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Module overview.
This module introduces nonlinearity and the types of nonlinearity which occur in control systems. It

discusses some possible effects nonlinearity might have on open loop and closed loop system behavior.

Module objectives. When you have completed this module you should be able to:

1. Understand nonlinearity and how it might occur in dynamic systems

2. Understand the possible effects nonlinearity might have on the dynamic behavior of a control system

Module prerequisites. First year mathematics, Fourier series, transfer functions, frequency response

1.1 Introduction

Extensive theoretical techniques for the analysis and design of linear control systems have been developed
over the last 50 years. Unfortunately in practice all systems exhibit nonlinear behavior and the use of
linear analysis only, may not provide an adequate description of the behavior. Linear systems have
the important property that they satisfy the superposition principle. This leads to many important
advantages in methods for their analysis. For example, in a simple feedback loop with both set point and
disturbance inputs their affect on the output when they are applied simultaneously is the same as the
sum of their individual effects when applied separately. This would not be the case if the system were
nonlinear. Thus, mathematically a linear system may be defined as one which with input x(t) and output
y(t) satisfies the property that the output for an input ax1(t)+ bx2(t) is ay1(t)+ by2(t), if y1(t) and y2(t)
are the outputs in response to the inputs x1(t) and x2(t) , respectively, and a and b are constants. A
nonlinear system is defined as one which does not satisfy the superposition property. The simplest form
of nonlinear system is the static nonlinearity where the output depends only on the current value of input
but in a nonlinear manner, for example the mathematical relationship

y(t) = ax(t) + bx3(t) (1.1)

where the output is a linear plus cubed function of the input.
More commonly the relationship could involve both nonlinearity and dynamics so that it might be

described by the nonlinear differential equation

d2y

dt2
+ a

[
dy

dt

]3

+ by(t) = x(t) (1.2)
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From an engineering viewpoint it may be desirable to think of this equation in terms of a block diagram
consisting of linear dynamic elements and a static nonlinearity, which in this case is a cubic with input
dy/dt and output a (dy/dt)3. A major point about nonlinear systems, however, is that their response
is amplitude dependent so that if a particular form of response, or some measure of it, occurs for one
input magnitude it may not result for some other input magnitude. This means that in a feedback
control system with a nonlinear plant if the controller designed does not produce a linear system then, to
adequately describe the system behavior one needs to investigate the total allowable range of the system
variables. For a linear system one can claim that a system has an optimum response, assuming optimum
is precisely defined, for example minimization of the integral squared error, using results obtained for
one input amplitude. On the other hand for a nonlinear system the response to all input amplitudes
must be investigated and the optimum choice of parameters to minimize the criterion will be amplitude
dependent. Perhaps the most interesting aspect of nonlinear systems is that they exhibit forms of behavior
not possible in linear systems and more will be said on this later.

1.2 Forms of nonlinearity

Nonlinearity may be inherent in the dynamics of the plant to be controlled or in the components used to
implement the control. For example, there will be a limit to the torque obtainable from an electric motor
or the current that may be input to an electrical heater, and indeed good design will have circuits to
ensure this is the case to avoid destruction of a component. Sizing of components must take account of
both the required performance and cost, so it is not unusual to find that a rotary position control system
will develop maximum motor torque for a demanded step angle change of only a few degrees. Also,
although component manufacture has improved greatly in the last decades flow control valves possess a
dead zone due to the effect of friction and there characteristics on opening and closing are not identical
due to the flow pressure. Improved design might produce more linear components but at greater cost so
that such strategies would not be justified economically. Alternatively one may have nonlinear elements
intentionally introduced into a design in order to improve the system specifications, either from a technical
or economic viewpoint. A good example is the use of relay switching. Identifying the precise form of
nonlinearity in a system component may not be easy and like all modeling exercises the golden rule is to
be aware of the approximations in a nonlinear model and the conditions for its validity.

Friction always occurs in mechanical systems and is very difficult to model, with many quite sophis-
ticated models having been presented in the literature. The simplest is to assume the three components
of stiction, an abbreviation for static friction, Coulomb friction and viscous friction. As its name implies
stiction is assumed to exist only at zero differential speed between the two contact surfaces. Coulomb
friction with a value less than stiction is assumed to be constant at all speeds, and viscous friction is
a linear effect being directly proportional to speed. In practice there is often a term proportional to a
higher power of speed, and this is also the situation for many rotating shaft loads, for example a fan.
Many mechanical loads are driven through gearing rather than directly. Although geared drives, like all
areas of technology, have improved through the years they always have some small backlash. This may
be avoided by using anti-backlash gears but these are normally only employed for low torques. Backlash
is a very complicated phenomenon involving impacts between surfaces and is often modeled in a very
simplistic manner. For example, a simple approach often used consists of an input- output position char-
acteristic of two parallel straight lines with possible horizontal movement between them. This makes two
major assumptions, first that the load shaft friction is high enough for contact to be maintained with
the drive side of the backlash when the drive slows down to rest. Secondly when the drive reverses the
backlash is crossed and the new drive side of the gear ’picks up’ the load instantaneously with no loss of
energy in the impact and both then move at the drive shaft speed. Clearly both these assumptions are
never true in practice so their limitations need to be understood and borne in mind when using such an
approximation.

The most widely used intentional nonlinearity is the relay. The on-off type, which can be described
mathematically by the signum function, that is it switches on if its input exceeds a given value and off if
it goes below the value, is widely used normally with some hysteresis between the switching levels. Use
of this approach provides a control strategy where the controlled variable oscillates about the desired
level. The switching mechanism varies significantly according to the application from electromechanical
relays at low speed to fast electronic switches employing transistors or thyristors. A common usage of
the relay is in temperature control of buildings, where typically the switching is provided by a thermostat
having a pool of mercury on a metal expansion coil. As the temperature drops the coil contracts and this
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causes a change in angle of the mercury capsule so that eventually the mercury moves, closes a contact
and power is switched on. Electronic switching controllers are used in many modern electric motor drive
systems, for example, to regulate phase currents in stepping motors and switched reluctance motors and
to control currents in vector control drives for induction motors. Relays with a dead zone, that is three
position relays giving positive, negative and a zero output are also used. The zero output allows for a
steady state position within the dead zone but this affects the resulting steady state control accuracy.

Theoretical analysis and design methods for nonlinear systems typically require a mathematical model
for the nonlinearity, sometimes of a specific form, say a power law or polynomial representation. The
mathematical model used will be an approximation to the true situation.

Typical models used are:

(i) a simple mathematical function

(ii) a series approximation

(iii) a discontinuous set of functions, typically straight lines to produce a linear segmented characteristic.

1.3 Structure and behaviour

From a control engineering viewpoint there are major benefits to be gained if something is known about
the structure of a nonlinear plant compared with treating it as a black box. The relevance of this is
perhaps best explained by considering the nonlinearity x + ax3, and a dynamic element with transfer
function K/s(s + b), where a and b are constants. If they are placed in cascade and a sinusoidal input
applied the output will be a deterministic waveform containing two frequency components one at the
same frequency as the input and the other at three times that frequency. Any cascade combination of
linear and nonlinear elements will always produce a deterministic output for a periodic input, which in
principle can be calculated for any given discrete input frequency spectrum. New frequency components
can only be created by the nonlinearities and the linear elements simple alter the relative magnitudes
and phases of these components.

For example, if the above nonlinearity is placed before and after a linear transfer function and a
sinusoid of frequency, f , is applied at the input, then the input to the second nonlinearity will consist
of the fundamental, f , plus third harmonic, 3f , with magnitude and phase dependent on the frequency.
These two frequencies applied to the second nonlinearity will produce an output containing the frequency
components, f , 3f , 5f , 7f , and 9f . One could define a frequency response for such a cascade structure
of linear and nonlinear elements as the ratio of the output at the applied fundamental frequency, f ,
to the input sinusoid at this frequency. The result, as for a linear system, would be a magnitude and
phase, which varies with, f , but because of the nonlinearities it would also vary with the amplitude of
the sinusoid. Thus an approximate model for the combination could be portrayed graphically by a set
of frequency response plots for different input amplitudes, or gain and phase plots against amplitude
for different frequencies. For many problems encountered in control engineering this may prove to be
a reasonably good model since many dynamic elements have a low pass filtering properties so that the
frequency, f , predominates at the output. With no linear dynamic elements in the combination then
these latter plots would be the same for all frequencies and the approximate, first harmonic, or quasi-
linearized, model would be gain and phase curves as a function of amplitude. This representation of a
nonlinear element is known as a describing function and is considered later.

If alternatively the simple feedback loop of Fig. 1.1 is considered with the nonlinearity being the
aforementioned x + ax3, the controller Gc(s) = 1, and the plant transfer function G(s) = K/s(s + b),
then very different situations are possible for the response to a sinusoidal input. Dependent on the
values of a, b and K both assumed positive, and the amplitude and frequency of the input, the output
may be (a) approximately sinusoidal with the same frequency as the input, similar to the above cascade
connection; (b) approximately sinusoidal with a frequency one third of the input, known as a subharmonic
oscillation; or (c) a waveform known as chaotic, which is not definable mathematically but completely
repeatable for the same initial conditions. These behaviors are unique to nonlinear feedback systems,
aspects which make such systems extremely interesting, but in addition it has meant that no general
analytical methods are available for predicting their behavior.

Since Fig. 1.1 may be regarded as the structure of many simple nonlinear feedback control loops it
is relevant to discuss further it’s possible forms of behavior. In doing so it will be assumed that any
nonlinearity and any linear transfer function can exist in the appropriate blocks, but the form they must
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Figure 1.1: Simple nonlinear feedback system

take so that the loop has one of the specific properties mentioned will not be discussed. Firstly, the
performance of the system, even for a specific type of input, will depend upon the amplitude of the
input. The response, for example, to a small step input may be quite different from that of a large
step input. If the autonomous system, that is the system with no input, is released from several initial
states, then the resulting behavior may be appreciably different for each state. In particular, instead
of reaching a stationary equilibrium point, the system may move from some initial conditions into a
limit cycle, a continuous oscillation which can be reached from several possible initial conditions. This
behavior is distinct from an oscillation in an idealized linear system since the amplitude of this oscillation
depends upon the initial energy input to the system. A limit cycle is a periodic motion but its waveform
may be significantly different from the sinusoid of an oscillation. The autonomous nonlinear system,
as mentioned earlier, may also have a chaotic motion, a motion which is repeatable from given initial
conditions, but which exhibits no easily describable mathematical form, is not periodic, and exhibits a
spectrum of frequency components.

If a sinusoidal input is applied to the system then the output may be of the same frequency, but will
also contain harmonics or other components related to the input frequency. This output too, for certain
frequencies and amplitudes of the input, may not be unique but with an amplitude dependent upon the
past history of the input or the initial conditions of the system, the so-called jump phenomena in the
frequency response. The sinusoidal input may also cause the system to oscillate at a related frequency so
that the largest frequency component in the output is not the same as that of the input, a subharmonic
oscillation as mentioned earlier. Also if, for example, the autonomous system had a limit cycle, then the
addition of a sinusoidal input could cause the limit cycle frequency to change or cause synchronization of
the limit cycle frequency with the input frequency or one of its harmonics.

In many instances the phenomena just mentioned are undesirable in a control system, so that one
needs techniques to ensure that they do not exist. Control systems must be designed to meet specific
performance objectives and to do this one is required to design a control law which is implemented based
on measurements or estimation of the system states, or by simple operations on the system, typically
the error, signals. Many systems can be made to operate satisfactorily with the addition of a simple
controller, Gc(s) in Fig. 1.1. Typical performance criteria, which the system may be required to meet,
are that it is stable, has zero steady state error and a good response to a step input, suitably rejects
disturbances and is robust to parameter variations. Although one reason for using feedback control is
to reduce sensitivity to parameter changes, specific design techniques can be used to ensure that the
system is more robust to any parameter changes. If the process to be controlled is strongly nonlinear,
then a nonlinear controller will have to be used if it is required to have essentially the same step response
performance for different input step amplitudes. Some control systems, for example simple temperature
control systems, may work in a limit cycle mode, so that in these instances the designer is required to
ensure that the frequency and amplitude variations of the controlled temperature are within the required
specifications.

1.4 Analysis Methods

Unlike linear systems there are no completely general methods for the analysis of nonlinear systems.
Those to be covered in the following sections are those which most easily link to the topics covered in the
earlier modules and are easily applied to, and provide understanding of, practical situations, particularly
when combined with simulation studies. The first topic discussed in module 2 is the phase plane method,
which can normally only be used to investigate second order systems. It is a useful technique, because it
can be used when more than one nonlinearity exists in a system and also because many control problems,
such as position control systems, can be modeled approximately by second order dynamics.

The describing function approach is discussed in module 3. It is a non-exact method whereby the
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nonlinearity is approximated by a gain, which depends on the amplitude of the input signal, usually taken
as a sinusoid. It can, however, enable the designer to obtain insight and understanding of a nonlinear
situation and, of course, the ideas can often be further checked by simulation. The describing function
approach, since a limit cycle is a form of instability found in nonlinear systems and can be predicted
approximately by the describing function method, is useful for stability studies. The method can also
be helpful for system design in terms of shaping the frequency response of the system to produce a
more stable situation or for indicating possible nonlinear effects which can be added in the controller
to counteract the nonlinear effects in the plant. Describing functions for other than a single sinusoid
can be obtained and these allow some of the more complex aspects of the behavior of nonlinear systems
mentioned previously to be investigated. Module 4 discusses two topics, the first being the determination
of limit cycles in a feedback loop. The second is an introduction to methods for evaluating the absolute
stability of the system shown in Fig. 1.1.



1-6 MODULE 1. INTRODUCTION TO NONLINEAR SYSTEMS.



Module 2

The Phase Plane

Module units
2.1 Overview of the phase plane method for second order systems. . . . . . . 2-1

2.2 Phase plane methods for systems with linear segmented characteristics . 2-3

2.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

2.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Module overview.
This module introduces the basic concepts of the phase plane approach for studying the transient

response of second order systems. Particular emphasis is placed on its use for control systems where the
nonlinearity may be approximated by a linear segmented characteristic.

Module objectives. When you have completed this module you should be able to:

1. Understand phase plane portraits

2. Obtain the transient behavior for some simple systems using the phase plane approach

Module prerequisites. First year mathematics, differential equations, time response of second order
systems

2.1 Overview of the phase plane method for second order sys-
tems.

The phase plane method was the first approach used by control engineers for studying the effects of
nonlinearity in feedback control systems. The technique can generally only be used for systems represented
by second order differential equations. It had previously been used in nonlinear mechanics and for the
study of nonlinear oscillations. Smooth mathematical functions were assumed for the nonlinearities so
that the second order equation could be represented by two nonlinear first order equations of the form

ẋ1 = P (x1, x2)
ẋ2 = Q(x1, x2) (2.1)

Equilibrium, or singular points, occur when

ẋ1 = ẋ2 = 0

and the slope of any solution curve, or trajectory, in the x1 − x2 state plane is

dx2

dx1
=
ẋ2

ẋ1
=
Q(x1, x2)
P (x1, x2)

(2.2)

A second order nonlinear differential equation representing a control system with a smooth nonlinearity
can typically be written as

ẍ+ f(x, ẋ) = 0

2-1



2-2 MODULE 2. THE PHASE PLANE

and if this is rearranged as two first order equations, choosing the phase variables as the state variables,
that is x1 = x, x2 = ẋ then it can be written as

ẋ1 = x2

ẋ2 = f(x1, x2) (2.3)

which is a special case of eqn. 2.2. A variety of procedures were proposed, before the advent of good
computation facilities, for sketching state (phase) plane trajectories for eqns. 2.1 and 2.3. A complete
plot showing trajectory motions throughout the entire state (phase) plane from different initial conditions
is known as a state (phase) portrait. Phase portraits, or specific responses in the phase plane, are easily
obtained with modern simulation facilities and they are often more helpful for understanding the system
behavior than displays of the variables x1 and x2 against time.

If f(x1, x2) = 2 ζx2 + x1 , then one has the normalized second order system with damping ratio ζ
and phase plane trajectories are shown in Fig. 2.1 from the initial condition (−1, 0) for ζ = 0, 0.5 and 2.0
respectively. For ζ = 0.5 and 2.0 the origin is a stable singular point, known as a focus for ζ = 0.5 and
a node for ζ = 2.0 , to which the trajectories converge. For the oscillatory case of no damping the origin
is called a center.

Figure 2.1: Phase trajectories of linear second order system

Many investigations using the phase plane technique were concerned with the possibility of limit cycles
in a nonlinear differential equation. When a limit cycle exists this results in a closed trajectory in the
phase plane and typical of such investigations was the work of Van der Pol. He considered the equation

ẍ− µ(1− x2)ẋ+ x = 0

where µ is a positive constant.

The phase plane form of this equation can be written as

ẋ1 = x2

ẋ2 = −f(x1, x2) = µ(1− x2
1)x2 − x1

The slope of a trajectory in the phase plane is

dx2

dx1
=
ẋ2

ẋ1
=
µ(1− x2

1)x2 − x1

x2
(2.4)

which is only singular (that is at an equilibrium point), when the right hand side of eqn. 2.4 is 0/0, that is
x1 = x2 = 0. The form of the singular point, which is obtained from linearization of the equation at the
origin, depends upon µ, being an unstable focus for µ < 2 and an unstable node for µ > 2. Fig. 2.2 shows
a simulation result for µ = 1 from a small initial condition which leads to a stable limit cycle solution.

Many nonlinear effects in control systems, such as saturation, friction etc., are best approximated
by linear segmented characteristics rather than continuous mathematical functions. Use of the phase
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Figure 2.2: Limit cycle for Van der Pol equation

plane to study the effects of this type of nonlinearity on the system response was one of the original
contributions to the phase plane method in control. It has the advantage that it results in a phase plane
divided up into different regions but with a linear differential equation describing the motion in each
region.

2.2 Phase plane methods for systems with linear segmented
characteristics

To illustrate the approach for systems which contain nonlinear elements describable by linear segmented
characteristics two examples are given below.

Example 1
Consider a simple relay position control system with nonlinear velocity feedback having the block

diagram shown in Fig. 2.3.

-

+

h

h

K
s s

1

λ
+

+

N
1

δ

−δ

2∆

Figure 2.3: Block diagram of relay position control system

Initially it is assumed that the hysteresis in the relay is negligible (i.e. ∆ = 0) and that h is large,
so that the velocity feedback signal will not saturate. Denoting the system position output by x1 and
its derivative, the velocity ẋ1 by x2, it is seen that the relay output of ±1 or 0 is equal to ẍ1/K , and
that the relay input is equal to −x1 − λx2. Taking the dead zone of the relay ±δ to be equal to ±1, the
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motion of the system is described by

ẍ =

 K if −x1 − λx2 > 1
0 if |−x− λx2| < 1
−K if −x1 − λx2 < 1

Thus in the phase plane, which has x1 as abscissa and x2 as ordinate, the dashed lines x1 +λx2 = ±1
in Fig. 2.4 divide the plane into the three regions, for each of which the motion is described by one of the
above three simple linear second-order differential equations. The solution of

ẍ1 = K

in terms of the phase-plane co-ordinates x1 and x2 is

x2
2 − x2

20 = 2K(x1 − x10) (2.5)

where x10 and x20 are the initial values of x1 and x2. Eqn. 2.5 describes parabolas for K both positive
and negative and when the relay output is zero the solution is x2 = x20, which corresponds to a constant
velocity motion, since the block after the relay is ideal in neglecting any friction.

x
1

x
2

-1 +1

x x
1 2

+ l = -1

x x
1 2

+ l = 1

0

Figure 2.4: Graph showing phase plane boundaries.

If viscous friction were taken into account then the transfer function of this block would be of the
form K/(s+a) and the velocity would reduce. For the simple equations of the idealized system it is easy
to calculate the system’s response from any initial condition (x10, x20) in the phase plane. Fig. 2.5 shows
the response from (−4.6, 0) with λ = 1 and K = 1.25. The initial parabola meets the first switching
boundary at A; the ensuing motion is horizontal, that is, at constant velocity, until the second switching
boundary is reached at B. The resulting parabola meets the same switching boundary again at C, at
which point motion from either side of the switching line through C is directed towards C, so that the
resulting motion is known as a sliding motion, with the relay theoretical switching at an infinite rate.

Responses from any other initial conditions are obviously easy to find, but, from the one response
shown, several aspects of the system’s behavior are readily apparent. In particular the system is seen to
be stable since all responses will move inward, possibly with several overshoots and undershoots, and will
finally slide down a switching boundary to ±1. Thus a steady-state error of unit magnitude will result
from any motion.

When the velocity feedback signal saturates, that is, when |λx2| > h, the input signal to the relay is
−x1 ± h. The switching boundaries change to those shown in Fig. 2.6 but the equations describing the
motion between the boundaries remain unaltered.

Therefore for a large step input the response will become more oscillatory when the velocity saturates.
If the hysteresis ∆ is finite and h is large, then it is easily shown that a stable limit cycle, as shown in
Fig. 2.7 for δ = 1 and ∆ = 0.5, will occur. Trajectories both inside and outside the limit cycle have their
motion directed towards it. Similarly, it is straightforward to draw phase-plane trajectories for a finite
hysteresis ∆ and smaller values of h.

Example 2
Fig. 2.8 shows the block diagram of an approximate model, since no viscous friction is assumed once

again, of a position control system with nonlinear effects due to torque saturation and Coulomb friction.
The differential equation of motion in phase variable form is

ẋ2 + fs(−x1)−
(

1
2

)
sgn(x2) = 0 (2.6)
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Figure 2.5: Response of system of Fig. 2.3 from an initial condition.
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Figure 2.6: New switching boundaries with velocity saturation.

where fs denotes the saturation nonlinearity and sgn the signum function, which is +1 for x2 > 0 and
−1 for x2 < 0. There are six linear differential equations describing the motion in different regions of the
phase plane. For x2 positive, eqn 2.6 can be written

ẍ1 + fs(x1) +
1
2

= 0

so that for

(a) x2 + νe, x1 < −2 , we have ẋ1 = x2, ẋ2 = 3
2 , a parabola in the phase plane.

(b) x2 + νe, |x1| < 2 , we have ẋ1 = x2, ẋ2 = 3
2 , a circle in the phase lane.

(c) x2 + νe, x1 > 2 , we have ẋ1 = x2, ẋ2 = −5
2 , a parabola in the phase plane.

Similarly for x2 negative,
(d) x2 − νe, x1 < −2 , we have ẋ1 = x2, ẋ2 = 5

2 , a parabola in the phase plane.
(e) x2 − νe, |x2| < 2 , we have ẋ1 = x2, ẋ2 + x1 − 1

2 = 0 , a circle in the phase lane.
(f) x2 − νe, x1 > 2 , we have ẋ1 = x2, ẋ2 = −3

2 , a parabola in the phase plane.
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Figure 2.7: Limit cycle with velocity saturation.

Figure 2.8: Block diagram of control system for Example 2.

Because all the phase plane trajectories are described by simple mathematical expressions, it is
straightforward to calculate specific phase plane trajectories.

2.3 Concluding remarks

The above examples containing linear segmented nonlinear characteristics have been chosen to show (i)
how the phase plane can be divided up into different regions in which the motion may be described by
linear differential equations (ii) that when simple linear equations describe the motion analytical solutions
may be found. The former concept is very useful to understand when doing simulations whereas the need
for the latter is not required when simulations can be used. Several problems are given below which can
be simulated in DYNAST to check your analytical solutions.

2.4 Problems

Problem 1.
An approximate block diagram for a position control system is shown in Fig. P1. It results in a closed
loop transfer function which is second order, having a natural frequency of ω0 and a damping ratio
ζ = ζV + ζT , where the former accounts for damping, such as viscous friction, and the latter the result
of a velocity feedback stabilization signal. The effects of nonlinearity on the error and torque signals can
be studied by placing the nonlinearity in e, and T , respectively. Simulate the linear system for θi = 0,
ζ = 1 and any choice of ω0. Show that, and also prove theoretically that, for initial conditions θ̇0 = v0
and θ0 = −u0
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1. there will be no overshoot if v0 < ω0u0

2. the overshoot will be less than u0 if v0 < 4.6ω0u0.

Figure P1.

Problem 2.
The system of Problem 1 has the ideal saturation characteristic of Figure 3.1, with linear slope me and
saturation level he, in the error channel. Prove the following points if θi = 0 and show that they are true
by simulation

1. for initial conditions θ̇0 = v0 and θ0 = −u0 with u0 > δe , where he = meδe, the maximum velocity
reached will be heω0/2ζv provided v0 is less than this value.

2. if ζT = 1 and me = 1 show that the minimum value of ζv is 0.5 if no overshoot should occur for a
large step input.

Problem 3.
Examine in your simulations for the linear system of Problem 1 the phase plane portrait for various initial
conditions with ζ = 2 and any choice of ω0. You should note that the straight lines of slopes (−2±

√
3)ω0,

which are isoclines, are possible trajectories. Again for θi = 0 and the initial conditions θ̇0 = v0 and
θ0 = −u0 show that there will be no overshoot provided v0 < (2 +

√
3)ω0. What will be the ratio of the

times required to travel to the origin for trajectories starting on the two isoclines with the same value of
u0.

Problem 4.
Simulate the system of Problem 1 with ζv = 0, any choice of ω0, and the ideal saturation characteristic
of Figure 3.1 in the torque signal. Denote the parameters of the saturation by mT , δT and hT . Decrease
δT to zero and do simulations for θi = 0 and initial conditions θ̇0 = 0 and θ0 = −u0 for various values
of u0. Observe how changing the value of ζT changes the slope of the line where the trajectories switch
from one parabolic form to another and for some choices of parameters that the final trajectory to the
origin switches rapidly between the two parabolas (this is known as sliding). Show theoretically and by
simulation that the maximum value of u0 for no overshoot is 16 ζ2

ThT .

Problem 5.
For the previous example a designer decides that he needs to have critical damping for ζ. He estimates
that ζv is 0.25. He therefore adjusts the velocity feedback gain to give ζT equal to 0.75. Simulate the
system to determine the maximum value of u0 for no overshoot. How much greater is this value than if
ζv were zero.

Problem 6.
The system of Problem 1 has ζT = 0 and Coulomb friction equal to the torque produced by a 4◦ error.
Calculate the overshoots, undershoots and steady state error for a step input of 64◦ if ζv = 0.30 and
ζv = 0.15. You may use the graph of Part III Figure 9.1.3. Check your results by simulation.

Problem 7.
For the system of Problem 4 a designer decides that for a step input the overshoot must be no greater
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than 0.25 of the input magnitude. If ζT = 1 calculate what will be the maximum allowable step input
magnitude and check the result by simulation.

Problem 8.
A position control system has error saturation and a relay with dead zone as its actuator. It can be taken
to have the block diagram of Figure 1.1 with ω0 = 2, ζv = 0, ζT = 0.25, error saturation with me = 1
and δe = 5◦ , and the relay with h = 4, ∆ = 0 and δ = 1. Sketch step responses on a phase plane for
inputs of 10◦ and 20◦, respectively. Check your results using simulation.

Problem 9.
The block diagram of a nonlinear control system is shown in Figure P9. Draw the switching boundaries
on the phase plane and show the step responses on the phase plane for inputs of 6◦ and 10◦, respectively.
Sketch also the waveforms of θ̇0 and θ0 against time. State if the system is more or less damped for larger
inputs and give your reasons. Check your results using simulation.

Figure P9.

Problem 10.
The block diagram of a relay control system with nonlinear velocity feedback is shown in Figure P10.
Draw the switching boundaries on the phase plane and sketch some phase plane trajectories. In particular,
determine the amplitude and frequency of any limit cycles. Check your results by simulation.

Figure P10.

Problem 11.
Sketch phase portraits for a relay position control system in the form of Figure P1 with ζv = 0, ζT = 1,
ω0 = 1 and a relay in the torque channel with h = 2, ∆ = 0.5 and δ = 1.5. Show that it has a limit cycle
with a period of 24.5 seconds and check the result by simulation.
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Module overview.
This module defines the describing function (DF) of a nonlinearity and shows how it may be used to

study the behavior of a feedback loop with a single nonlinearity. DFs are derived for single and double
valued nonlinearities and examples are given to show how DFs can be used for examining the stability of
a nonlinear system. Since the method is approximate comments are made on its accuracy.

Module objectives. When you have completed this module you should be able to:

1. Define a describing function of a nonlinearity

2. Evaluate the describing function of a given nonlinearity

3. Use the describing function approach to understand the dynamic behavior of a feedback loop with
a single nonlinearity

4. The approximations and limitations of the describing function method.

Module prerequisites. First year mathematics, Fourier series,transfer functions,frequency response,
stability

3.1 Introduction

The describing function, which will be abbreviated DF, method was developed simultaneously in several
countries during the wartime years of the early 1940s. Of major concern at that time was the design
of control systems for tracking devices, such as gun and antenna systems. It was found that in some
situations they would ‘hunt’, the name given to small amplitude limit cycles about the equilibrium point.
It was realized that this instability was probably due to nonlinearities, such as friction or backlash in
the gears of the control system, and an analysis method was required which could ensure that resulting
designs would not exhibit this behavior. It was further observed that when limit cycles occurred the

3-1
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motion of the system output was often approximately sinusoidal. This indicated to the engineers that a
possible analytical approach would be to assume that the signal at the input to the nonlinear element in
the loop was a sinusoid, the basis of the simple or sinusoidal DF approach. Since then there have been
many developments in terms of both using the DF concept for other types of signals and the problems,
or phenomena, which the DF can be used to study. Our considerations here will be primarily concerned
with using the DF or S (sinusoidal) DF as it is often named.

Consider again the autonomous feedback system shown in Fig. 1.1 containing a single static non-
linearity n(x) and linear dynamics given by the transfer function G(s) = Gc(s)G1(s). If a limit cycle
exists in the autonomous system with the output c(t) approximately sinusoidal, then the input x(t) to
the nonlinearity might also be expected to be sinusoidal. If this assumption is made the fundamental
output of the nonlinearity can be calculated and conditions for the sinusoidal self-oscillation found, if the
higher harmonics generated at the nonlinearity output are neglected. This is the concept of harmonic
balance, in this case balancing the first harmonic only, which had previously been used by Physicists to
investigate such aspects as the generation of oscillations in electronic circuits. The DF of a nonlinearity
was therefore defined as its gain to a sinusoid, that is the ratio of the fundamental of the output to the
amplitude of the sinusoidal input. Since the output fundamental may not be in phase with the sinusoidal
input the DF may be complex.

3.2 Evaluation of the Describing Function

Assuming that in Fig. 1.1 x(t) = a cos θ , where θ = ωt and n(x) is a symmetrical odd nonlinearity, then
the output y(t) will be given by the Fourier series.

y(θ) =
∞∑
n=0

an cos (nθ) + bn sin (nθ)

where an = bn = 0 for n even, and in particular

a1 =
1
π

∫ 2π

0

y(θ) cos θ dθ (3.1)

and

b1 =
1
π

∫ 2π

0

y(θ) sin θ dθ (3.2)

The fundamental output from the nonlinearity is a1 cos θ+ b1 sin θ, so that the DF is given by N(a) =
(a1 − jb1)/a, which may be written N(a) = Np(a) + jNq(a) where Np(a) = a1/a and Nq(a) = −b1/a.

Alternatively, in polar co-ordinates, one can write N(a) = M(a)ejψ(a), where M(a) = (a2
1 + b21)

1/2/a
and ψ(a) = − tan (b1/a1).

If n(x) is single valued it is easily shown that b1 = 0 and

a1 =
4
π

∫ π/2

0

y(θ) cos θ dθ (3.3)

giving

N(a) =
a1

a
=

4
aπ

∫ π/2

0

y(θ) cos θ dθ (3.4)

Although eqns 3.1 and 3.2 are an obvious approach to the evaluation of the fundamental output of a
nonlinearity, they are somewhat indirect, in that one must first determine the output waveform y(θ) from
the known nonlinear characteristic and sinusoidal input waveform. This is avoided if the substitution
θ = cos−1(x/a) is made; in which case, after some simple manipulations, it can be shown that

a1 =
4
a

∫ a

0

xnp(x)p(x) dx (3.5)

b1 =
4
aπ

∫ a

0

nq(x) dx (3.6)
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The function p(x) is the amplitude probability density function of the input sinusoidal signal and is
given by

p(x) =
1
π

(a2 − x2)−1/2

and the nonlinear characteristics np(x) and nq(x), called the in-phase and quadrature nonlinearities, are
defined by

np(x) = [n1(x) + n2(x)] /2

and

nq(x) = [n2(x)− n1(x)] /2

where n1(x) and n2(x) are the portions of a double valued characteristic traversed by the input for ẋ > 0
and ẋ < 0 respectively. For a single-valued characteristic, n1(x) = n2(x), so that np(x) = n(x) and
nq(x) = 0. Also integrating eqn. 3.5 by parts gives

a1 =
4
π
n(0+) +

4
aπ

∫ a

0

n′(x)(a2 − x2)1/2 dx (3.7)

where n′(x) = dn(x)/dx and n(0+) = lim
ε→0

n(ε) . This is a useful expression for obtaining DFs for linear
segmented characteristics. An additional advantage of using eqns 3.5 and 3.6 is that they easily yield
proofs of some interesting properties of the DF for symmetrical odd nonlinearities. These include the
following:

1. For a double-valued nonlinearity the quadrature component Nq(a) is proportional to the area of
the nonlinearity loop, that is:
Nq(a) = −1/(a2π) (area of nonlinearity loop)

2. For two single-valued nonlinearities nα(x) and nβ(x) , with nα(x) < nβ(x) for all 0 < x < b, then
Nα(a) < Nβ(a) for all input amplitudes a less than b.

3. For the sector bounded single-valued nonlinearity that is k1x < n(x) < k2(x) for all 0 < x < b then
k1 < N(a) < k2 for all input amplitudes a less than b. This is the sector property of the DF and it
also applies for a double-valued nonlinearity if N(a) is replaced by M(a).

When the nonlinearity is single valued, it also follows directly from the properties of Fourier series
that the DF, N(a), may also be defined as:

1. The variable gain, K, having the same sinusoidal input as the nonlinearity, which minimizes the
mean squared value of the error between the output from the nonlinearity and that from the variable
gain

2. The covariance of the input sinusoid and the nonlinearity output divided by the variance of the
input

3.3 DFs of some common nonlinearities

Tables of DFs for a variety of nonlinear characteristics can be found in many books. However, to illustrate
the evaluation of the DF for some specific nonlinearities a few simple examples are considered below.

A cubic nonlinearity

For this nonlinearity n(x) = x3 and using eqn. 3.3 one has

a1 =
4
π

∫ π/2

0

(a cos θ)3 cos θ dθ =
4
π
a3

∫ π/2

0

cos4 θ dθ =
4
π
a3

∫ π/2

0

(
3
8

+
cos 2θ

2
+

cos 4θ
8

)
dθ =

3a3

4

giving N(a) = 3a2

4 .
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Alternatively from eqn. 3.5

a1 =
4
a

∫ a

0

x4p(x) dx

The integral µn =
∫ +∞
−∞ xnp(x) dx is known as the nth moment of the probability density function and

for the sinusoidal distribution with p(x) = (1/π)(a2 − x2)−1/2 , µn has the value

µn =
{

0 for n odd
an (n−1)

n
n−3
n−2 . . .

1
2 for n even

Therefore N(a) = 4
a2

1
2

3
4

1
2 a

4 = 3a2

4 as before.

This nonlinearity is often referred to as a hard spring characteristic as its output increases more than
linearly with the input. As expected, since the DF is a ‘gain measure’ this also increases with input
amplitude.

An ideal saturation nonlinearity

Fig. 3.1 shows an ideal saturation characteristic together with the nonlinearity input, taken as a sin θ ,
and the corresponding output waveform y(θ).

slope m

α
π

0 0 θ

-m δ

m δ

Figure 3.1: Ideal saturation and input and output waveforms.

Again, because of the symmetry of the nonlinearity the fundamental of the output can be evaluated
from the integral over a quarter period so that

N(a) =
4
aπ

∫ π/2

0

y(θ) sin θ dθ

which for a > δ gives

N(a) =
4
aπ

[∫ α

0

ma sin2 θ dθ +
∫ π/2

α

mδ sin θ dθ

]
and with α = sin−1δ/a evaluation of the integrals gives

N(a) =
4m
π

[
α

2
− sin 2α

4
+ δ cosα

]
which on substituting for δ gives the result

N(a) =
m

π
(2α+ sin 2α)

Since for a < δ the characteristic is linear giving N(a) = m, the DF for ideal saturation may be
written as mNs(δ/a) where

Ns(δ/a) =
{

1 for a < δ
(1/π) [2α+ sin 2α] for a > δ
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Alternatively one can evaluate, N(a), using eqn. 3.7, which yields

N(a) =
a1

a
=

4
a2π

∫ δ

0

m(a2 − x2)1/2 dx

Using the substitution x = a sin θ , this yields

N(a) =
4m
π

∫ α

0

cos2 θ dθ =
m

π
(2α+ sin 2α), as before.

This nonlinearity is often referred to as a soft spring characteristic and if the describing function, N(a),
is plotted against a it will be seen to decrease with a for a > δ.

Relay with dead zone and hysteresis

The characteristic of a relay with dead zone and hysteresis is shown in Fig. 3.3 together with the input,
assumed equal to a cos θ, and the corresponding output waveforms.

δ−∆ δ+∆

h

−π/2

π/2

θ

0

θa cos

−π/2 π/2

0−α β
θ

Figure 3.2: Relay with dead zone and hysteresis together with input and output waveforms.

Using eqns 3.1 and 3.2 over the interval −π/2 to π/2 and assuming that the input amplitude a is
greater than δ + ∆, gives

a1 =
2
π

∫ β

−α
h cos θ dθ =

2h
π

(sinβ + sinα)

where α = cos−1 [(δ −∆)/a] and β = cos−1 [(δ + ∆)/a] and,

b1 =
2
π

∫ β

−α
h sin θ dθ =

2h
π

(
δ + ∆
a

− δ −∆
a

)
=

4h∆
aπ

N(a) =
2h
a2π

{ [
a2 − (δ + ∆)2

](1/2)
+

[
a2 − (δ −∆)2

]1/2} − j4h∆
a2π

. (3.8)
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For the alternative approach one must first obtain the in-phase and quadrature nonlinearities which
are shown in Fig. 3.3. Using eqns 3.5 and 3.6 one obtains

a1 =
4
a

∫ δ+∆

δ−∆

x
h

2
p(x) dx+

∫ a

δ+∆

xhp(x) dx =
2h
aπ

{ [
a2 − (δ + ∆)2

]1/2
+

[
a2 − (δ −∆)2

]1/2}
b1 =

4
aπ

∫ δ+∆

δ−∆

h

2
dx =

4h∆
aπ

=
Area of nonlinearity loop

aπ
, as before

δ−∆ δ+∆ xx

h

h/2

δ−∆ δ+∆

(x)np nq(x)

Figure 3.3: In-phase and quadrature nonlinearities.

The DFs for other relay characteristics can easily be found from this result. For no hysteresis, ∆ = 0;
for no dead zone, δ = 0; and for an ideal relay, ∆ = δ = 0.

3.3.1 Further Comments

It is easily shown that the DF of two nonlinearities in parallel is equal to the sum of their individual DFs,
a result which is very useful for determining DFs, particularly of linear segmented characteristics with
multiple break points. For example the DF of an ideal dead zone characteristic can easily be found from
that for the ideal saturation of section 3.3, since an ideal dead zone with slope m outside the dead zone is
simply a linear element of slope m – the ideal saturation, that is a gain of m in parallel with minus satu-
ration. Several procedures are available for obtaining approximations for the DF of a given nonlinearity
either by numerical integration or by evaluation of the DF of an approximating nonlinear characteristic
defined, for example, by a polynomial, a quantized characteristic, a linear segmented characteristic or a
Fourier series.

3.4 Determination of the Stability of a Feedback Loop

Investigation of the stability of the nonlinear feedback loop of Fig. 1.1 using the DF method is based on
the following fact. If n(x) is an odd symmetrical characteristic lying within lines of slope k1 and k2, then
the only form of instability the feedback loop can possess is a limit cycle provided that the linear system
with n(x) replaced by a gain K is stable for all gains between k1 and k2. To investigate the possibility
of limit cycles in the autonomous closed loop system the nonlinearity n(x) is replaced by its DF N(a).
In this case the open loop gain to a sinusoid is N(a)G(jω) and a limit cycle will exist if

N(a)G(jω) = −1 (3.9)

where G(jω) = Gc(jω)G1(jω). This condition means that the first harmonic is balanced around the
closed loop. As G(jω) is a complex function of ω and N(a) may be a complex function of a, any
solution to eqn. 3.9 will yield both the frequency ω and amplitude a of a possible limit cycle. Various
approaches can be used to examine eqn. 3.9 with the choice affected to some extent by the problem.
For example, whether the nonlinearity is single- or double-valued or whether G(jω) is available from a
transfer function G(s) or as measured frequency response data. Typically the functions G(jω) and N(a)
are plotted separately on Bode, Nyquist, or Nichols diagrams. Alternatively, stability criteria such as
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the Hurwitz-Routh or root locus plots, when n(x) is single-valued, may be used for the characteristic
equation

1 +N(a)G(s) = 0

although here it should be remembered that the equation is appropriate only for s ≈ jω.
Fig. 3.4 illustrates the procedure on a Nyquist diagram, where sketches of possible G(jω) and C(a) =

−1/N(a) loci are plotted and shown intersecting for a = a0 and ω = ω0

Im

Re
0

C(a)

G(jω)

ωo

ao

Figure 3.4: Limit cycle found from intersection of G(jω) and C(a) on a Nyquist plot.

The DF method thus indicates that the system has a limit cycle with the input sinusoid to the
nonlinearity, x, equal to a0 sin (ω0t+ φ), where φ depends on the initial conditions. When the G(jω) and
C(a) loci do not intersect, the DF method predicts that no limit cycle will exist if the Nyquist stability
criterion is satisfied for G(jω) with respect to any point on the C(a) locus. Obviously, if the nonlinearity
has unit gain for small inputs, the point (−1, j0) will lie on C(a) and it may then be used as the critical
point, analogous to the situation for a linear system.

When the analysis indicates the system is stable its relative stability may be indicated by evaluating
its gain and phase margin. These can be found for every amplitude a on the C(a) locus, so it is usually
appropriate to use the minimum values. In some cases a nonlinear block also includes dynamics so that
its response is both amplitude and frequency dependent and its DF will be N(a, ω). A limit cycle will
then exist if G(jω) = −1/N(a, ω) = C(a, ω)

To check for possible solutions of this equation, a family of C(a, ω) loci, usually as functions of a for
fixed values of ω, may be drawn on the Nyquist diagram. If a solution is indicated then accurate values
for a and ω can be found using a nonlinear algebraic equation solver.

A further point of interest when a solution exists to eqn. 3.9 is whether the predicted limit cycle is
stable or unstable. This is obviously important if the control system is designed to have a limit cycle
operation, as is the case for an on-off temperature control system, but it may also be important in
other systems. If, for example, an unstable limit cycle condition is reached the signal amplitudes will
not become bounded but continue to grow. The stability of a limit cycle, provided only one solution is
predicted, can be assessed by applying the Nyquist stability criterion to points on the C(a) locus at both
sides of the solution point. If the stability criterion indicates instability (stability) for a point on C(a)
with a < a0 and stability (instability) for a point on C(a) with a > a0, then the limit cycle is stable
(unstable). The situation may be more complicated when multiple limit cycle solutions exist and the
above criterion is a necessary but not sufficient result for the stability of the limit cycle.

3.5 DF Accuracy

A specification for many control systems is that when perturbed by either a step input or disturbance they
should return within a finite time to a static equilibrium. For a nonlinear system this means checking that
(a) the response will not go unbounded and (b) no limit cycle will occur. Condition (a) can be checked
from linear methods as indicated previously and (b) by the DF method. The DF method, however,
can only do this approximately since it assumes any limit cycle will be sinusoidal at the input to the
nonlinearity, which will never be quite true in practice. This means that the DF method could indicate
incorrectly either the existence or non-existence of a limit cycle. It is therefore important to have some
idea of the validity and accuracy of any DF result.



3-8 MODULE 3. THE DESCRIBING FUNCTION

If the DF method predicts a limit cycle then its validity can normally be checked by assuming this
sinusoidal signal as the nonlinearity input and evaluating the percentage distortion, d, in the signal fed
back to the nonlinearity, assuming the loop open at the nonlinearity input. The distortion, d, is defined
by

d =
[
M.S. value of signal – M.S. value of fundamental harmonic

M.S. value of fundamental harmonic

]1/2

If the percentage distortion in this signal is less than 10% then the DF prediction should be valid. It has
also been shown theoretically that the estimate provided by the DF for the limit cycle frequency, ω, will
be more accurate than for the amplitude, a. Further, a is the estimate for the fundamental component
in the limit cycle not the peak amplitude. When the DF method does not predict a limit cycle it will be
correct if the C(a) and G(jω) loci are not near to intersecting. If this is not the case, however, one can
assume a possible limit cycle at the nonlinearity input with amplitude a and frequency ω corresponding
to the near intersection values of C(a) = G(jω). Using the distortion criterion given above a very low
value must exist for the prediction to be valid.

3.6 Concluding Remarks

The purpose of this section has been to provide a brief introduction to the sinusoidal DF and its use for
the study of feedback loop stability. It has many more possibly applications details of which can be found
in specialist texts. These include use in certain situations for loops with more than one nonlinearity,
assistance in compensator design, and determination of the closed loop frequency response. Describing
functions have been defined for other inputs and for multiple inputs which enable the approach to be
used to study the interesting and unique behavior modes, mentioned in section 1.3, which can occur in
nonlinear feedback systems. A few problems are given below where the DF calculated results can be
compared with the results from DYNAST simulations

3.7 Problems

Problem 1.
Evaluate the amplitude at the output, θ0, of the limit cycle in Problem 10 using the DF method. Compare
the exact frequency of oscillation with that given by the DF method.

Problem 2.
Evaluate the amplitude at the output, θ0, of the limit cycle in Problem 11 using the DF method. Compare
the exact frequency of oscillation with that given by the DF method.

Problem 3.
Simulate the following two differential equations to find any limit cycles and compare your solutions with
those given by the DF method.

1. ẍ− ẋ+ 0.25ẋ|ẋ|+ x = 0

2. ẍ− 0.5ẋ+ 2ẋ3 + x = 0
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Module overview.
This module shows how limit cycles can be found in a feedback loop both approximately by using the

DF method and exactly by the Tsypkin method when the nonlinearity is a relay. The problem of the
absolute stability of a feedback loop containing a single nonlinearity is discussed and some criteria that
provide sufficient but not necessary conditions are presented.

Module objectives. When you have completed this module you should be able to:

1. Find limit cycles approximately in a nonlinear feedback loop using the DF

2. Find limit cycles exactly in a feedback loop with a relay

3. Understand the principle of autotuning

4. Understand simple methods for finding the absolute stability of a nonlinear feedback loop

Module prerequisites. First year mathematics, Fourier series, differential equations, transfer func-
tions, frequency response, stability

4.1 Determination of Limit Cycles

Two examples are given in the following sections to illustrate limit cycle determination using the DF
method for a feedback loop containing a single nonlinear element. Both examples take the nonlinearity
to be a relay. In section 4.4 the Tsypkin method is presented which allows the exact evaluation of limit
cycles in relay systems. The first example takes a relay with dead zone as the nonlinear element and by
using results from the Tsypkin method one is able to show that when the nonlinearity output contains a
higher percentage of harmonics the DF solution becomes less accurate. The second example considers a
more recent use of the DF method whereby the intentional introduction of a limit cycle in a feedback loop

4-1
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is used to determine information about the process to be controlled in order to obtain suitable controller
parameters. Although the method is discussed with relevance to its popular usage in PID controllers, it
can also be used for other simple controllers, such as phase lead.

4.2 Feedback Loop Containing a Relay with Dead Zone

For this example the feedback loop of Fig. 1.1 is considered with n(x) a relay with dead zone and
G(s) = 2/s(s+1)2. From eqn. 3.8 with ∆ = 0, the DF for this relay, given by N(a) = 4h(a2− δ2)1/2/a2π
for a > δ, and is real because the nonlinearity is single valued. A graph of N(a) against a is given in
Fig. 4.1 and shows that N(a) starts at zero, when a = δ, increases to a maximum, with a value of 2h/πδ
at a = δ

√
2, then decreases toward zero for larger inputs. The C(a) locus, shown in Fig. 4.2, lies on

the negative real axis starting at −∞ and returning there after reaching a maximum value of −πδ/2h.
The frequency response of the given transfer function G(jω) crosses the negative real axis, as shown in
Fig. 4.2, at a frequency of tan−1 ω = 45◦, that is ω = 1 rad/sec , and therefore cuts the C(a) locus twice.

Ö210
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-d

d

h

( )a ( )b
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N a( )
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Figure 4.1: Ideal relay with dead zone and its DF.

Figure 4.2: Solutions for the two limit cycles, a1 unstable; a2 stable.

The two possible limit cycle amplitudes at this frequency can be found by solving

a2π

4h(a2 − δ2)1/2
= 1

which gives a = 1.04 and 3.86 for δ = 1 and h = π. Using the stability criterion given in section 3.4 it is
seen that the smallest amplitude limit cycle is unstable and the larger one is stable. If a condition similar
to the lower amplitude limit cycle is excited in the system, an oscillation will build up and stabilize at
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the higher amplitude limit cycle. The exact frequencies of the limit cycles for the smaller and larger
amplitudes are 0.709 and 0.989 respectively. Although the transfer function is a good low pass filter, the
frequency of the smallest amplitude (unstable) limit cycle is not predicted accurately because the output
from the relay, a waveform with narrow pulses, is more highly distorted.

If the transfer function of G(s) is K/s(s+ 1)2, then no limit cycle will exist in the feedback loop, and
it will be stable if

K

ω(1 + ω2)
<
πd

2h
ω=1

that is, K < πδ/h. If δ = 1 and h = π, K < 1 which may be compared with the exact result for stability
of K < 0.96.

4.3 Autotuning in Process Control

In 1943 Ziegler and Nichols (Z-N), as discussed in Part III section 8.4, suggested two approaches for
tuning the parameters of a PID controller. The first method described, the loop cycling method, is based
on testing the plant in a closed loop with the PID controller in the proportional mode. The proportional
gain is increased until the loop starts to oscillate and then the value of gain and the oscillation frequency
are measured. Formulae were given, see Part III Table 8.4.1 for setting the controller parameters based
on the gain, named the critical gain, Kc, and the frequency called the critical frequency, ωc. There
are basically two aspects to this method (a) finding Kc and ωc , and then (b) deciding how to use this
information about the plant in setting the controller parameters. In recent years many further formulae
have been given for setting the controller parameters from knowledge of ωc and Kc than the one given
by Z-N.

Assuming that the plant has a linear transfer function G1(s), then Kc is its gain margin and ωc the
frequency at which its phase shift is 180◦. Performing the Z-N test in practice to find the parameters can
prove difficult. If, for example, the plant has a linear transfer function and the gain is adjusted too quickly,
a large amplitude oscillation may start to build up. Also the oscillation amplitude will never stabilize
due to the presence of noise unless some nonlinear operation takes place in the loop. In 1984 Astrom and
Hagglund therefore suggested obtaining the required information by replacing the proportional control
by a relay element to control the amplitude of the oscillation, strictly limit cycle.

Consider therefore the feedback loop of Fig. 1.1 with n(x) an ideal relay, Gc(s) = 1, and the plant
with a transfer function G1(s) = 10/(s + 1)3. The C(a) locus, −1/N(a) = −aπ/4h, and the Nyquist
locus G(jω) intersect as shown in Fig. 4.3. The values of a and ω at the intersection can be calculated
from

− aπ

4h
=

10
(1 + jω)3

, which can be written

Arg
10

(1 + jω)3
= 180◦ and

aπ

4h
=

10
(1 + ω2)3/2

. (4.1)

The solutions for ωc from eqns 4.1 is tan−1 ωc = 60◦, giving ωc =
√

3, and for a one has a = 5h/π,
giving the gain through the relay N(a), which is the critical gain Kc = 0.8. Because the DF solution is
approximate, the actual measured frequency of oscillation will differ from this value by an amount which
will be smaller the closer the oscillation is to a sinusoid. The exact frequency of oscillation, which will of
course be the measured value, is 1.708 rads/sec which differs from ωc by a relatively small amount. For
a square wave input to the plant at this frequency, the plant output signal will be distorted by a small
percentage.

In the practical situation where a is measured, Kc is then calculated using the relay DF expression,
that is Kc = 4h/aπ. Although a should be the fundamental of the waveform the single measurement of
peak amplitude, A, is normally made so that a is taken equal to A. In this example the distortion is very
small and the accuracy of the estimates obtained for Kc and ωc will be more affected by measurement
errors on noisy signals than the error produced in using their values in the DF approximation equations.

If the relay has an hysteresis of ∆, then putting δ = 0 in eqn. 3.8 gives

N(a) =
4h(a2 −∆2)1/2

a2π
− j

4h∆
a2π
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Figure 4.3: Nyquist plot for 10/(s+ 1)3 and C(a) loci for ∆ = 0 and 4h/π.

from which

C(a) =
−1
N(a)

= − π

4h

[
(a2 −∆2)1/2 + j∆

]
. (4.2)

Thus on the Nyquist plot, C(a) is a line parallel to the real axis at a distance π∆/4h below it, as
shown in Fig. 4.3 for ∆ = 1 and h = π/4 giving C(a) = −(a2 − 1)1/2 − j. If the same transfer function
is used for the plant, then the limit cycle solution is given by

−(a2 − 1)1/2 − j =
10

(1 + jω)3

where ω = 1.266, which compares with an exact solution value of 1.254, and a = 1.91. It is easily shown
from the stability criterion that these limit cycles are stable.

4.4 The exact evaluation of limit cycles in relay systems

In this section an exact method for the evaluation of limit cycles and their stability in a feedback loop with
a relay is discussed. The method makes use of the fact that the output from a relay is not continuously
affected by its input. The input only controls the switching instants of the relay and has no further effect
on the output until it causes another switching. Therefore to investigate limit cycles in relay systems
the analysis starts by assuming a typical relay output waveform, which contrasts with the DF method
where an approximate nonlinearity input waveform is assumed. The output waveform, y(t), for a relay
with dead zone and hysteresis, as shown in Fig. 3.2, may be assumed to take the form shown in Fig. 4.4,
where T and ∆t are unknown and the initial relay switching from 0 to h takes place at time t1.

Then to find a possible limit cycle in the autonomous system of Fig. 1.1, where n(x) is the relay and
G(s) = Gc(s)G1(s), the steady state response of G(s) to this waveform has to be determined. Several
slightly different approaches are possible but here, that used by Tsypkin, primarily because for a relay
with no dead zone it allows a simple comparison with the DF method, is presented. If y(t) is expanded
in a Fourier series then one obtains

y(t) =
2h
π

∞∑
n=1(2)

1
n
{ sin(nω∆t) cos[nω(t− t1)] + [1− cos(nω∆t) sin[nω(t− t1)]]}

The output c(t) is then given by

c(t) =
2h
π

∞∑
n=1(2)

gn
n
{ sin(nω∆t) cos [nω(t− t1) + φn] + [1− cos(nω∆t) sin [nω(t− t1) + φn]]}
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Figure 4.4: Relay output waveform.

where
gn = |G(jωn)| and φn = 6 G(jωn)

Using the A loci, defined by

Ag(θ, ω) = ReAg(θ, ω) + jImAg(θ, ω)

ReAg(θ, ω) =
∞∑

n=1(2)

Vg(nω) sin(nθ) + Ug(nω) cos(nθ) (4.3)

ImAg(θ, ω) =
∞∑

n=1(2)

1
n
{Vg(nω) cos(nθ)− Vg(nω) sin(nθ)} (4.4)

where UG(nω) = gn cosφn and VG(nω) = gm sinφn, then the expression for c(t) can be written as

c(t) =
2h
π
{ImAg(−ωt+ ωt1, ω)− ImAg(−ωt+ ωt1 + ω∆t, ω)}

Similarly, ċ(t) can be shown to be given by

ċ(t) =
2ωh
π

{ReAg(−ωt+ ωt1, ω)− ReAg(−ωt+ ωt1 + ω∆t, ω)}

To satisfy the above-mentioned switching conditions at times t1 and t1 + ∆t, assuming t1 to be zero
without loss of generality, and bearing in mind that for the autonomous system x(t) = −c(t), ẋ(t1), should
be positive and ẋ(t1 + ∆t) negative, it is necessary that

Ag(0, ω)−Ag(ω∆t, ω) must have IP = −π(δ + ∆)/2h,RP < 0
Ag(0, ω)−Ag(−ω∆t, ω) must have IP = −π(δ −∆)/2h,RP < 0

where RP and IP denote the real and imaginary parts, respectively. The IP expressions give two nonlinear
algebraic equations which, if they have solutions, yield the unknown parameters ∆t and T = 2π/ω of
possible limit cycles. Using these solution values, the corresponding relay input waveform x(t) can be
found, from which the RP conditions can be checked, as can the continuity conditions

x(t) > δ −∆, for 0 < t < ∆t and − (δ + ∆) < x(t) < (δ + ∆), for ∆t < t < T/2

to confirm that the relay input signal does not produce switchings other than those assumed.
Since closed-form expressions exist for the A loci of simple transfer functions, analytical solutions

can be obtained for the exact frequencies 1/T of limit cycles for some specific systems, especially those
in which the relay has no dead zone. Then ω∆t = π and the above two nonlinear algebraic equations
are identical, since only one unknown, T , remains. When the nonlinear algebraic equations are solved
computationally the closed-form expressions for the A loci may be used, or their value may be determined
by taking a finite number of terms in the series of eqns 4.3 and 4.4. Another interesting feature of this
method is that it is also possible to determine whether a solution to the nonlinear algebraic equations
corresponds to a stable or an unstable limit cycle, although this will not be pursued here.
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4.5 Two Examples

As applications of this method two simple examples are considered.

Relay with no dead zone

Consider a relay with no dead zone, that is δ = 0, so that one has the single relationship

Ag(0, ω) must have IP = −π∆/4h,RP < 0

which yields the frequency of the limit cycle. If G(s) = K/s(1 + sτ), then the above expression gives the
equation

π/2λ− tanh(π/2λ) = ∆/hKτ

where λ = ωτ for the limit cycle frequency ω. This compares with the DF solution for the same problem,
which yields the equation

λ(1 + λ2) = 4hKτ/π∆

It is also interesting to note that, since the line with RP < 0 and IP = −π∆/4h corresponds to C(a),
the negative reciprocal of the DF, the exact solution and approximate DF solution can be compared
graphically. This is done in Fig. 4.5, which shows the G(jω) and AG(0, ω) loci for K = τ = 1 and the
C(a) locus for h/∆ = 3. The exact limit cycle frequency is 1.365 rad s−1, and the approximate solution
using the DF method is 1.352 rad s−1.
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Figure 4.5: Graphical solution for limit cycle from G(jω) and AG(0, ω) loci.

The accuracy of the DF result may be used to confirm the filter hypothesis, since it can be shown
that as τ is increased, thus making G(s) a better low-pass filter, the error in the DF solution for the
frequency of the limit cycle decreases.

Relay with dead zone

Consider as a second example a feedback system having a relay with output ±1, δ = 1 and ∆ = 0, and a
transfer function G(s) = 5/s(s2 + 3s+ 1). Use of the DF method indicates that the system has two limit
cycles, both of frequency 1.000 rads/s, with the larger amplitude one stable and the smaller amplitude
one unstable. Two nonlinear algebraic equations need to be solved using the Tsypkin method to find the
frequency and pulse width of any limit cycles. Software with graphical facilities is available to do this and
the two limit cycles shown in Figs. 4.6 and 4.7 were found. The larger amplitude limit cycle of Fig. 4.6 is
shown by the method to be stable with frequency 0.988 rads/s and pulse width 1.967 s. and the smaller
amplitude one of Fig. 4.7 with frequency 0.736 rads/s and pulse width 0.716 s. is unstable. It should also
be noted that the larger amplitude limit cycle is much closer to a sinusoid so that its frequency is nearer
the DF solution of 1.000 rads/s.
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Figure 4.6: Graph of larger limit cycle solution.

4.6 Absolute stability criteria

A very important question in control is to be able to ascertain the stability of a feedback system. The
problem for linear systems was examined over a century ago in Cambridge, England, by Routh who
published his famous work on the stability of motion in 1877. As a result of this work and further
contributions, most notably by Nyquist, several approaches are now available for determining the stability
of a feedback loop such as Fig. 1.1, as described in Part III module 5, when the nonlinearity n(x) is replaced
by a linear gain K. The methods provide necessary and sufficient conditions for stability. The first work
on the stability of nonlinear systems by Lyapunov was published in 1892, and since that time there have
been many attempts to determine necessary and sufficient conditions for the stability of the autonomous
feedback system, that is r = 0, of Fig. 1.1 Lyapunov formulated an approach for determining sufficient
conditions but the difficulty of his method is that it requires determination of a function of the system
states which then must be shown to satisfy certain properties. There is no general approach for finding
a suitable function and further when one is found it does not guarantee that a ’better’ function does not
exist which will prove stability in a larger domain in the state space. The problem has therefore been
researched by many people with the objective of obtaining conditions for stability which are relatively
easy to use.

Several frequency domain results giving sufficient, but not necessary, conditions for stability have
been determined which use limited information about the nonlinearity, n(x), typically its sector bounds
or the sector bounds of its slope. The nonlinearity n(x) has sector bounds (k1, k2), that is, it is confined
between the straight lines k1 x and k2 x if k1x

2 < xn(x) < k2x
2 for all x. Similarly it has slope bounds

(k′1, k
′
2) if k′1x

2 < xn′(x) < k′2x
2, where n′(x) = dn(x)/dx. The Popov criterion states that a sufficient

condition for the autonomous system of Fig 1.1 to be stable if G(s) is stable and G(∞) > −k−1 is that
a real number q > 0 can be found such that for all ω

Re [(1 + jω)q G(jω)] + k−1 > 0

where the nonlinearity n(x) lies in the sector (0, k). The theorem has the simple graphical interpretation
shown in Fig. 4.8 where for the system to be stable a line of slope q−1 can be drawn through the point
−k−1 so that the Popov locus G∗(jω) lies to the right of the line. The Popov locus is given by

G∗(jω) = Re [G(jω)] + jωIm [G(jω)]

The circle criterion can be obtained from the Popov criterion but its validity, using different analytical
approaches, has been extended to cover the situation of a bounded input, r, to the system of Fig 1.1.
Satisfaction of the circle criterion guarantees that the autonomous system is absolutely stable and the
system with bounded input has a bounded output. The criterion uses the Nyquist locus, G(jω), and for
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Figure 4.7: Graph of smaller limit cycle solution.

stability of the system of Fig. 1.1 with n(x) in the sector (k1, k2) it is required that G(jω) for all real ω has
the following properties. If the circle C has its diameter from −1/k1 to −1/k2 on the negative real axis
of the Nyquist diagram, then for (i) k1k2 < 0, G(jω) should be entirely within C, (ii) if k1k2 > 0, G(jω)
should lie entirely outside and not encircle C and (iii) if k1 = 0 or k2 = 0, G(jω) lies entirely to the right
of −1/k2 or to the left of −1/k1. The situation for stability in case (ii) is shown in Fig. 4.9.

Two simple transformations are also useful for investigating the absolute stability of the autonomous
system of Fig. 1.1, assuming Gc(s) = 1 and G(s) = G1(s). Feeding forward around the nonlinearity and
backward around the dynamics G(s), through a constant gain ρ, whose effects cancel out, changes the
nonlinearity sector to (k1 − ρ, k2 − ρ) and the linear transfer function to G(s)/[1 + ρG(s)]. Alternatively
feeding backward around n(x) and forward around G(s) changes the nonlinearity sector to (k1/(1−k1ρ),
(k2/(1− k2ρ)) and the linear transfer function to ρ+G(s).

Prior to the derivation of these frequency domain results Aizermann had put forward a conjecture
that the autonomous system of Fig. 1.1 would be stable for a nonlinearity sector bounded by (k1, k2)
if for k1 and k2 > 0 the Nyquist locus G(jω) of a stable transfer function did not touch or encircle
the line between −1/k1 and −1/k2, which is of course the diameter of the circle of Fig.4.9 and also the
bounds for the DF of any single-valued nonlinearity within the sector. Several counter examples have
been put forward to show that the conjecture is incorrect; however, it can be shown that if the conjecture
is satisfied the system may possess a limit cycle but its output cannot go unbounded. For a monotonic
nonlinearity with slope bounds (k′1, k

′
2) and k′1 k

′
2 > 0 an off axis circle criterion exists. This states that

the autonomous system of Fig. 1.1 with a nonlinearity satisfying the aforementioned conditions will be
absolutely stable if the Nyquist locus of a stable transfer function does not encircle any circle centered
off the real axis and which intercepts it at (−1/k′2,−1/k′2).

There are two viewpoints on the above absolute stability criteria. First, those of the engineer, who
may argue that the results the criteria produce are too conservative if he wishes to apply them to a
specific system with a well-defined nonlinearity for which much more is known about it than its sector
bounds. Second, those of the theoretician, who may argue that the results are very robust in the sense
that they guarantee stability for a system with a poorly defined nonlinearity, that is any nonlinearity
satisfying certain sector properties.

4.7 Conclusions on Part IV

The purpose of Part IV has been to provide a brief introduction to nonlinearity and some methods for the
analysis of a nonlinear feedback system with a single, or possibly more, nonlinearities. The methods that
have been covered are those which should be easily understandable based on Part III of the course. To a
large extent they may be regarded as simple extensions of the basic linear control ideas presented in Part
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III to enable some understanding of the effect nonlinearity might have on a simple feedback loop. Further
the use of simulation studies provides an excellent approach to understanding the principles involved and
their range of applicability. To assist the reader in this way several problems are given in for which the
theoretical results can be checked by simulations in DYNAST. To learn more of the methods presented
in Part IV and many others the reader is referred to the books given in the bibliography.

4.8 Problems

Problem 1.
For the autotuning procedure described in section 3.3 consider an ideal relay with output ±1 and a plant

with transfer function
4
s
e−s. Simulate the system and find the amplitude and frequency of the limit cycle.

Now calculate their values using the DF method. Why does the DF method despite a triangular rather
than sinusoidal oscillation give the correct frequency. Remembering that the DF method predicts the
fundamental of the oscillation amplitude calculate the corresponding amplitude of a triangular waveform.
Does this agree with the measured amplitude?

Problem 2.

Consider again the autotuning experiment of Problem 1 but change the plant transfer function to
4e−sτ

1 + sT
.

In order to study autotuning for this process you can normalize the frequency by taking a new ’s’ equal to
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sT and get the normalized transfer function
4e−sρ

1 + s
where ρ = τ/T . Simulate the system for ρ in the range

0.1 to 10. Note how the waveform of the limit cycle changes. Plot a graph of the DF method solution
for the frequency of oscillation as a function of ρ and mark on it some measured values for comparison.
Explain the results. How could you get better estimates from the DF method for the oscillation amplitude
for small and large ρ.

Problem 3.
An electromechanical system has a transfer function of

1
s(1 + s)(1 + sT )

. Set up an autotuning simulation

with an ideal relay and use the measured oscillation amplitude to calculate the gain margin for values of
T in the range 0.1 to 10. Plot a graph of the exact calculated values for comparison.

Problem 4.
A simple feedback control system has unity negative feedback and a forward path consisting of a sym-

metrical odd nonlinear element and a plant with transfer function
1

s(1 + s)2
. The nonlinear element is

linear segmented having a slope of 0.5 from the origin to x = 0.6, a slope of 4 from x = 0.6 to x = 0.7,
and a slope of 1 thereafter. A constant disturbance exists at the plant input. Simulate the system for
step inputs of 4 units as the value of the constant disturbance is increased from 0 to unity. Explain why
a limit cycle exists over a range of the constant disturbance values.

Problem 5.
Simulate an autotuning experiment with an ideal relay for the following three transfer functions:

(i)
4

(s+ 1)3

(ii)
1

s(s+ 1)2

(iii)
2

s(s+ 1)(s+ 4)

Determine the critical frequency and critical gain from the measured results. Compare these with the
calculated values and explain why they are in good agreement.

Problem 6.
Repeat the simulations of Problem 5 but this time using a relay with hysteresis. Calculate using the DF
method the limit cycle frequency for all three transfer functions for the relay having ∆/h ratio of (i) 0.2
and (ii) 0.4. Compare your results with the measured values from the simulations.

Problem 7.
In doing autotuning testing if there is time to experiment then one can always get additional or better
information by adding additional transfer functions to the loop. Here the Problem is to get better
estimates for the critical frequency and critical gain of the normalized transfer function of Problem 2
with ρ = 1. Do this by adding a filter with transfer function

sω0

s2 + 0.2sω0 + ω2
0

before the relay. If you

guess the correct value of the critical frequency for ω0 then there will be no phase shift through the
filter and the limit cycle will be almost sinusoidal. For typical process plant transfer functions it can be
shown that the critical frequency will be slightly higher than the measured limit cycle frequency. Use this
information to choose ω0 after performing the autotuning test and then do the autotuning simulations
with the filter. See how many iterations it takes you to get ω0 and the critical gain to within 1% of their
exact values.

Problem 8.
Describe how you would perform an autotuning test to obtain the frequency and corresponding gain for

where the transfer function
1

(s+ 1)(s+ 4)
has a phase shift of 90◦. Do the simulation and compare your

answers with the exact values.
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