \mathrm{M}_{\mathrm{t}}^{2} \quad \mathrm{M}_{\mathrm{t}}=1 \quad \mathrm{~T}_{\mathrm{t}}=\frac{3000}{1.1}=2727 \mathrm{~K}$

ENERGY BALANCE
$c_{p} T_{0}=c_{p} T_{t}+v_{t}^{2} / 2 \quad 2 c_{p}(3000-2727)=v_{t}^{2} \quad v_{t}=908.6 \mathrm{~m} / \mathrm{s}$
or $\mathrm{v}_{\mathrm{t}}=\sqrt{ }\left(\gamma \mathrm{RT}_{\mathrm{t}}\right)=908.6 \mathrm{~m} / \mathrm{s}$
$\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}=\left(1+\frac{\gamma-1}{2} \mathrm{M}_{\mathrm{t}}^{2}\right)^{\frac{\gamma}{\gamma-1}}=0.564 \quad \mathrm{p}_{\mathrm{t}}=11.289$ bar \quad or $\quad \frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}=\left(\frac{2}{\gamma-1}\right)^{\frac{\gamma}{\gamma-1}}=0.564$
$\rho=\mathrm{p} / \mathrm{RT}=11.289 \times 10^{5} /(251.94 \times 2727)=1.643 \mathrm{~kg} / \mathrm{m}^{3}$
Volume $=$ Area x velocity $=0.1 \times 908.6=90.86 \mathrm{~m}^{3} / \mathrm{s}$
Mass $=$ volume x density $=149.3 \mathrm{~kg} / \mathrm{s}$
EXIT

$$
\begin{array}{ll}
\frac{\mathrm{p}_{0}}{\mathrm{p}_{2}}=\left(1+\frac{\gamma-1}{2} \mathrm{M}_{2}^{2}\right)^{\frac{\gamma}{\gamma-1}} & \frac{20}{1}=\left(1+0.1 \mathrm{M}_{2}^{2}\right)^{6} \\
\frac{\mathrm{~T}_{\mathrm{o}}}{\mathrm{~T}_{2}}=\frac{3000}{\mathrm{~T}_{2}}=1+\frac{\gamma-1}{2} \mathrm{M}_{2}^{2} & \mathrm{~T}_{2}=2.5447 \text { (supesonic) } \\
\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{o}}=\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{2}+\mathrm{v}_{2}^{2} / 2 & \mathrm{~K} \\
2 \mathrm{c}_{\mathrm{p}}(3000-1821)=\mathrm{v}_{2}^{2} & \mathrm{v}_{2}=1888 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Volume $=\mathrm{mRT}_{2} / \mathrm{p}_{2}=149.3 \times 251.94 \times 1821 / 1 \times 10^{5}=683.9 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{A}_{2}=$ Volume/velocity $=683.9 / 1888=0.362 \mathrm{~m}^{2}$

THRUST

Assume no pressure force
Thrust $=\Delta(\mathrm{mv}) /$ second $=149.3(1880-0)=281.5 \mathrm{kN}$
$\eta_{\text {is }}=\mathrm{v}_{2}{ }^{2} /\left(\mathrm{v}_{2}{ }^{\prime}\right)^{2} \quad \mathrm{v}_{2}{ }^{2}=0.95 \times 1888^{2} \quad \mathrm{v}_{2}=1840 \mathrm{~m} / \mathrm{s}$
Thrust $=\Delta(\mathrm{mv}) /$ second $=149.3(1840-0)=274 \mathrm{kN}$
2. Similar to Q3 1988

A perfect gas flows through a convergent-divergent nozzle at $1 \mathrm{~kg} / \mathrm{s}$. At inlet the gas pressure is 7 bar, temperature 900 K and velocity $178 \mathrm{~m} / \mathrm{s}$. At exit the velocity is $820 \mathrm{~m} / \mathrm{s}$. The overall isentropic efficiency is 85%. The flow may be assumed to be adiabatic with irreversibility's only in the divergent section.
$\mathrm{c}_{\mathrm{p}}=1.13 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
Calculate the cross sectional areas at the inlet, throat and exit.

Calculate the net force acting on the nozzle if it is stationary. The surrounding pressure is 1 bar.
You may assume $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{\mathrm{o}}=\{2 /(\gamma+1)\} \gamma /(\gamma-1)$

STAGNATION CONDITIONS

$c_{p} T_{o}=c_{p} T_{o}+v_{1}{ }^{2} / 2 \quad T_{o}=914 k$
$p_{o}=p_{1}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=7.44$ bar
$\mathrm{p}_{\mathrm{t}}=\mathrm{p}_{0}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}=4$ bar

$\mathrm{T}_{\mathrm{t}}=\mathrm{T}_{0}\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{\mathrm{o}}}\right)^{\frac{\gamma}{\gamma-1}}=780 \mathrm{~K}$
$\mathrm{v}_{\mathrm{t}}=\sqrt{\gamma \mathrm{RT}_{\mathrm{t}}}=548 \mathrm{~m} / \mathrm{s}$
$\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{RT}_{1}}=2.7 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\mathrm{t}}=\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{RT}_{\mathrm{t}}}=1.785 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{c}_{\mathrm{p}} \mathrm{T}_{\mathrm{o}}=\mathrm{c}_{\mathrm{p}} \mathrm{T}_{2}+\mathrm{v}_{2}{ }^{2} / 2 \quad 1130 \times 914=1130 \mathrm{~T}_{2}+820^{2} / 2 \quad \mathrm{~T}_{2}=616.5 \mathrm{~K}$
Had the flow been isentropic $\mathrm{T}_{2}=\mathrm{T}_{2}$,
With friction $\eta_{\text {is }}=0.85=\frac{T_{1}-T_{2}{ }^{\prime}}{T_{1}-T_{2}}=\frac{900-\mathrm{T}_{2}{ }^{\prime}}{900-616.5} \quad \mathrm{~T}_{2}{ }^{`}=659 \mathrm{~K}$
This seems irrelevant since $\mathrm{T}_{2}=$ is the actual outlet temperature.
$\mathrm{P}_{2}=\mathrm{p}_{1}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}=7\left(\frac{616.5}{900}\right)^{\frac{\gamma}{\gamma-1}}=1.576 \mathrm{bar}$
$\rho_{2}=\frac{\mathrm{P}_{2}}{\mathrm{RT}_{2}}=0.8907 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{A}_{2}=\operatorname{mass} /\left(\rho_{2} \mathrm{~V}_{2}\right)=1 /(0.8907 \times 820)=0.001369 \mathrm{~m}^{2}$

FORCES

Pressure force $=p_{1} A_{1}-p_{2} A_{2}-p_{a}\left(A_{1}-A_{2}\right) \quad p_{a}$ is atmospheric
Pressure force $=7 \times 10^{5} \times 0.00208-1.57 \times 10^{5} \times 0.001369-1 \times 10^{5} \times(0.00208-0.001369)$
Pressure force $=1169 \mathrm{~N}$

Momentum force $=\mathrm{m} \Delta \mathrm{v}=1(820-178)=642 \mathrm{~N}$ and this acts in opposite direction
Resultant force $=1169-642=527 \mathrm{~N}$

3. Similar to Q4 1989

Dry saturated steam flows at $1 \mathrm{~kg} / \mathrm{s}$ with a pressure of 14 bar. It is expanded in a convergent-divergent nozzle to 0.14 bar. Due to irreversibility's in the divergent section only, the isentropic efficiency 96%. The critical pressure ratio may be assumed to be 0.571 . Calculate:
(i) The dryness fraction, specific volume and specific enthalpy at the throat.
($0.958,0.23 \mathrm{~m}^{3} / \mathrm{kg}$ and $2683 \mathrm{~kJ} / \mathrm{kg}$)
(ii) The velocity and cross sectional area at the throat and exit.
($462.6 \mathrm{~m} / \mathrm{s}, 497 \mathrm{~mm}^{2}, 1163 \mathrm{~m} / \mathrm{s}$ and $73.2 \mathrm{~cm}^{2}$.)
(iii) The overall isentropic efficiency.(96.6\%)
$\mathrm{p}_{1}=14$ bar dry saturated steam.
$\begin{array}{ll}\mathrm{p}_{2}=0.14 \mathrm{bar} & \eta_{\text {is }}=0.96 \\ \mathrm{p}_{\mathrm{t}} / \mathrm{p}_{1}=0.571 & \mathrm{p}_{\mathrm{t}}=8 \mathrm{bar}\end{array}$
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}$ at $14 \mathrm{bar}=2790 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{g}}$ at $14 \mathrm{bar}=0.1408 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{g}}$ at $14 \mathrm{bar}=6.469 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{t}}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}_{\mathrm{t}} \mathrm{s}_{\mathrm{fg}} \quad 6.469=2.046+\mathrm{x}_{\mathrm{t}} 4.617$

$\mathrm{x}_{\mathrm{t}}=0.958$
At the throat assume the moisture has negligible volume and that steam takes up all the volume. v_{g} at $8 \mathrm{bar}=0.2403 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{v}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t}} \mathrm{v}_{\mathrm{g}}=0.958 \times 0.2403=0.23 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{h}_{\mathrm{t}}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{\mathrm{t}} \mathrm{h}_{\mathrm{fg}}$ at 8 bar $\mathrm{h}_{\mathrm{t}}=721+0.958 \times 2048=2683 \mathrm{~kJ} / \mathrm{kg}$
ENERGY EQUATION
$\mathrm{h}_{1}+\mathrm{c}_{1}{ }^{2} / 2=\mathrm{h}_{\mathrm{t}}+\mathrm{c}_{\mathrm{t}}^{2} / 2$
$2790 \times 10^{3}+0=2683 \times 10^{3}+c_{t}^{2} / 2 \quad c_{t}=462.6 \mathrm{~m} / \mathrm{s}$
mass $=\rho \mathrm{Ac}=\mathrm{Ac} / \mathrm{v}=1 \mathrm{~kg} / \mathrm{s} \quad \mathrm{A}_{\mathrm{t}}=\mathrm{v}_{\mathrm{t}} / \mathrm{c}_{\mathrm{t}}=0.23 / 462.6=497 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{h}_{2}{ }^{\prime}=2087$ (from the $\mathrm{h}-\mathrm{s}$ chart) $\quad \eta_{\text {is }}=0.96=\frac{2683-\mathrm{h}_{2}}{2683-2087}$
$\mathrm{h}_{2}=2114 \mathrm{~kJ} / \mathrm{kg}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{2} \mathrm{~h}_{\mathrm{fg}}$ at 0.14 bar
$2114=220+x_{2} 2376$

$$
x_{2}=0.797
$$

ENERGY EQUATION

$\mathrm{h}_{\mathrm{t}}+\mathrm{c}_{\mathrm{t}}^{2} / 2=\mathrm{h}_{2}+\mathrm{c}_{2}^{2} / 2$
$2683 \times 10^{3}+463.6^{2} / 2=2114 \times 10^{3}+\mathrm{c}_{2}^{2} / 2 \quad \mathrm{c}_{2}=1163 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{2}=\mathrm{x}_{2} \mathrm{v}_{\mathrm{g}}=$ at $0.14 \mathrm{bar}=0.797 \times 10.69=8.52 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{A}_{2}=\mathrm{v}_{2} / \mathrm{c}_{2}=8.52 / 1163=0.00732 \mathrm{~m}^{2}$
$\eta($ overall $)=\frac{\mathrm{h}_{1}=\mathrm{h}_{2}}{\mathrm{~h}_{1}-\mathrm{h}_{2}{ }^{\prime}}=\frac{2790-2114}{2790-2090}=0.9657$
4. Similar to Q2 1989

A jet engine is tested on a test bed. At inlet to the compressor the air is at 1 bar and 293 K and has negligible velocity. The air is compressed adiabatically to 4 bar with an isentropic efficiency of 85%. The compressed air is heated in a combustion chamber to 1175 K . It is then expanded adiabatically in a turbine with an isentropic efficiency of 87%. The turbine drives the compressor. The gas leaving the turbine is expanded further reversibly and adiabatically through a convergent nozzle. The flow is choked at exit. the exit area is 0.1 m 2 .
Determine the pressures at the outlets of the turbine and nozzle. (2.38 bar and 1.129 bar) the mass flow rate. ($27.2 \mathrm{~kg} / \mathrm{s}$) the thrust produced. $(17 \mathrm{kN})$
It may be assumed that

$$
\left.\mathrm{T}_{\mathrm{t}} / \mathrm{T}_{\mathrm{O}}=2 /(\gamma+1)\right\} \quad \mathrm{a}=(\gamma \mathrm{RT})^{1 / 2}
$$

$\mathrm{T}_{2^{\prime}}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\gamma-1}{\gamma_{⿻_{\infty}}}}=293(4)^{\frac{1.4-1}{1.4 \times 0.84}}=435.4 \mathrm{~K}$
$\eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{2^{\prime}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{435.4-293}{\mathrm{~T}_{2}-293} \quad \mathrm{~T}_{2}=460.5 \mathrm{~K}$
$\mathrm{P}(\mathrm{in})=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times 1.005$ (167.5)
$\mathrm{P}($ out $)=\mathrm{P}($ in $)=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)$
$\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)=167.5$ and $\mathrm{T}_{4}=1175-167.5=1007.5 \mathrm{~K}$

$\eta_{\text {IS }}=0.85=\frac{\mathrm{T}_{3}-\mathrm{T}_{4}}{\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}}=\frac{1175-1007.5}{1175-\mathrm{T}_{4^{\prime}}} \quad \mathrm{T}_{4^{\prime}}=982.5 \mathrm{~K}$
$\mathrm{T}_{4^{\prime}}=1175(\mathrm{r})^{\frac{\gamma-1}{\gamma}}=1175(\mathrm{r})^{\frac{1.4-1}{1.4 \times 0.84}} \quad \mathrm{r}=0.5346=\frac{\mathrm{p}_{4^{\prime}}}{\mathrm{p}_{3}}=\frac{\mathrm{p}_{4{ }^{\prime}}}{4} \quad \mathrm{p}_{4^{\prime}}=\mathrm{p}_{4}=2.138 \mathrm{bar}$
$\frac{\mathrm{T}_{5}}{\mathrm{~T}_{4}}=\frac{2}{\gamma+1}=0.833 \quad \mathrm{~T}_{5}=839.6 \mathrm{~K}$
$\frac{839.6}{1007.5}=0.833=\left(\frac{\mathrm{p}_{5}}{4}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\mathrm{p}_{5}}{4}\right)^{0.286} \mathrm{p}_{5}=1.13 \mathrm{bar}$
When the nozzle is choked, $v=\sqrt{ }(\gamma \rho \mathrm{T})=\sqrt{ }(1.4 \times 287 \times 839.6)=580.8 \mathrm{~m} / \mathrm{s}$
Volume flow rate $=\mathrm{V}=\mathrm{Av}=0.1 \times 580.8=58.08 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{m}=\mathrm{pV} / \mathrm{RT}=1.13 \times 10^{5} \times 55.08 /(287 \times 839.6)=27.23 \mathrm{~kg} / \mathrm{s}$
$\mathrm{F}=\mathrm{A} \Delta \mathrm{p}+\mathrm{m} \Delta \mathrm{v}=0.1 \times 0.13 \times 10^{5}+27.23 \times 580.8=17 \mathrm{kN}$
5. Similar to Q4 1986

Dry saturated steam expands through a convergent-divergent nozzle. The inlet and outlet pressures are 7 bar and 1 bar respectively at a rate of $2 \mathrm{~kg} / \mathrm{s}$. The overall isentropic efficiency is 90% with all the losses occurring in the divergent section. It may be assumed that $\gamma=1.135$ and

$$
\mathrm{pt}_{\mathrm{t}} / \mathrm{p}_{\mathrm{o}}=\{2 /(\gamma+1)\} \gamma /(\gamma-1)
$$

Calculate the areas at the throat and exit. ($19.6 \mathrm{~cm}^{2}$ and $38.8 \mathrm{~cm}^{2}$).
The nozzle is horizontal and the entry is connected directly to a large vessel containing steam at 7 bar. The vessel is connected to a vertical flexible tube and is free to move in all directions. Calculate the force required to hold the receiver static if the ambient pressure is 1.013 bar.

Critical ratio $\mathrm{r}_{\mathrm{c}}=\left(\frac{2}{\gamma-1}\right)^{\frac{\gamma}{\gamma-1}}=0.5774$
$p_{t}=7 \times 0.5774=4$ bar
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}=2764 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{s}_{1}=\mathrm{s}_{\mathrm{g}}=6.709 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{s}_{1}=\mathrm{s}_{\mathrm{t}}=\mathrm{s}_{\mathrm{f}}+\mathrm{x}_{\mathrm{t}} \mathrm{s}_{\mathrm{fg}} \quad 6.709=2.046+\mathrm{x}_{\mathrm{t}} 5.201$
$\mathrm{x}_{\mathrm{t}}=0.963$

Neglecting the inlet velocity
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{t}}+\mathrm{c}_{\mathrm{t}}^{2} / 2 \quad 2764 \times 10^{3}=2661 \times 10^{3}+\mathrm{c}_{\mathrm{t}}^{2} / 2$ $c_{t}=453.8 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{t}}=$ specific volume $=\mathrm{x}_{\mathrm{t}} \mathrm{v}_{\mathrm{g}}=0.963 \times 0.4623=0.445 \mathrm{~m}^{3} / \mathrm{kg}$
mass $=\rho \mathrm{Ac}=\mathrm{Ac} / \mathrm{v}=2 \mathrm{~kg} / \mathrm{s} \quad \mathrm{A}_{\mathrm{t}}=\mathrm{m} \mathrm{v}_{\mathrm{t}} / \mathrm{c}_{\mathrm{t}}=2 \times 0.445 / 453.8=0.00196 \mathrm{~m}^{2}$
For isentropic flow $\mathrm{s}_{1}=\mathrm{s}_{\mathrm{t}}=\mathrm{s}_{2}{ }^{\text {' }}$
Assuming $\mathrm{p}_{2}=1.013 \mathrm{bar}$
$6.709=1.307+\mathrm{x}_{2}{ }^{\prime} 6.048 \quad \mathrm{x}_{2}{ }^{\prime}=0.893$
$\mathrm{h}_{2}{ }^{`}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{2} \mathrm{~h}_{\mathrm{fg}}=419.1+0.893 \times 2256.7=2435 \mathrm{~kJ} / \mathrm{kg}$
$\eta($ overall $)=0.9=\frac{\mathrm{h}_{1}=\mathrm{h}_{2}}{\mathrm{~h}_{1}-\mathrm{h}_{2}{ }^{\prime}}=\frac{2764-\mathrm{h}_{2}}{2764-2435} \quad \mathrm{~h}_{2}=2467 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{h}_{2}+\mathrm{c}_{2}{ }^{2} / 2$
$2764 \times 10^{3}=2467 \times 10^{3}+\mathrm{c}_{2}{ }^{2} / 2 \quad \mathrm{c}_{2}=770 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{2}=\mathrm{x}_{2} \mathrm{v}_{\mathrm{g}}=0.893 \times 1.673=1.494 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{A}_{2}=\mathrm{mv}_{2} / \mathrm{c}_{2}=2 \times 1.494 / 770=0.00388 \mathrm{~m}^{2}$
$\mathrm{F}=\mathrm{A}_{2}\left(\mathrm{p}_{2}-\mathrm{Patm}\right)+\mathrm{m} \Delta \mathrm{v}$
$F=0.00388(7-1) \times 10^{5}+2 \times(770-0)=3.868 \mathrm{kN}$

If atmospheric pressure is 0.95 bar $\mathrm{F}=0.00388(7-0.95) \times 10^{5}+2 \times(770-0)=3.887 \mathrm{kN}$

SELF ASSESSMENT SOLUTIONS

TUTORIAL 8

SELF ASSESSMENT EXERCISE No. 1

1. A boiler burns fuel oil with the following analysis by mass :

$$
80 \% \mathrm{C} \quad 18 \% \mathrm{H}_{2} \quad 2 \% \mathrm{~S}
$$

30% excess air is supplied to the process. Calculate the stoichiometric ratio by mass and the \% Carbon Dioxide present in the dry products.
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$\begin{array}{lll}12 & 32 & 48\end{array}$
$\begin{array}{lll}0.8 & 2.133 & 2.933\end{array}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$4 \quad 32 \quad 36$
$\begin{array}{lll}0.18 & 1.44 & 1.62\end{array}$
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$32 \quad 32 \quad 64$
$0.02 \quad 0.02 \quad 0.04$
Total $\mathrm{O}_{2}=3.593 \mathrm{~kg} \quad$ Air needed $=3.593 / 23 \%=15.62 \mathrm{~kg}$
30% Excess air so air supplied $=1.3 \times 15.62=20.308 \mathrm{~kg}$
Contents

$\mathrm{N}_{2}=0.77 \mathrm{x} 20.308=$	15.637 kg or 79%
$\mathrm{SO}_{2}=$	0.04 kg or 0.2%
$\mathrm{CO}_{2}=$	2.933 kg or 15%
$\mathrm{O}_{2}=$	1.078 kg or 5.8%
Total mass of products	19.69 kg

2. A boiler burns coal with the following analysis by mass :
75% C $\quad 15 \% \mathrm{H}_{2} \quad 7 \% \mathrm{~S}$ remainder ash
Calculate the \% Carbon Dioxide present in the dry products if 20% excess air is supplied.
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$12 \quad 3248$
$0.75 \quad 2 \quad 2.75$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$4 \quad 32 \quad 36$
$\begin{array}{lll}0.15 & 1.2 & 1.35\end{array}$
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$32 \quad 32 \quad 64$
$0.07 \quad 0.07 \quad 0.14$
Total $\mathrm{O}_{2}=3.27 \mathrm{~kg} \quad$ Air needed $=3.27 / 23 \%=14.217 \mathrm{~kg}$
20% Excess air so air supplied $=1.2 \times 14.217=17.06 \mathrm{~kg}$
Contents
$\mathrm{N}_{2}=0.77 \mathrm{x} 17.06=\quad 13.137 \mathrm{~kg}$ or 78.7%
$\mathrm{SO}_{2}=$
0.14 kg or 0.8%
$\mathrm{CO}_{2}=$
2.75 kg or 16.5%
$\mathrm{O}_{2}=$
0.654 kg or 4%

Total mass of products
16.681 kg
3. Calculate the \% of each dry product when coal is burned stoichiometrically in air. The analysis of the coal is: $80 \% \mathrm{C} \quad 10 \% \mathrm{H}_{2} \quad 5 \% \mathrm{~S}$ and 5% ash.
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$12 \quad 3248$
$0.8 \quad 2.133 \quad 2.933$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$4 \quad 32 \quad 36$
$\begin{array}{lll}0.1 & 0.8 & 0.9\end{array}$
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$32 \quad 32 \quad 64$
$0.050 .05 \quad 0.1$
Total $\mathrm{O}_{2}=2.983 \mathrm{~kg}$
Air needed $=2.983 / 23 \%=12.97 \mathrm{~kg}$
Contents
$\mathrm{N}_{2}=0.77 \mathrm{x} 12.97=\quad 9.986 \mathrm{~kg}$ or 76.7%
$\mathrm{SO}_{2}=$
0.1 kg or 0.8%
$\mathrm{CO}_{2}=$
2.933 kg or 22.5%
$\mathrm{O}_{2}=$
0
Total mass of products $\quad 13.02 \mathrm{~kg}$

SELF ASSESSMENT EXERCISE No. 2

1. Find the air fuel ratio for stoichiometric combustion of Ethene by volume. (26.19/1)
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~m}^{3} \quad 3 \mathrm{~m}^{3} \quad 2 \mathrm{~m}^{3} \quad 2 \mathrm{~m}^{3}$
Stoichiometric ratio $=3 / 21 \%=14.28 / 1$
2. Find the air fuel ratio for stoichiometric combustion of Butane by volume.(30.95/1). Calculate the $\%$ carbon dioxide present in the dry flue gas if 30% excess air is used. (10.6\%)
$\mathrm{C}_{4} \mathrm{H}_{10}+6 \underline{1} / 2 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~m}^{3} \quad 61 / 2 \mathrm{~m}^{3} \quad 4 \mathrm{~m}^{3} \quad 5 \mathrm{~m}^{3}$
Stoichiometric ratio $=6.5 / 21 \%=30.95 / 1$
30% excess air so air supplied $=30.95 \times 1.3=40.238$
Contents
$\mathrm{N}_{2}=0.79 \times 40.238=31.79 \mathrm{~m}^{3}$
$\mathrm{CO}_{2}=\quad 4 \mathrm{~m}^{3}$
$\mathrm{O}_{2}=0.3 \times 6.5=\quad 1.95 \mathrm{~m}^{3}$
Total $\quad 37.74 \mathrm{~m}^{3}$
$\% \mathrm{CO}_{2}=4 / 37.74=10.6 \%$
3. Find the air fuel ratio for stoichiometric combustion of Propane by volume. Calculate the \% oxygen present in the dry flue gas if 20% excess air is used.
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~m}^{3} \quad 5 \mathrm{~m}^{3} \quad 3 \mathrm{~m}^{3} \quad 4 \mathrm{~m}^{3}$
Stoichiometric ratio $=5 / 21 \%=23.8 / 1$
20% Excess Air Air supplied $=1.2 \times 23.8=28.571 \mathrm{~m}^{3}$
Contents
$\mathrm{N}_{2}=0.79 \times 28.571=$ $22.57 \mathrm{~m}^{3}$
$\mathrm{CO}_{2}=$
$3 \mathrm{~m}^{3}$
$\mathrm{O}_{2}=0.2 \times 5=\quad 1 \mathrm{~m}^{3}$
Total $\quad 26.57 \mathrm{~m}^{3}$
$\% \mathrm{O}_{2}=1 / 26.57=3.76 \%$
4. A gaseous fuel contains by volume :
$5 \% \mathrm{CO}_{2}, 40 \% \mathrm{H}_{2}, 40 \% \mathrm{CH} 4,15 \% \mathrm{~N}_{2}$
Determine the stoichiometric air and the \% content of each dry product.
$0.4 \mathrm{~m}^{3} \mathrm{H}_{2}$ needs $0,2 \mathrm{~m}^{3} \mathrm{O}_{2}$ and makes $.05 \mathrm{~m}^{3} \mathrm{CO}_{2}$
$0.4 \mathrm{~m}^{3} \mathrm{CH}_{4}$ needs $0,8 \mathrm{~m}^{3} \mathrm{O}_{2}$ and makes $.4 \mathrm{~m}^{3} \mathrm{CO}_{2}$
Total O_{2} needed is $1 \mathrm{~m}^{3}$
Stoichiometric ratio $=1 / 0.21=4.762 \mathrm{~m}^{3}$
N_{2} in air is $.79 \times 4.7623 .762$
N_{2} in gas is $0.25 \mathrm{~m}^{3}$
Total $\mathrm{N}_{2}=3.912 \mathrm{~m}^{3}$
Total dry gas $=0.05+0.4+3.912=4.362 \mathrm{~m}^{3}$
$\% \mathrm{~N}_{2}=3.912 / 4.362 \times 100=89.7 \%$
$\% \mathrm{CO}_{2}=0.45 / 4.362 \times 100=10.3 \%$

SELF ASSESSMENT EXERCISE No. 3

1. $\mathrm{C}_{2} \mathrm{H}_{6}$ is burned in a boiler and the dry products are found to contain $8 \% \mathrm{CO}_{2}$ by volume.

Determine the excess air supplied. (59\%)
$\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Let the excess air be x Stoichiometric Ratio
$\mathrm{O}_{2} \rightarrow 3.5 \mathrm{~m}^{3}$
Air $\rightarrow 3.5 / 21 \%=16.67 \mathrm{~m}^{3}$
Actual Air $=16.67(1+x)$
DRY PRODUCTS
$\mathrm{N}_{2} \rightarrow 0.79 \times 16.67(1+\mathrm{x})=13.167+13.167 \mathrm{x}$
$\mathrm{O}_{2} \rightarrow \quad 3.500 \mathrm{x}$
$\begin{array}{ll}\mathrm{CO}_{2} \rightarrow & 2.000 \\ \mathrm{TOTAL} & 15.167+16.667 \mathrm{x}\end{array}$
$\% \mathrm{CO}_{2}$ is 8 so $8 / 100=2 /(15.167+16.667 \mathrm{x})$
$200 / 8=15.167+16.667 \mathrm{x}$
$25-15.167=16.667 x$
$9.833 / 16.667=x=0.59$ or 59%
2. The analysis of the dry exhaust gas from a boiler shows 10% carbon dioxide. Assuming the rest is oxygen and nitrogen determine the excess air supplied to the process and the \% excess air. The fuel contains $85 \% \mathrm{C}$ and $15 \% \mathrm{H} 2$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
1232
0.85 kg needs $(32 / 12) \times 0.85=11.2 \mathrm{~kg} \mathrm{O}_{2}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
432
0.15 kg needs $(32 / 8) \times 0.15=1.2 \mathrm{~kg} \mathrm{O}$

Total $\mathrm{O}_{2}=3.467 \mathrm{~kg}$
Stoichiometric ratio $=3.467 / 0.233=14.88 / 1$
DEG Consider 1 kmol
This contains $\quad 0.1 \mathrm{kmol}$ of CO_{2} y kmol of O_{2}
$1-0.1-\mathrm{y} \mathrm{kmol}$ of N_{2}
0.1 kmol of CO_{2} is $0.1 \times 44=4.4 \mathrm{~kg}$ of CO_{2}

Carbon in it is $12 / 44 \times 4.4=1.2 \mathrm{~kg}$ Carbon
This came from the fuel.
FUEL consider 1 kmol
It contains 0.85 kmol of carbon.
$0.85 / 12=0.708 \mathrm{kmol}$ of Dry Exhaust Gas
NITROGEN
$(0.9-y) \times 28=25.2-28 y \mathrm{~kg}$ per kmol of DEG
OXYGEN
(25.2 - 28y)x 23.3/76.7 = 7.666-8.506 y per kmol of DEG (Oxygen supplied per kmol DEG)

Oxygen in $\mathrm{CO}_{2} \quad(32 / 44) \times 4.4=3.2 \mathrm{~kg}$ per kmol DEG
Excess oxygen $\quad 32 \mathrm{y} \mathrm{kg}$ per kmol DEG
Total Oxygen excluding that in the water is $32 \mathrm{y}+3.2 \mathrm{~kg}$ per kmol DEG
Oxygen to burn H_{2}
Subtract from Oxygen supplied $(7.655-8.506 y)-(32 y+3.2)$
4.455 - 40.506y kg per kmol DEG

There are 0.708 kmol DEG
Oxygen to burn $\mathrm{H}_{2}=0.708(4.455-40.506 y)=3.154-28.678$ y kg
$2 \mathrm{H}_{2}+\mathrm{O} 2 \rightarrow$
$4 \quad 32$ ratio $8 / 1$
$1 \quad 8$ for $0.1 \mathrm{~kg} \mathrm{H}_{2} \quad 0.8 \mathrm{~kg} \mathrm{O}_{2}$
$0.8=3.145-28.678 y \quad y=0.0818 \mathrm{~kg}$

NITROGEN

$25.2-28 \times 0.0818=22.91 \mathrm{~kg}$ per kmol DEG
But there are 0.708 kmol so $25.91 \times 0.708=16.22 \mathrm{~kg} \mathrm{~N}_{2}$
AIR
$16.22 / 0.767=21.1 \mathrm{~kg}$
Excess air is $21.1-14.88=6.27 \mathrm{~kg}$
\% Excess $=6.27 / 14.88=42 \%$

SELF ASSESSMENT EXERCISE No. 4

1. Similar to Q8 1991

The gravimetric analysis of a fuel is Carbon 78%, hydrogen 12%, oxygen 5% and ash 5%. The fuel is burned with 20% excess air. Assuming complete combustion, determine the composition of the products, the dew point of the products and the mass of water condensed when the products are cooled to $30^{\circ} \mathrm{C}$.
$\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2} \quad 2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$
$\begin{array}{llllll}0.78 & 2.08 & 2.86 & 0.12 & 0.96 & 1.08\end{array}$
0.065 kmol C
$0.03 \mathrm{kmol} \mathrm{H}_{2}$
Total O_{2} needed $=2.08+0.96-0.05=2.99 \mathrm{~kg}$
Air needed $=2.99 / 0.23=13 \mathrm{~kg}$
Actual air $=13 \times 1.2=15.6 \mathrm{~kg}$
Nitrogen $=0.77 \times 15.6=12.012 \mathrm{~kg}$

	kmol	mass	
	$\%$		
$\mathrm{~N}_{2}$	0.429	12.012	72.6
CO_{2}	0.065	2.860	17.3
$\mathrm{H}_{2} \mathrm{O}$	0.06	1.080	6.5
O_{2}	0.019	0.598	3.6
Totals	0.574	16.55	100

If everything ends up as gas then the partial pressure of $\mathrm{H}_{2} \mathrm{O}$ is $\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\frac{0.06}{0.574} \times 1 \mathrm{bar}=0.1045 \mathrm{bar}$
The corresponding saturation temperature is $47^{\circ} \mathrm{C}$. If cooled to $30^{\circ} \mathrm{C}$ some will condense and the vapour left will be dry saturated.
p_{s} at $30^{\circ} \mathrm{C}=0.04242$ bar
The process is constant pressure so the volume is not constant.
Let the kmol of $\mathrm{H}_{2} \mathrm{O}$ vapour be X
$\mathrm{p}_{\mathrm{N}_{2}}=\frac{0.429}{0.574+\mathrm{X}} \quad \mathrm{P}_{\mathrm{CO}_{2}}=\frac{0.019}{0.574+\mathrm{X}} \quad \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{X}}{0.574}=0.04242$
$\mathrm{X}=0.04242(0.574+\mathrm{X}) \quad \mathrm{X}=0.02277$
Mass of vapour $=\mathrm{M} \quad \mathrm{M} / 18=0.02277 \quad \mathrm{M}=0.4098 \mathrm{~kg}$
Condensate formed $=1.08-0.41=0.67 \mathrm{~kg}$
2. Similar to Q8 1989

Carbon monoxide is burned with 25% excess oxygen in a fixed volume of $0.2 \mathrm{~m}^{3}$. The initial and final temperature is $25^{\circ} \mathrm{C}$. The initial pressure is 1 bar. Calculate the final pressure and the heat transfer. Use your thermodynamic tables for enthalpies of reaction.
$\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad$ Heat released $=282990 \mathrm{~kJ} / \mathrm{kmol}$ (page 21 of tables $3^{\text {rd }}$ edition)
125\% oxygen
For 1 kmol of CO we have $0.5 \times 1.25=0.625 \mathrm{kmol}$ of O_{2}
We also have $0.625 \times 79 / 21=2.35 \mathrm{kmol}$ of N_{2}
kmol Ratio $1 \mathrm{CO}+0.625 \mathrm{O}_{2}+2.35 \mathrm{~N}_{2} \rightarrow 1 \mathrm{CO}_{2}+0.125 \mathrm{O}_{2}+2.35 \mathrm{~N}_{2}$
We don't know the actual number of kmol of CO_{2}
$\mathrm{p}_{2}=(3.475 / 3.975) \times 1=0.874$
$\mathrm{p}_{1} \mathrm{~V}_{1}=\tilde{\mathrm{N}} \mathrm{R}_{0} \mathrm{~T}_{1} \quad \stackrel{\mathrm{~N}}{ }=\left(1 \times 10^{5} \times 0.2\right) /(8314.4 \times 298)=0.00807$ (the total kmol of reactants)
Let the number of kmol of CO be X
$\mathrm{X} \mathrm{CO}+0.625 \mathrm{X} \mathrm{O}_{2}+2.35 \mathrm{X} \mathrm{N}_{2}=0.00807$
$3.975 \mathrm{X}=0.00807 \quad \mathrm{X}=0.00203 \mathrm{kmol}(\mathrm{CO})$
$\Delta \mathrm{H}=0.00203 \times 282990=574.5 \mathrm{~kJ}$
Final kmol of products $=(3.475 / 3.975) \times 0.00203=0.007055$
$0.007055=\left(\mathrm{p}_{2} \times 0.2\right) /(8314 \times 298) \quad \mathrm{p}_{2}=0.874$ bar
3. Similar to Q9 1984

Prove that the enthalpy and the internal energy of reaction are related by $\Delta H_{0}=\Delta U_{O}+R_{0} T_{0}\left(n_{p}-n_{R}\right)$
where n_{P} and n_{R} are the kmols of products and reactants respectively.

Ethylene (C 2 H 4) and 20% excess air at $77{ }^{\circ} \mathrm{C}$ are mixed in a vessel and burned at constant volume. Determine the temperature of the products. You should use your thermodynamic tables to find $\Delta \mathrm{U}_{\mathrm{o}}$ or $\Delta \mathrm{H}_{\mathrm{O}}$ and the table below. (Answer 2263 K)

	$\mathrm{C}_{2} \mathrm{H}_{4}$	O 2	N_{2}	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
T(K)	$\mathrm{U}(\mathrm{kJ} / \mathrm{kmol})$				
298.15	- 2479	-2479	-2479	-2479	-2479
300	- 2415	-2440	-2440	-2427	-2432
400	-1557	-297	-355	683	126
2400		54537	50696	95833	73650
2600		60657	50696	95833	73650
2800		66864	62065	117160	92014
3000		73155	67795	127920	101420

Consider a mixture of reactants at condition (1) which is burned and the resulting products are at condition (2). In order to solve problems we consider that the reactants are first cooled to a reference condition (0) by removing energy Q_{1}. The reaction then takes place and energy is released. The products are then brought back to the same reference conditions (0) by removing energy Q2. The energy Q_{1} and Q_{2} are then returned so that the final condition of the products is reached (2).

For constant volume combustion (closed system), we use Internal Energy. Balancing we have
$\mathrm{U}_{\mathrm{p} 2}-\mathrm{U}_{\mathrm{R} 1}=\left(\mathrm{U}_{\mathrm{Ro}}-\mathrm{U}_{\mathrm{R} 1}\right)+\left(\mathrm{U}_{\mathrm{po}}-\mathrm{U}_{\mathrm{Ro}}\right)+\left(\mathrm{U}_{\mathrm{p} 2}-\mathrm{U}_{\mathrm{po}}\right)$
The energy released by combustion is in this case the Internal Energy of combustion and this occurs at standard conditions of 1 bar and $25^{\circ} \mathrm{C}$. This pressure is designated p^{θ} and the internal energy of combustion is designated $\Delta \mathrm{U}^{\theta}$. When this is based on 1 kmol it is designated $\Delta \mathrm{u}^{\theta}$
$\mathrm{U}_{\mathrm{p} 2}-\mathrm{U}_{\mathrm{R} 1}=\left(\mathrm{U}_{\mathrm{Ro}}-\mathrm{U}_{\mathrm{R} 1}\right)+\Delta \mathrm{U}_{\mathrm{o}}{ }^{\theta}+\left(\mathrm{U}_{\mathrm{p} 2}-\mathrm{U}_{\mathrm{po}}\right)$
The standard conditions chosen for the combustion are 1 bar and $25^{\circ} \mathrm{C}$. At this temperature the internal energy of all gases is the same ($-2479 \mathrm{~kJ} / \mathrm{kmol}$). The figure is negative because the zero value of internal energy arbitrarily occurs at a higher temperature.

If the process is conducted in a steady flow system, enthalpy is used instead of internal energy. The reasoning is the same but U is replaced by H .
$\mathrm{H}_{\mathrm{p} 2}-\mathrm{H}_{\mathrm{R} 1}=\left(\mathrm{H}_{\mathrm{Ro}}-\mathrm{H}_{\mathrm{R} 1}\right)+\Delta \mathrm{H}_{\mathrm{o}} \theta+\left(\mathrm{H}_{\mathrm{p} 2}-\mathrm{H}_{\mathrm{po}}\right)$
$\Delta \mathrm{h}_{\mathrm{o}}{ }^{\theta}$ may be found in the thermodynamic tables for some fuels. The figures are quoted in kJ per kmol of substance.

For the products In terms of kmol fractions
For the reactants In terms of kmol fractions

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{po}}=\mathrm{u}_{\mathrm{po}}+\mathrm{n}_{\mathrm{p}} \mathrm{R}_{\mathrm{o}} \mathrm{~T}_{\mathrm{o}} \\
& \mathrm{~h}_{\mathrm{Ro}}=\mathrm{u}_{\mathrm{Ro}}+\mathrm{n}_{\mathrm{R}} \mathrm{R}_{\mathrm{o}} \mathrm{~T}_{\mathrm{o}}
\end{aligned}
$$

where n is the kmols.
$\Delta h_{o} \theta=\left(u_{p o}+n_{p} R_{0} T_{o}\right)-\left(u_{R o}+n_{R} R_{o} T_{o}\right)$
$\Delta h_{o} \theta=\left(u_{p o}-u_{R o}\right)-n_{R} R_{0} T_{o}+n_{p} R_{0} T_{o}$
$\Delta h_{0} \theta=\left(u_{p o}-u_{R o}\right)+\left(n_{p}-n_{R}\right) R_{0} T_{o}$
$\Delta \mathrm{u}_{\mathrm{o}}{ }^{\theta}=\Delta \mathrm{h}_{\mathrm{o}}{ }^{\theta}+\left(\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{R}}\right) \mathrm{R}_{\mathrm{o}} \mathrm{T}_{\mathrm{o}}$
The combustion equation is:
$\mathrm{C}_{2} \mathrm{H}_{4}+3.6 \mathrm{O}_{2}+13.54 \mathrm{~N}_{2}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2}+0.6 \mathrm{O}_{2}+13.54 \mathrm{~N} 2$
The process may be idealised as follows

Mean temperature $=(77+25)+273=324 \mathrm{~K}$
From the tables at 325 K is very close.
Table of values

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{4} & \mathrm{C}_{\mathrm{p}}=1.621 \mathrm{~kJ} / \mathrm{kg} \text { Kmass }=1 \mathrm{kmol} \times 28=28 \mathrm{~kg} \\
& \mathrm{Q}_{1}=28 \times 1.621 \times(77-25)=2360 \mathrm{~kJ} \\
\mathrm{O}_{2} & \mathrm{C}_{\mathrm{p}}=0.923 \mathrm{~kJ} / \mathrm{kg} \text { Kmass }=3.6 \mathrm{kmol} \times 32=115.2 \mathrm{~kg} \\
& \mathrm{Q}_{1}=115.2 \times 0.923 \times(77-25)=5529 \mathrm{~kJ} \\
\mathrm{~N}_{2} & \mathrm{C}_{\mathrm{p}}=1.04 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \operatorname{mass}=13.563 \mathrm{kmol} \times 28=379.12 \mathrm{~kg} \\
& \mathrm{Q}_{1}=379.12 \times 1.04 \times(77-25)=20503 \mathrm{~kJ}
\end{array}
$$

Total Q1 =28392 kJ per kmol of fuel (leaving system)
$\mathrm{Q} 2=\Delta \mathrm{H}_{\mathrm{o}}=1323170 \mathrm{~kJ}$ (leaving system)

Next we repeat the process for the products to find Q1 + Q2
In order to use a mean specific heat we must guess the approximate final temperature of the products. A good guess is always 1150 K .

$$
\begin{array}{ll}
\mathrm{CO}_{2} & \mathrm{C}_{\mathrm{p}}=1.270 \mathrm{~kJ} / \mathrm{kg} \text { Kmass }=2 \mathrm{kmol} \times 44=88 \mathrm{~kg} \\
& \mathrm{Q}=88 \times 1.270 \times \Delta \mathrm{T}=111.76 \Delta \mathrm{~T} \\
\mathrm{H}_{2} \mathrm{O} & \mathrm{C}_{\mathrm{p}}=2.392 \mathrm{~kJ} / \mathrm{kg} \text { Kmass }=2 \mathrm{kmol} \times 18=36 \mathrm{~kg} \\
& \mathrm{Q}=36 \times 2.392 \times \Delta \mathrm{T}=86.112 \Delta \mathrm{~T}
\end{array}
$$

O_{2}

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=1.109 \mathrm{~kJ} / \mathrm{kg} \text { Kmass }=0.6 \mathrm{kmol} \times 32=19.2 \mathrm{~kg} \\
& \mathrm{Q}_{1}=19.2 \times 1.109 \times \Delta \mathrm{T}=21.293 \Delta \mathrm{~T}
\end{aligned}
$$

N2

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=1.196 \mathrm{~kJ} / \mathrm{kg} \text { Kmass }=13.54 \mathrm{kmol} \times 28=379.12 \mathrm{~kg} \\
& \mathrm{Q}=379.12 \times 1.196 \times \Delta \mathrm{T}=453.428 \Delta \mathrm{~T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total Q1 }+\mathrm{Q} 2=672.593 \Delta \mathrm{~T}=1323170+28392 \\
& \Delta \mathrm{~T}=2009 \mathrm{~K} \quad \mathrm{t} 2=2009+298=2307 \mathrm{k} \\
& \text { New mean temperature is }(2307+298) / 2=1302.5 \mathrm{~K}
\end{aligned}
$$

Second Iteration

Next we must repeat the last stage with this mean temperature. 1300 K is the closest in the table.

CO_{2}	$\mathrm{C}_{\mathrm{p}}=1.298 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$	$\mathrm{Q}=88 \times 1.298 \times \Delta \mathrm{T}=114.22 \Delta \mathrm{~T}$
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{\mathrm{p}}=2.490 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$	$\mathrm{Q}=36 \times 2.490 \times \Delta \mathrm{T}=89.64 \Delta \mathrm{~T}$
O 2	$\mathrm{C}_{\mathrm{p}}=1.125 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$	$\mathrm{Q} 1=19.2 \times 1.125 \times \Delta \mathrm{T}=21.5 \Delta \mathrm{~T}$
$\mathrm{~N}_{2}$	$\mathrm{C}_{\mathrm{p}}=1.219 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$	$\mathrm{Q}=379.12 \times 1.219 \times \Delta \mathrm{T}=462.147 \Delta \mathrm{~T}$

Total Q1 + Q2 $=687.611 \Delta \mathrm{~T} k J$ per kmol of fuel (positive entering system)
$687.611 \Delta \mathrm{~T}=28392+1323170 \Delta \mathrm{~T}=1965.6 \mathrm{~K}$
$\mathrm{T}_{2}=1965.6+298=2263.6 \mathrm{~K}$
Q 4 Similar to Q8 1993
An engine burns hexane (C 6 H 14) in air. At a particular running condition the volumetric analysis of the dry products are

CO2	8.7%
CO	7.8%
N2	83.5%

Calculate the air-fuel ratio by mass and find the stoichiometric ratio.

$$
\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{X}\left\{9.5 \mathrm{O}_{2}+\frac{79}{21} \times 9.5 \mathrm{~N}_{2}\right\} \rightarrow \mathrm{aCO}_{2}+\mathrm{bCO}+7 \mathrm{H}_{2} \mathrm{O}+\frac{79}{21} \times 9.5 \mathrm{~N}_{2} \mathrm{X}
$$

X is the fraction of air.
Carbon balance
$6=a+b$
Dry Analysis

$$
\mathrm{N}_{2}=\frac{35.738 \mathrm{X}}{6+35.738 \mathrm{X}}=0.835 \mathrm{X}=0.85
$$

Mass

$$
\begin{array}{lcc}
\mathrm{C}_{6} \mathrm{H}_{14} & +8.075 \mathrm{O}_{2}+30.377 \mathrm{~N}_{2} \\
86 & 258.4 & 850.556
\end{array}
$$

Air/Fuel $=(850.556 / 86) \times(100 / 76.7)=12.9 / 1$ or $(258.4 / 86) \times(100 / 23.3)=12.9 / 1$
Stoichiometric ratio
$\mathrm{C}_{6} \mathrm{H}_{14}+9.5 \mathrm{O}_{2}=$
86304
Air/Fuel $=(304 / 86) \times(100 / 23.3)=15.17 / 1$

SELF ASSESSMENT EXERCISE No. 4

Q1 Similar to Q1 1992
Hydrogen is mixed with stoichiometric air at $25^{\circ} \mathrm{C}$ and burned adiabatically at constant volume. After combustion 6% of the hydrogen remains unburned. Determine the temperature and pressure of the products. (Answer the temperature is 2344 K after two approximations)

You need to find K^{θ} in the tables. Also find $\Delta \mathrm{H}_{0}=241800 \mathrm{~kJ} / \mathrm{kmol}$. Deduce the partial pressures of the products as a fraction of p and then use K^{θ} to solve p.

$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \leftrightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{N}_{2}=0.5 \times 79 / 21=1.881 \mathrm{kmol}$

REACTANTS

1 kmol H_{2} only 94% burns
$0.5 \mathrm{kmol} \mathrm{O}_{2} \mathrm{Q}=241830 \times 0.94=227320 \mathrm{~kJ} / \mathrm{kmol} \mathrm{H}_{2}$
$1.88 \mathrm{kmol} \mathrm{N}_{2}$
PRODUCTS 1200 K

$0.06 \mathrm{H}_{2}$	$\mathrm{c}_{\mathrm{p}}=15.34$	$\mathrm{~m}=0.12 \mathrm{~kg}$
$1.881 \mathrm{~N}_{2}$	$\mathrm{c}_{\mathrm{p}}=1.204$	$\mathrm{~m}=52.668 \mathrm{~kg}$
$0.96 \mathrm{H}_{2}$	$\mathrm{c}_{\mathrm{p}}=2.425$	$\mathrm{~m}=17.28 \mathrm{~kg}$
$0.03 \mathrm{O}_{2}$	$\mathrm{c}_{\mathrm{p}}=1.115$	$\mathrm{~m}=0.96 \mathrm{~kg}$
2.931 kmol		$\mathrm{Q}=63.412 \Delta \mathrm{~T}$
		$\mathrm{Q}=41.904 \Delta \mathrm{~T}$
		$\mathrm{Q}=1.0704 \Delta \mathrm{~T}$
		$\mathrm{Q}=108.22 \Delta \mathrm{~T}$

$227320=108.22 \Delta \mathrm{~T} \quad \Delta \mathrm{~T}=2100 \mathrm{~K}$
$\mathrm{T}_{2}=2100+298=2398 \mathrm{~K}$
Mean temperature $=(2398+298) / 2=1348 \mathrm{~K}$ say 1350 for tables.
$2^{\text {nd }}$ iteration
PRODUCTS 1350 K

$0.06 \mathrm{H}_{2}$	$\mathrm{c}_{\mathrm{p}}=15.65$	$\mathrm{~m}=0.12 \mathrm{~kg}$	$\mathrm{Q}=1.878 \Delta \mathrm{~T}$
$1.881 \mathrm{~N}_{2}$	$\mathrm{c}_{\mathrm{p}}=1.226$	$\mathrm{~m}=52.668 \mathrm{~kg}$	$\mathrm{Q}=64.571 \Delta \mathrm{~T}$
$0.96 \mathrm{H}_{2}$	$\mathrm{c}_{\mathrm{p}}=2.521$	$\mathrm{~m}=17.28 \mathrm{~kg}$	$\mathrm{Q}=43.562 \Delta \mathrm{~T}$
$0.03 \mathrm{O}_{2}$	$\mathrm{c}_{\mathrm{p}}=1.130$	$\mathrm{~m}=0.96 \mathrm{~kg}$	$\mathrm{Q}=1.0848 \Delta \mathrm{~T}$
2.931 kmol		$\mathrm{Q}=111.1 \Delta \mathrm{~T}$	

$\Delta T=2046 \quad \mathrm{~T}_{2}=2344 \mathrm{~K}$

Q2 Similar to Q7 1985
A mixture of air and CO is burned adiabatically at constant volume. The air is 90% of the stoichiometric requirement. The mixture is initially at 5 bar and 400 K . The only dissociation that occurs is $\mathrm{CO}_{2} \rightarrow \mathrm{CO}+1 / 2 \mathrm{O}_{2}$. Show that the equilibrium constant at the final temperature T_{2} is
$K_{p}=\frac{1.121 \mathrm{a}}{(1-\mathrm{a})(0.9-\mathrm{a})^{1 / 2}\left(\frac{\mathrm{~T}_{\mathrm{p}}}{\mathrm{T}_{\mathrm{R}}}\right)^{1 / 2}}$
where a is the amount of $\mathrm{CO}_{2} \mathrm{kmol}$ in the products per kmol of CO in the reactants.
If it assumed that initially $\mathrm{T}_{2}=2900 \mathrm{~K}$ for which $\log \mathrm{K}_{\mathrm{p}}=0.649$, the solution of the above equation gives $\mathrm{a}=0.784$. Check the assumed value of T 2 given that the internal energy of reaction at $\mathrm{T}_{\mathrm{O}}=298.15 \mathrm{~K}$ is $-281750 \mathrm{~kJ} / \mathrm{kmol}$.

T (K)

	CO	O 2	N 2	CO 2
298.15	-2479	-2479	-2479	-2479
400	-351	-297	-355	+683
2900	+65715	+69999	+64924	+122530

STOICHIOMETRIC

$\mathrm{CO}+1 / 2 \mathrm{O}_{2}+(79 / 21) \times 1 / 2 \mathrm{~N}_{2} \rightarrow \mathrm{CO}_{2}+(79 / 21) \times 1 / 2 \mathrm{~N}_{2}$
$\mathrm{CO}+0.5 \mathrm{O}_{2}+1.88 \mathrm{~N}_{2} \rightarrow \mathrm{CO}_{2}+1.88 \mathrm{~N}_{2}$
90\% air
$\mathrm{CO}+0.45 \mathrm{O}_{2}+1.692 \mathrm{~N}_{2} \rightarrow \mathrm{a} \mathrm{CO}_{2}+\mathrm{bCO}+\mathrm{d} \mathrm{O}_{2}+1.692 \mathrm{~N}_{2}$
CARBON BALANCE
$1=\mathrm{a}+\mathrm{b} \quad \mathrm{b}=1-\mathrm{a}$
OXYGEN BALANCE
$0.5+0.45=a+b / 2+d$
$0.95=\mathrm{a}+\mathrm{b} / 2+\mathrm{d}$ multiply by 2
$1.9=2 \mathrm{a}+\mathrm{b}+2 \mathrm{~d}=2 \mathrm{a}+1-\mathrm{a}+2 \mathrm{~d}$
$0.9=a+2 d \quad d=(0.9-a) / 2=(0.9-a) 2$
$\mathrm{N}_{\mathrm{P}}=\mathrm{a}+\mathrm{b}+\mathrm{d}+1.692=\mathrm{a}+1-\mathrm{a}+(0.9-\mathrm{a}) 2+1.692=1+0.45-\mathrm{a} / 2+1.692$
$\mathrm{N}_{\mathrm{R}}=1+0.5+1.692=3.142$
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\mathrm{a} / \mathrm{N}_{\mathrm{p}}\right) \mathrm{p}}{\left(\mathrm{b} / \mathrm{N}_{\mathrm{p}}\right) \mathrm{p}\left(\mathrm{d} / \mathrm{N}_{\mathrm{p}}\right)^{1 / 2} \mathrm{p}^{1 / 2}}=\frac{\mathrm{a}}{\mathrm{b}\left(\mathrm{d} / \mathrm{N}_{\mathrm{p}}\right)^{1 / 2} \mathrm{p}^{1 / 2}}$

$$
K_{P}=\frac{a}{(1-a)\left(\frac{9-a}{2 N_{p}}\right)^{1 / 2} p^{1 / 2}}
$$

$\mathrm{p}=$ pressure of the products
$\mathrm{p}_{\mathrm{P}}=\frac{\mathrm{N}_{\mathrm{p}} \mathrm{R}_{\mathrm{o}} \mathrm{T}_{\mathrm{p}}}{\mathrm{V}}$
$\mathrm{V}=\frac{\mathrm{N}_{\mathrm{p}} \mathrm{R}_{\mathrm{o}} \mathrm{T}_{\mathrm{p}}}{\mathrm{p}_{\mathrm{P}}}$
$p_{R}=\frac{N_{R} R_{0} T_{R}}{V}$
$\mathrm{V}=\frac{\mathrm{N}_{\mathrm{R}} \mathrm{R}_{\mathrm{o}} \mathrm{T}_{\mathrm{R}}}{\mathrm{p}_{\mathrm{R}}}$

Equate V

$$
\frac{N_{p} R_{o} T_{p}}{p_{P}}=\frac{N_{R} R_{o} T_{R}}{p_{R}} \quad \frac{N_{p} T_{p} p_{R}}{N_{R} T_{R}}=p_{P}
$$

$\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{a}}{(1-\mathrm{a})\left(\frac{0.9-\mathrm{a}}{2 \mathrm{~N}_{\mathrm{p}}}\right)^{1 / 2}\left(\frac{\mathrm{~N}_{\mathrm{p}} \mathrm{T}_{\mathrm{p}} \mathrm{p}_{\mathrm{R}}}{\mathrm{N}_{\mathrm{R}} \mathrm{T}_{\mathrm{R}}}\right)^{1 / 2}}=\frac{\mathrm{a}}{(1-\mathrm{a})\left(\frac{0.9-\mathrm{a}}{2}\right)^{1 / 2}\left(\frac{\mathrm{~T}_{\mathrm{p}} \mathrm{p}_{\mathrm{R}}}{\mathrm{N}_{\mathrm{R}} \mathrm{T}_{\mathrm{R}}}\right)^{1 / 2}} \quad \mathrm{p}_{\mathrm{R}}=5$ bar

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{a} \sqrt{2 \times 3.142 / 5}}{(1-\mathrm{a})(0.9-\mathrm{a})^{1 / 2}\left(\frac{\mathrm{~T}_{\mathrm{p}}}{\mathrm{~T}_{\mathrm{R}}}\right)^{1 / 2}}=\frac{1.121 \mathrm{a}}{(1-\mathrm{a})(0.9-\mathrm{a})^{1 / 2}\left(\frac{\mathrm{~T}_{\mathrm{p}}}{\mathrm{~T}_{\mathrm{R}}}\right)^{1 / 2}}
$$

