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Module 1

Introduction into System Control

Module units
1.1 Control objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Open loop vs closed loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

1.3 The basic structure of closed-loop systems . . . . . . . . . . . . . . . . . . . 1-4

Module overview. This is an introductory module to explain the structures, basic components and
terminology of control systems. The difference between open-loop and closed-loop control is explained
by a room-heating system. The user can explore the principles of control systems using several virtual
experiments with a level control system.

Module objectives. When you have completed this module you should be able to:

1. Understand the operation of a control system.

2. Understand how a control system works.

3. Distinguish between open-loop and closed-loop control.

4. Know the main components of a control system.

Module prerequisites. Basics in dynamical system models and modelling. Describing dynamical sys-
tems by block diagrams.

1.1 Control objectives

The use of automatic control systems permeates life in all advanced societies today. Such systems act as
a catalyst for promoting progress and development. Control systems are an integral component of any
industrial society and are necessary for the production of goods. Technological developments have made
it possible to travel to the moon and outer space. The successful production of chemical components
depends on the proper functioning of a large number of control systems used in lines for their production.
As this fact is seldom apparent control engineering is often called a hidden technology.

Control engineering deals with the task of affecting a temporally changing process in such a way that
the process behaves in a given way. Such tasks are not only found in technology, but also in daily life in
very large number. For example the ambient temperature in a room must be held between given limits,
despite temporal changes due to sun exposure and other influences. The grip arm of a robot must move
along the edge of a workpiece or be led as fast as possible from one point to another in order to grip a
workpiece. The same applies to the grip arm of a crane, which is to carry bricks to a certain place on
the building site.

1-1



1-2 MODULE 1. INTRODUCTION INTO SYSTEM CONTROL

In all of these cases, a manipulated variable must be selected in such a way that the given goal is achieved.
As this selection depends on how well the goal is reached, a control loop arises that consists of the given
process and a new feature, the controller. In the first example, the room was the process and the thermal
valve the automatic controller, which measures the current air temperature and lets more or less heat into
the heater depending on the deviation from the target temperature. In the robot example the control
equipment has the task of steering the grip arm on a given course and/or to a given point, whereby the
control is based on information that is supplied by the sensors installed on the grip arm. In the third
example, the automatic controller is the crane operator, who determines the current grip arm position
by sight and steers the crane.

1.2 Open loop vs closed loop

The terms open-loop control and closed-loop control are often not clearly distinguished. Therefore, the
difference between open-loop control and closed-loop control is demonstrated in the following example
of a room heating system. In the case of open-loop control of the room temperature ϑR according to
Figure 1.2.1 the outdoor temperature ϑA will be measured by a temperature sensor and fed into a control
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Figure 1.2.1: Open-loop control of a room heating system

device. In the case of changes in the outdoor temperature ϑA (=̂ disturbance z′2) the control device
adjusts the heating flow Q according to the characteristic Q = f(ϑA) of Figure 1.2.2 using the motor
M and the valve V. The slope of this characteristic can be tuned at the control device. If the room
temperature ϑR is changed by opening a window (=̂ disturbance z′1) this will not influence the position
of the valve, because only the outdoor temperature will influence the heating flow. This control principle
will not compensate the effects of all disturbances.

�
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�

Figure 1.2.2: Characteristic of a heating control device for three different tuning sets (1, 2, 3)

In the case of closed-loop control of the room temperature as shown in Figure 1.2.3 the room temperature
ϑR is measured and compared with the set-point value w, (e.g. w = 20◦C). If the room temperature
deviates from the given set-point value, a controller (C) alters the heat flow Q. All changes of the room
temperature ϑR, e.g. caused by opening the window or by solar radiation, are detected by the controller
and removed.
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Figure 1.2.3: Closed-loop control of a room heating system

The block diagrams of the open-loop and the closed-loop temperature control systems are shown in
Figures 1.2.4 and 1.2.5, and from these the difference between open- and closed-loop control is readily
apparent.
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Figure 1.2.4: Block diagram of the open-loop control of the heating system
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Figure 1.2.5: Block diagram of the closed-loop control of the heating system

The order of events to organise a closed-loop control is characterised by the following steps:

• Measurement of the controlled variable y,

• Calculation of the control error e = w−y (comparison of the controlled variable y with the set-point
value w),

• Processing of the control error such that by changing the manipulated variable u the control error
is reduced or removed.

Comparing open-loop control with closed-loop control the following differences are seen:

Closed-loop control
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• shows a closed-loop action (closed control loop);

• can counteract against disturbances (negative feedback);

• can become unstable, i.e. the controlled variable does not fade away, but grows (theoretically) to
an infinite value.

Open-loop control

• shows an open-loop action (controlled chain);

• can only counteract against disturbances, for which it has been designed; other disturbances cannot
be removed;

• cannot become unstable – as long as the controlled object is stable.

Summarising these properties we can define:

Systems in which the output quantity has no effect upon the process input quantity are called open-loop
control systems.

Systems in which the output has an effect upon the process input quantity in such a manner as to
maintain the desired output value are called closed-loop control systems.

1.3 The basic structure of closed-loop systems

In this section the general structure of control systems having a closed loop will be analysed in more
detail. According to Figure 1.3.1 a closed-loop system consists of the following four main components :

plant, measurement device, controller and actuator.

The signals in the closed loop will be denoted by symbols. It means:

y controlled variable (actual value) u manipulated variable
w command variable (set point), z disturbance.
e control error (deviation)

� � � � � � � �� � � � � � � � 	 �
�
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Figure 1.3.1: Basic block diagram of a control system

From this block diagram it can be realised that the task of controlling a process (plant) consists of holding
the controlled value y(t), acquired by the measurement device, either on a constant set point w(t) = const
(fixed command control) or tracking a time-varying reference variable w(t) �= const (variable command
control), independent of external disturbances z(t). This task is performed by a controller. The controller
processes the control error e(t) = w(t) − y(t), which is the difference between the set point w(t) and
the actual value y(t) of the controlled variable. The control signal uC(t) generated by the controller will
act via the actuator as the manipulated variable u(t) on the plant, such that it counteracts in the case
of fixed command control against the disturbance z(t). A closed-loop control system is characterised by
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this closed signal path, whereby the controller function consists in cancelling the occurring control error
e(t) or at least holding it very small.

Closed-loop control problems can be reduced to this basic structure. In most cases it is not possible to
identify all the basic functions clearly. It is therefore proper to aggregate a control loop only into two
blocks. Hereby we distinguish between the plant, which may also aggregate the measurement device, and
the controlling system that usually contains the actuator, as shown in Figure 1.3.2.

� � � � 	 � 
 
 � � �
� � � � � �

� �

� �

���
� �

� � � � � 	 � 

 � ! " 
 � � # 	

� � � � # 	  " � � �
 � ! " 
 � � # 	

�

�

� 
 " � �

Figure 1.3.2: Simplified block diagram of a closed-loop control system

From Figures 1.3.1 and 1.3.2 it becomes obvious that the comparison of the set-point value w and the
actual value y of the controlled variable for generating the control error e will become possible just through
the negative feedback of the controlled variable y. Only because of this negative sign at the summing point
of both signals is the control error generated, which is used by the controller to build the control signal
u using special mathematical functions (e.g. proportional, integrating, differentiating). The principle of
negative feedback, shortly also called the feedback principle, is a characteristic for every control loop.

The principles of closed-loop control are demonstrated by the following examples. Click on the links to
start the animation with your Web browser.

Demonstration Example 1.1
Water tank level without control and with disturbances

Demonstration Example 1.2
Water tank level without control and with set point

Demonstration Example 1.3
Water tank level manual control

Demonstration Example 1.4
Water tank level min/max control

Demonstration Example 1.5
Water tank level closed-loop control

Demonstration Example 1.6
Main components of a control system

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsControl/WaterLevel1.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsControl/WaterLevel2.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsControl/WaterLevel3.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsControl/WaterLevel4.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsControl/WaterLevel5.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsControl/WaterLevel6.html
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Module 2

The Laplace transform

Module units
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 Correspondences of the Laplace transform . . . . . . . . . . . . . . . . . . . 2-2

2.3 Main theorems of the Laplace transform . . . . . . . . . . . . . . . . . . . . 2-3

2.4 The inverse Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

2.5 Solving linear differential equations using the Laplace transform . . . . . . 2-8

2.6 Laplace transform of the impulse δ(t) and step σ(t) . . . . . . . . . . . . . . 2-12

Module overview. This module is a mathematical section to establish a base for the theory of control
systems. This is a tool and it is indispensable as most of linear system dynamics are described in a
mapped space that can only be understood when the main theorems of the Laplace transform are known.
The module contains only the essential results, which are explained by several examples from the area
of differential equations and their solutions. Some additional mathematical details can be found in the
mathematical appendix module. The correspondences of the Laplace transform are given in tabular form to
be simply used for the forward and back transformation. Special focus is put on the solution of differential
equations using the Laplace transform and on special signals, e.g. impulse or step.

Module objectives. When you have completed this module you should be able to:

1. Apply the Laplace transform to differential equations.

2. Solve linear differential equations.

3. Apply the main theorems of the Laplace transform.

4. Know how useful this techniques is to handle dynamical systems.

Module prerequisites. Mathematics: integrals, differential equations, complex numbers, rational and
analytical functions.

2.1 Definition

The Laplace transform is an important tool for solving systems of linear differential equations with
constant coefficients. The differential equations to be solved for control tasks normally fulfil the conditions
that must be met for taking the Laplace transform. The Laplace transform is an integral transformation,
which maps a large class of original functions f(t) in the time domain unambiguously reversible into

2-1
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image functions F (s) in the s domain. This mapping is performed via the Laplace integral of f(t), that
is

F (s) =

∞∫
0

f(t) e−stdt , (2.1.1)

where in the argument of the Laplace transform F (s) the complex variable s = σ + jω appears. For the
application of Eq. (2.1.1) to causal systems considered here the following two conditions for the time
function f(t) must be met:

1. f(t) = 0 for t < 0 ;

2. the integral in Eq. (2.1.1) must converge.

To show the correspondence between the original and mapped functions it is useful to use the operator
notation

F (s) = � [f(t)] .

Another possibility of correspondence is to use the sign •−−◦ in the following way:

F (s) •−−◦f(t) .

During the treatment of control systems usually the original function f(t) is a function of time. As the
complex variable s contains the frequency ω, the image function F (s) will often be called a frequency
function. Therefore, the Laplace transform allows one to make a transition from the ’time domain’ into
the ’frequency domain’ according to Eq. (2.1.1).

2.2 Correspondences of the Laplace transform

The so called back transformation or inverse Laplace transformation, i.e. the determination of the original
function from the mapped function, is described by the inverse integral shown in section A.1.2. For this
inverse Laplace transform an operator notation in the form

f(t) = �
−1[F (s)]

can be used.

The Laplace transformation is an unambiguously reversible mapping between the original function and
the mapped function. f(t) and F (s) are referred to as transform pairs and have a unique correspondence.
This is the reason why in most cases one does not need to use the inverse integral. A Correspondence
table, as shown in Table 2.2.1, will suffice. For the inverse transformation case ones goes from the right
column to the left column. In addition some theorems on the Laplace transform given in the next section
may be useful.

Table 2.2.1: Corresponding elements of the Laplace transform

Nr. time response f(t), f(t) = 0 for t < 0 Laplace transformed F (s)

1 δ pulse δ(t) 1

2 unit step σ(t)
1
s

3 t
1
s2

4 t2
2
s3

5
tn

n!
1

sn+1
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Table 2.2.1 continued

6 e−at 1
s+ a

7 te−at 1
(s+ a)2

8 t2e−at 2
(s+ a)3

9 tne−at n!
(s+ a)n+1

10 1 − e−at a

s(s+ a)

11
1
a2

(e−at − 1 + at)
1

s2(s+ a)

12 (1 − at) e−at s

(s+ a)2

13 sinω0t
ω0

s2 + ω2
0

14 cosω0t
s

s2 + ω2
0

15 e−at sinω0t
ω0

(s+ a)2 + ω2
0

16 e−at cosω0t
s+ a

(s+ a)2 + ω2
0

17
1
a
f

(
t

a

)
F (as) (a > 0)

18 eatf(t) F (s− a)

19
f(t− a) for t > a ≥ 0

0 for t < a
e−asF (s)

20 −t f(t)
dF (s)

ds

21 (−t)n f(t)
dnF (s)

dsn

22 f1(t) f2(t)
1

2πj

c+j∞∫
c−j∞

F1(p)F2(s− p) dp

2.3 Main theorems of the Laplace transform

a) Superposition theorem:

For arbitrary constants a1 and a2 it follows that

� {a1f1(t) + a2f2(t)} = a1F1(s) + a2F2(s) . (2.3.1)

The Laplace transformation is a linear integral transformation.

b) Similarity theorem:

For an arbitrary constant a > 0

� {f(at)} =
1
a
F
( s
a

)
(2.3.2)
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is valid. This follows from Eq. (2.1.1) by the substitution of τ = at.

c) Real Shifting theorem:
For an arbitrary constant a > 0

� {f(t− a)} = e−asF (s) (2.3.3)

is valid. This follows directly from Eq. (2.1.1) by the substitution of τ = t− a.

d) Complex Shifting theorem:
For an arbitrary constant a > 0

�
{
e−atf(t)

}
= F (s+ a) (2.3.4)

is valid. This follows directly from Eq. (2.1.1).

e) Derivative theorem:

For a causal function of time, f(t), for which the derivative for t > 0 exists, then as shown in
section A.1.3.1, one obtains

�

{
d f(t)

dt

}
= s F (s) − f(0+) , (2.3.5)

and in the case of multiple differentiation

�

{
dnf(t)
d tn

}
= snF (s) −

n∑
i=1

sn−i d
(i−1)f(t)
d t(i−1)

∣∣∣∣∣
t=0+

. (2.3.6)

f) Complex differentiation theorem:
This theorem shows that a differentiation of the mapped function F (s) corresponds to a multipli-
cation with the time t in the time domain:

�
{
tk f(t)

}
= (−1)k d

kF (s)
dsk

. (2.3.7)

g) Integral theorem:
The integral of a function is mapped by

�

{ t∫
0

f(τ) dτ
}

=
1
s
F (s) . (2.3.8)

as shown in section A.1.3.2.

h) Convolution in the time domain:
The convolution of two functions of time f1(t) and f2(t), presented by the symbolic notation f1(t)∗
f2(t), is defined as

f1(t) ∗ f2(t) =

t∫
0

f1(τ) f2(t− τ) dτ . (2.3.9)

In section A.1.3.3 it is shown that the convolution of the two original functions corresponds to the
multiplication of the related mapped functions, that is

� {f1(t) ∗ f2(t)} = F1(s)F2(s) . (2.3.10)

i) Convolution in the frequency domain:
Whereas in h) the convolution of two functions of time was given, a similar result for the convolution
of two functions in the frequency domain exists and is given by

� {f1(t) f2(t)} =
1

2πj

c+j∞∫
c−j∞

F1(p)F2(s− p) dp . (2.3.11)

Here F1(s)•−−◦f1(t) and F2(s)•−−◦f2(t) is valid. Furthermore, p is the complex variable of integration.
According to this theorem the Laplace transform of the product of two functions of time is equal to
the convolution of F1(s) and F2(s) in the mapped domain. This is shown in detail in section A.1.3.4.
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j) Initial and final value theorems:

The theorem of the initial condition allows the direct calculation of the function value f(0+) of a
causal function of time f(t) from the Laplace transform F (s). If the Laplace transform of f(t) and
ḟ(t) exist, then

f(0+) = lim
t→0+

f(t) = lim
s→∞ s F (s) (2.3.12)

is valid if the lim
t→0

f(t) exists, see section A.1.3.5.

Using the theorem of the final value the value of f(t) for t → ∞ can be determined from F (s), if
the Laplace transform of f(t) and ḟ(t) exist and the limit lim

t→∞ f(t) also exists. Then it follows from
section A.1.3.6 that

f(∞) = lim
t→∞ f(t) = lim

s→0
s F (s) . (2.3.13)

One has to observe that
lim

t→∞ f(t) or lim
t→0

f(t)

can be calculated only from the corresponding Laplace transform � {f(t)} by application of the
theorems of the initial or final value, if the existence of the related limit in the time domain is a
priori assured. The following two examples should explain this:

Example 2.3.1

f(t) = eαt(α > 0) ◦−−•F (s) =
1

s− α

The limit lim
t→∞ eαt does not exist so that the final value theorem may not be applied. �

Example 2.3.2

f(t) = cosω0t ◦−−•F (s) =
s

s2 + ω2
0

The limit lim
t→∞ cosω0t does not exist and therefore the final value theorem may not be applied. �

It can be concluded from the last two examples that the following general statement is valid: If the
Laplace transform F (s) has, apart from a single pole at the origin s = 0, poles on the imaginary axis or
in the right-half s plane, then the initial or final value theorems cannot be applied.

2.4 The inverse Laplace transform

The inverse Laplace transform is described by Eq. (A.1.2). As already mentioned in section 2.2 in
many cases a direct evaluation of the complex inverse integral is not necessary, as the most important
elementary functions are given in Table 2.2.1. A complicated function, F (s), not given in Table 2.2.1
must be decomposed into a sum of simple functions of s that is

F (s) = F1(s) + F2(s) + . . .+ Fn(s) , (2.4.1)

which have a known inverse Laplace transform:

�
−1 {F (s)} = �

−1 {F1(s)} + �
−1 {F2(s)} + . . .+ �

−1 {F3(s)}
= f1(t) + f2(t) + . . .+ fn(t) = f(t) .

(2.4.2)

For many problems in control the function F (s) is a ratio of polynomials in s, known as rational fraction,
that is

Fs) =
n0 + n1s+ . . . nms

m

d0 + d1s+ . . .+ sn
=
N(s)
D(s)

, (2.4.3)

where N(s) and D(s) are the numerator and the denominator, respectively.
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If m > n, then N(s) is divided by D(s), where a polynomial in s and a ratio of polynomials are obtained.
The numerator of the fraction N1(s) has a lower order than n. E.g, if m = n+ 2, then

N(s)
D(s)

= k2s
2 + k1s+ k0 +

N1(s)
D(s)

, (2.4.4)

whereby degreeN1(s) < n and k0, k1 and k2 are constants.

A rational fraction F (s) given in Eq. (2.4.3) can be decomposed into more simple functions by application
of partial fraction decomposition, as shown in Eq. (2.4.1). In order to perform this decomposition the
denominator polynomial D(s) must be factorised into the form

F (s) =
N(s)

(s− s− 1) (s− s2) . . . (s− sn)
. (2.4.5)

For a denominator polynomial of n-th order one obtains n roots or zeros s = s1, s2, . . . , sn. The zeros of
D(s) are also known as the poles of F (s), since they define where F (s) is infinite. The partial fraction
decomposition for different types of poles is shown in the following.

Case 1: F (s) has only single poles.

Here F (s) can be expanded into the form

F (s) =
n∑

k=1

ck
s− sk

, (2.4.6)

where the residuals ck are real or complex constants. Using the table of correspondences one immediately
can obtain the corresponding function of time

f(t) =
n∑

k=1

ckeskt for t > 0 . (2.4.7)

The values ck can be determined either by comparing the coefficients or by using the theorem of residuals
from the theory of functions according to

ck =
N(sk)
D′(sk)

= (s− sk)
N(s)
D(s)

∣∣∣
s=sk

(2.4.8)

for k = 1, 2, . . . , n with D′(sk) = dD/ds |s=sk
.

Case 2: F (s) has multiple poles.

For multiple poles of F (s) each with multiplicity rk(k = 1, 2, . . . , l) the corresponding partial fraction
decomposition is

F (s) =
l∑

k=1

rk∑
ν=1

ckν

(s− sk)ν
with n =

l∑
k=1

rk . (2.4.9)

The back transformation of Eq. (2.4.9) into the time domain is

f(t) =
l∑

k=1

eskt
rk∑

ν=1

ckνt
ν−1

(ν − 1)!
for t > 0 . (2.4.10)

The real or complex coefficients ckν for ν = 1, 2, . . . , rk determined by the theorem of residuals are

ckν =
1

(rk − ν)!

{
d(rk−ν)

ds(rk−ν)!
[F (s) (s− sk)rk ]

}
s=sk

. (2.4.11)

This general relation also contains the case of single poles of F (s). The poles may be real or complex.

Case 3: F (s) has also conjugate complex poles.
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As both, the numerator N(s) and the denominator D(s) of the function F (s) are rational algebraic
functions, complex factors always arise as conjugate complex pairs. If F (s) has a conjugate complex pair
of poles s1,2 = σ1 ± jω1, then for the function F1,2(s) in the partial fraction decomposition of

F (s) =
N(s)
D(s)

= F1,2(s) + F3(s) + . . .+ Fn(s)

Eq. (2.4.6) can be applied to give

F1,2(s) =
c1

s− (σ1 + jω1)
+

c2
s− (σ1 − jω1)

, (2.4.12)

where the residuals
c1,2 = δ1 ± jε1

are also a conjugate complex pair. Therefore, both fractions of F1,2(s) can be combined, and one obtains

F1,2(s) =
β0 + β1s

α0 + α1s+ s2
(2.4.13)

with the real coefficients
α0 = σ2

1 + ω2
1 ; α1 = −2σ1

β0 = −2(σ2β1 + ω1ε1) ; β1 = 2δ1

}
. (2.4.14)

The determination of the coefficients β0 und β1 is performed again using the theorem of residuals by

(β0 + β1s)
∣∣
s=s1

= (s− s1) (s− s2)
N(s)
D(s)

∣∣∣∣
s=s1

. (2.4.15)

As s1 is complex, both sides of this equation are complex. Comparing the real and imaginary parts of
both sides one gets two equations for the calculation of β0 und β1. This procedure is demonstrated now
using the following example.

Example 2.4.1
Find the inverse Laplace transform f(t) of

F (s) =
1

(s2 + 2s+ 2) (s+ 2)
.

The partial fraction decomposition of F (s) is

F (s) = F1,2(s) + F3(s) =
β0 + β1s

s2 + 2s+ 2
+

c3
s+ 2

,

where the function F1,2(s) contains the conjugate pair of poles

s1,2 = −1 ± j .

In addition the third pole of F (s) is
s3 = −2 .

For the coefficients β0 and β1 it follows from Eq. (2.4.15)

(β0 + β1s)
∣∣
s=s1

=
1

s+ 2

∣∣∣∣
s=s1

(β0 − β1) + jβ1 =
1

−1 + j + 2
=

1
2
− j

1
2
.

Comparing the real and imaginary parts on both sides one obtains

β0 − β1 =
1
2

and β1 = −1
2
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and from this finally β0 = 0.

Using Eq. (2.4.8) the residual is

c3 = (s+ 2)
1

(s2 + 2s+ 2) (s+ 2)

∣∣∣∣
s=s3

=
1
2
.

The partial fraction decomposition of F (s) is thus

F (s) = −1
2

[
s

s2 + 2s+ 2

]
+

1
2

1
s+ 2

,

which can be rearranged in the form

F (s) = −1
2

[
s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1
− 1
s+ 2

]
such that correspondences given in Table 2.2.1 can be directly applied to find the inverse transformation.
Using the correspondences 16, 15 and 6 of this table, it follows that

f(t) = −1
2
[e−t cos t− e−t sin t− e−2t] for t > 0 ,

which can be rearranged as

f(t) =
1
2
e−t[e−t + sin t− cos t] for t > 0 .

The graphical representation of f(t) is shown in Figure 2.4.1a. Figure 2.4.1b shows the corresponding
poles, marked by a x, for this F (s) in the complex s plane. �
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Figure 2.4.1: (a) Graph of the original function f(t) (function in the time domain) and (b) position of
the poles of F (s) in the s plane

It can be seen from this example that the position of the poles s1, s2 and s3 affects the shape of the
graph of f(t). In this case all poles of F (s) have negative real parts, therefore the graph of f(t) shows a
damped behaviour, i.e. it decreases to zero for t → ∞. If the real part of one pole be positive, then the
graph of f(t) would be infinitely large for t→ ∞.

Since in control problems the original function f(t) always represents the time behaviour of a system
variable, the behaviour of this system variable f(t) can be judged to a large extent by investigation of
the positions of the poles of the corresponding mapped function F (s). This will be further commented
on in later sections.

2.5 Solving linear differential equations using the Laplace trans-
form

The Laplace transform, the basics of which have been introduced in the sections above, is an elegant way
for fast and schematic solving of linear differential equations with constant coefficients. In the following
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the importance of this approach is demonstrated. Instead of solving the differential equation with the
initial conditions directly in the original domain, the detour via a mapping into the frequency domain is
taken, where only an algebraic equation has to be solved. Thus solving differential equations is performed
according to Figure 2.5.1 in the following three steps:

1. Transformation of the differential equation into the mapped space ,

2. Solving the algebraic equation in the mapped space,

3. Back transformation of the solution into the original space.

� � + + � 	 � � � � " 
 � � , # " � � � �

" 
 � �  	 " � � � � , # " � � � �
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 # � � � �
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Figure 2.5.1: Schema for solving differential equations using the Laplace transformation

Demonstration Example 2.1
Here the same in animated form

Whereas the first two steps are trivial, the third step usually demands more effort. The procedure will
be demonstrated by the following two examples.

Example 2.5.1
Consider the differential equation

f̈(t) + 3ḟ(t) + 2f(t) = e−t

with the initial conditions f(0+) = ḟ(0+) = 0.
Proceeding using the steps given above one has

Step 1:

s2F (s) + 3sF (s) + 2F (s) =
1

s+ 1

Step 2:

F (s) =
1

s+ 1
1

s2 + 3s+ 2

Step 3:

The complex function F (s) must be decomposed into partial fractions in order to use the tables of
correspondences. This gives

F (s) =
1

s+ 2
− 1
s+ 1

+
1

(s+ 1)2
.

By means of the correspondences 6 and 7 of Table 2.2.1 it follows from the inverse Laplace trans-
formation that the solution of the given differential equation is

f(t) = e−2t − e−t + t e−t .

�

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/Laplacetransform/Rickeracke.html
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Example 2.5.2
Given the differential equation

ẍ+ a1ẋ+ a0x = 0 , (2.5.1)

where a0 and a1 are constants and the initial conditions ẋ(0+) and x(0+) are known. Then

Step 1:
s2X(s) − s x(0+) − ẋ(0+) + a1[sX(s) − x(0+)] + a0X(s) = 0

Step 2:

X(s) =
s+ a1

s2 + a1s+ a0
x(0+) +

1
s2 + a1s+ a0

ẋ(0+) , (2.5.2)

X(s) = L0(s)x(0+) + L(s) ẋ(0+)

with the abbreviation

L0(s) =
N0(s)
D(s)

=
s+ a1

s2 + a1s+ a0
and L(s) =

N(s)
D(s)

=
1

s2 + a1s+ a0
.

Step 3:

Case a): two single real zeros of the denominator :

This means
D(s) = s2 + a1s+ a0 = (s− α1) (s− α2) .

For both rational expressions L0(s) and L(s) it follows by partial fraction decomposition that

L0(s) =
A1

s− α1
+

A2

s− α2
and L(s) =

B1

s− α1
+

B2

s− α2
.

The coefficients Ai and Bi can now be determined by comparing coefficients or by applying
Eq. (2.4.8):

Ai =
N0(αi)
D′(αi)

; Bi =
N(αi)
D′(αi)

for i = 1, 2 .

Thus for Eq. (2.5.2) follows

X(s) =
[

A1

s− α1
+

A2

s− α2

]
x(0+) +

[
B1

s− α1
+

B2

s− α2

]
ẋ(0+) ,

and by applying the correspondence 6 from Table 2.2.1 the solution of the differential equation is

x(t) =
[
A1eα1t +A2eα2t

]
x(0+) +

[
B1eα1t +B2eα2t

]
ẋ(0+)

= [A1x(0+) +B1ẋ(0+)] eα1t + [A2x(0+) +B2ẋ(0+)] eα2t . (2.5.3)

Case b): One double real zero of the denominator :

Here is
D(s) = (s− α)2 .

For the two rational expressions L0(s) and L(s) of Eq. (2.5.2) the partial fraction decomposition is

L0(s) =
A1

s− α
+

A2

(s− α)2
and L(s) =

B1

s− α
+

B2

(s− α)2
.

The coefficients Ai and Bi are determined by comparing both sides or by evaluation of Eq. (2.4.11):

A1 =
{

d
ds

[
N0(s)
D(s)

(s− α)2
]}

s=α

= 1, A2 =
[
N0(s)
D(s)

(s− α)2
]

s=α

= α+ a1

and

B1 =
{

d
ds

[
N(s)
D(s)

(s− α)2
]}

s=α

= 0, B2 =
[
N(s)
D(s)

(s− α)2
]

s=α

= 1 .
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From these results one obtains the solution

X(s) =
x(0+)
s− α

+
(α+ a1)x(0+) + ẋ(0+)

(s− α)2

in the mapped space. By applying the inverse Laplace transformation the required solution of the
differential equation is

x(t) = x(0+) eαt + [(α+ a1)x(0+) + ẋ(0+)] t eαt . (2.5.4)

Case c): Two conjugate complex zeroes of the denominator :

Here
D(s) = (s− α1) (s− α2) with α1,2 = σ1 ± jω1 .

Introducing the values of α1 and α2 and after multiplication of this expression one obtains

D(s) = (s− σ1)2 + ω2
1 .

Comparison with the denominator of the original relation, Eq. (2.5.2), gives according to Eq. (2.4.14)

a0 = σ2
1 + ω2

1 and a1 = −2σ1 .

With these coefficients Eq. (2.5.2) is in the form

X(s) =
s− 2σ1

(s− σ1)2 + ω2
1

x(0+) +
1

(s− σ1)2 + ω2
1

ẋ(0+)

=
[

s− σ1

(s− σ1)2 + ω2
1

− σ1

ω1

ω1

(s− σ1)2 + ω2
1

]
x(0+)

+
1
ω1

ω1

(s− σ1)2 + ω2
1

ẋ(0+) ,

and from this one gets by applying the correspondences 15 and 16 of Table 2.2.1 to X(s) the
corresponding time function

x(t) = eσ1t

[
cosω1t−

σ1

ω1
sinω1t

]
x(0+) +

1
ω1

eσ1tẋ(0+) sinω1t

or rearranged

x(t) = eσ1t

{
x(0+) cosω1t+

[
1
ω1
ẋ(0+) − σ1

ω1
x(0+)

]
sinω1t

}
. (2.5.5)

�

Also from Eq. (2.5.2) of this example the importance of the position of the zeros ofD(s), the poles ofX(s),
on the solution is clear. For all three cases the solution of the differential equation according to Eqs. (2.5.3),
(2.5.4) and (2.5.5) is mainly influenced by the position of the poles of X(s). These poles of X(s) are
– as one can see from the two examples – only depend on the left side of the corresponding differential
equation, i.e. the homogeneous part of it. As is generally known the solution of the homogeneous
differential equation describes the modes of the system, that is the behaviour, which depends only on the
initial conditions. Therefore, consider for the general case only the homogeneous part of an nth-order
ordinary homogeneous linear differential equation with constant coefficients that is

n∑
i=0

ai
dixa(t)

dti
= 0 (2.5.6)

with all n initial conditions

(dixa(t)/dti) |t=0+ for i = 0, 1, . . . , n− 1 .
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One obtains by Laplace transformation

Xa(s)

[
n∑

i=0

ais
i

]
−
[

n∑
i=1

ai

i∑
ν=1

si−ν dν−1

dtν−1
xa(t)

∣∣
t=0+

]
= 0

and a form according to Eq. (2.5.2)

Xa(s) =

n∑
i=1

ai

i∑
ν=1

si−ν dν−1

dtν−1
xa(t)

∣∣
t=0+

n∑
i=0

aisi

=
N(s)
D(s)

, (2.5.7)

where N(s) and D(s) are polynomials in s and the initial conditions are only in the numerator polynomial
N(s). The poles sk(k = 1, 2, . . . , n) of Xa(s) can be determined directly from the solution of the equation

n∑
i=0

ais
i = 0 . (2.5.8)

After factorisation of this equation one obtains

an(s− s1) (s− s2) . . . (s− sn) = 0 . (2.5.9)

The poles sk of Xa(s) make it possible to perform a partial fraction decomposition of Xa(s), e.g. for the
case of single poles according to Eq. (2.4.6). For this case one obtains following Eq. (2.4.7) the solution
of the homogeneous differential equation, Eq. (2.5.6), in the form

xa(t) =
n∑

k=1

cke
skt for t > 0 .

From this one can realise that the position of the poles sk of Xa(s) in the s plane completely characterises
the modes or inherent behaviour of the system described by Eq. (2.5.6). Thus one obtains for Re sk < 0
(left-half s plane) a decreasing and for Re sk > 0 (right-half s plane) an increasing behaviour of xa(t),
while for pairs of poles with Re sk = 0 permanent oscillations occur. Therefore, Eq. (2.5.8) or equivalently
Eq. (2.5.9), is called the characteristic equation and the poles sk of Xa(s) are often called eigenvalues
of the equation. Therefore investigation of the characteristic equation provides the most important
information about the oscillating behaviour of a system.

2.6 Laplace transform of the impulse δ(t) and step σ(t)

The impulse function δ(t) is not a function in the sense of classical analysis, but a distribution (pseudo-
function). Therefore without entering the theory of distributions the integral

� {δ(t)} =

∞∫
0

δ(t) e−stdt (2.6.1)

is not defined. The singularity exactly matches with the lower integration limit. The impulse function
can be approximately described by the limit

δ(t) = lim
ε→0

rε(t)

with the rectangular impulse function

rε =

{
1/ε for 0 ≤ t ≤ ε

0 otherwise .
(2.6.2)
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Strictly speaking this representation of δ(t) is not a distribution, as rε(t) for 0 ≤ t ≤ ∞ is not arbitrarily
often differentiable. Because of the simple description compared with other functions (e.g. Gaussian
functions) this approach is preferred here. From Eq. (2.6.1) it follows that

� {δ(t)} =

∞∫
0

[
lim
ε→0

rε(t)
]

e−stdt . (2.6.3)

As Eq. (2.6.2) can also be represented in the form

rε(t) =
1
ε
[σ(t) − σ(t− ε)] , (2.6.4)

where σ(t) is the unit step. Since the integration is independent of ε, the limit and integration can be
permuted so that

� {δ(t)} = lim
ε→0

{
1
ε

∞∫
0

[σ(t) − σ(t − ε)] e−stdt
}

� {δ(t)} = lim
ε→0

{
1
ε

1
s

(
1 − e−εs

)}
.

By applying l′Hospital’s rule one obtains

� {δ(t)} = lim
ε→0

s e−εs

s
= 1 . (2.6.5)

As the impulse δ(t) has an area of unity it is also called unit impulse.

Example 2.6.1
Given the differential equation

dy
dt

= δ(t) .

Find solution y(t).

Remark: The derivative theorem according to Eq. (2.3.5) is – as mentioned in section A.1.3.1 – valid only
for classical functions. If, however, a signal consists of a δ function at t = 0, then the lower integration
limit of Eq. (2.1.1) must be chosen equal to t = 0− and also in Eq. (A.1.11) the left-hand initial condition
to y(0−). According to the definition of Eq. (2.1.1) all left-hand initial conditions are always zero.

The solution can be determined in the following three steps:

Step 1:
The Laplace transform of the given differential equation is:

s Y (s) − y(0−) = 1 withy(0−) = 0 .

Step 2:
The solution of the algebraic equation is:

Y (s) =
1
s
.

Step 3:
From the back transformation the solution follows as

y(t) = σ(t) ,

where σ(t) is the unit step function. �
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Module 3

Transfer functions

Module units
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.2 Interpretation of the transfer function . . . . . . . . . . . . . . . . . . . . . . 3-2

3.3 Realisability and properness of transfer functions . . . . . . . . . . . . . . . 3-3

3.4 Transfer functions with dead time . . . . . . . . . . . . . . . . . . . . . . . . 3-3

3.5 Poles and zeros of the transfer function . . . . . . . . . . . . . . . . . . . . . 3-3

3.6 Using transfer functions for calculations . . . . . . . . . . . . . . . . . . . . . 3-5

Module overview. Transfer functions simplify working with linear differential equations, which describe
the transition behaviour of linear dynamical systems. This module starts with a definition and interpreta-
tion of transfer functions. As transfer functions contain at least a rational function of a complex variable,
the physical interpretation of poles and zeros is discussed. Finally, the most popular operations of combin-
ing systems described by transfer functions are presented. The properties of transfer functions are shown
by examples and interactive questions allow the readers to test their knowledge of transfer functions.

Module objectives. When you have completed this module you should be able to:

1. Determine transfer functions from differential equations.

2. Apply transfer functions to describe control systems.

3. Interpret the roles of poles and zeros of transfer functions.

Module prerequisites. Laplace transform, complex numbers, rational functions.

3.1 Definition

Linear, continuous-time time-invariant systems with lumped parameters – as initially a dead time is not
being taken into account – will be described by the ordinary differential equation

n∑
i=0

ai
dixa(t)

dti
=

m∑
j=0

bj
djxe(t)

dtj
. (3.1.1)

If all initial conditions are set to zero and the Laplace transformation is applied to both sides of this
equation, one obtains

Xa(s)
n∑

i=0

ais
i = Xe(s)

m∑
j=0

bjs
j ,

3-1
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or reordering
Xa(s)
Xe(s)

=
b0 + b1s+ . . .+ bms

m

a0 + a1a+ . . .+ ansn
= G(s) =

N(s)
D(s)

, (3.1.2)

where N(s) and D(s) describe the numerator and denominator polynomials, respectively. The quotient of
the Laplace-transformed output and input of such a type of system is a rational fraction. The coefficients
of this fraction depend only on the structure and parameters of the system. Such a type of function G(s),
which describes completely the transfer behaviour of a system, is called the transfer function of the
system. With such a transfer function the output

Xa(s) = G(s)Xe(s) (3.1.3)

can be immediately calculated for a known input signal xe(t), and therefore Xe(s).

3.2 Interpretation of the transfer function

Comparing Eq. (3.1.3) with the convolution theorem from section 2.3, Eqs. (2.3.9) and (2.3.10), it then
follows for the representation of Eq. (3.1.3) in the time domain that

xa(t) =

t∫
0

g(t− τ)xe(τ) dτ , (3.2.1)

where obviously the inverse Laplace transform of G(s) is the function g(t). This function is generally
known as the weighting function of the system. In other words, the transfer function is the Laplace-
transformed weighting function according to

G(s) = � {g(t)} . (3.2.2)

If the unit impulse δ(t) is taken as the input signal xa(t) for a system described by the transfer function
G(s), one obtains according to Eq. (3.1.3)

Xa(s) = G(s) � {δ(t)}

and after using the Laplace transform of the unit impulse δ(t) from Eq. (2.6.5)

Xa(s) = G(s)

or from Eq. (3.2.2)
xa(t) = g(t) .

This shows that the response to an unit impulse δ(t) is the weighting function. Therefore the weighting
function is also called the impulse response.

Another interpretation is when the system is excited by the input signal

xe(t) = x̄e eσt sin(ωt) .

For the steady-state case one obtains for the output signal

xas(t) = |G(σ + jω)| x̄e eσt sin(ωt+ φ(σ + jω)) . (3.2.3)

This shows that the modulus |G(σ+jω)| of the transfer function describes the gain, and that φ(σ+jω) =
argG(σ+ jω) describes the phase shift of a sinusoidal function with the frequency ω and with increasing
or decreasing amplitude according to eσt.

Interactive Questions 3.1
Test your knowledge about impulse and step response

Interactive Questions 3.2
Test your knowledge about convolution

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TimeResponse/TimeResponse02.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TimeResponse/TimeResponse03.html
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3.3 Realisability and properness of transfer functions

It must be mentioned that a transfer function with m > n is physically not realisable. The transfer
function of an ideal differentiator is described by G(s) = s according to Eq. (2.3.5). Any transfer
function with m > n can be decomposed into

G(s) =
N(s)
D(s)

=
N1(s)
D(s)

+ k0 + k1s+ . . .+ km−ms
m−n ,

where degreeN1(s) = n − 1 and terms in s with positive powers also occur. Such derivative elements
would deliver for input signals of arbitrary high frequency corresponding output signals of arbitrary high
amplitude, which are physically not realisable. The condition of realisability of the transfer function
according to Eq. (3.1.2) is

degreeN(s) ≤ degreeD(s) or m ≤ n . (3.3.1)

This condition is also called as the condition of properness. If a transfer function does not follow this
condition, it is called an improper transfer function. It has the property that G(s) → ∞ as s → ∞. A
realisable transfer function is called as proper and it always follows G(s) → k0 as s → ∞. A transfer
function with k0 = 0 is called as strictly proper.

3.4 Transfer functions with dead time

If a time delay or dead time Tt is introduced in the input signal xe(t) , one obtains instead of Eq. (3.1.1)
the differential equation

n∑
i=0

ai
dixa(t)

dti
=

m∑
j=0

bj
djxe(t− Tt)

dtj
. (3.4.1)

In this case taking the Laplace transformation gives the transcendental transfer function

G(s) =
N(s)
D(s)

e−sTt . (3.4.2)

3.5 Poles and zeros of the transfer function

In some cases (e.g. stability analysis) it is expedient to represent the rational transfer function G(s)
according to Eq. (3.1.2) in the factorised form

G(s) =
N(s)
D(s)

= k0
(s− sZ1) (s− sZ2) . . . (s− sZm)
(s− sP1) (s− sP2) . . . (s− sPn)

. (3.5.1)

For physical reasons only real coefficients ai, bj occur. Therefore the poles sPi and the zeros sZj of G(s),
respectively, can be real or complex conjugate pairs. The terms zeros and poles are chosen, because the
transfer function is zero at sZj and infinite at sPi . Zeros and poles can be graphically represented in the
complex s plane as shown in Figure 3.5.1. A linear time-invariant system without dead time is described
completely by the distribution of its poles and zeros and the gain factor k0.

Moreover, the poles and zeros of a transfer function have a further significance. Observing a system
without input (xe(t) ≡ 0) according to Eq. (3.1.1) and determining the time response xa(t) for the given
n initial conditions, one has to solve the associated homogeneous differential equation

n∑
i=0

ai
dixa(t)

dti
= 0 , (3.5.2)

which corresponds exactly to Eq. (2.5.6). For the approach xa(t) = est of Eq. (3.5.2) one obtains for the
solution in s the characteristic equation

P (s) =
n∑

i=0

ais
i = 0 , (3.5.3)
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Figure 3.5.1: Example of the pole and zero distribution of a rational transfer function in the complex s
plane

which was already mentioned in Eq. (2.5.8). This relation can be directly determined by setting the
denominator of G(s) to zero (D(s) = 0), as long as D(s) and N(s) have no common factor. The zeros sk

of the characteristic equation are the poles sPi of the transfer function. As already shown in section 2.5
the modes (i.e. xe(t) ≡ 0) are described by the characteristic equation, so that the poles sPi of a transfer
function contain all of this information.

The zeros of a transfer function are those values s = sZj for which |G(sZj )| = 0. This means that the
output signal Xa(s) does not contain any components which depend on sZj . In order to explain this in
more detail a stable system with a transfer function according to Eq. (3.5.1) is excited by the input signal

xe(t) = esZj
t.

First for simplification the zero sZj = σZj is assumed to be real. For this case the input signal is
xe(t) = eσZj

t. Because |G(sZj )| = 0 one obtains from Eq. (3.2.3) the steady-state output signal as

xas(t) = 0.

In the case of complex conjugate pairs of zeros sZj , sZj+1 = s∗Zj
both zeros have to be taken into

consideration in the input signal

xe(t) = esZj
t + es∗

Zj
t

= 2eσZj
t cosωt

= 2eσZj
t sin(ωt+

π

2
) .

Eq. (3.2.3) leads also to the result xas(t) = 0. This shows that a zero sZj of a system blocks the
transmission of the input signal eσZj

t.

Example 3.5.1
The mass-spring-damper mechanical system in Figure 3.5.2 with the mechanical constants c1=1, c2=2,
d = 1.5, m1=1 and m2=4 is excited by the force xe. The transfer function between the force xe and the
position xa can be shown to be

G(s) =
s2 + 1

s4 + 0.5s3 + 1.75s2 + 0.5s+ 0.5

which has the zeros sZ1,2 = ±j. If this system is excited by the sinusoidal input signal

Xe(s) =
1

(s− sZ1)(s− sZ2)
=

1
s2 + 1

�
−1 {Xe(s)} = sin t ,

which is derived from this pair of zeros, the output signal xa(t) decays to zero as shown in Figure 3.5.3b
even though the input signal is a sinusoidal signal and the mass m1 shows an undamped oscillation (see
Figure 3.5.3c). The system does not pass this oscillation to the mass m2 when the frequency matches
the zeros sZ1,2 . �
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Figure 3.5.2: Mass-spring-damper mechanical system used for the interpretation of zeros
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Figure 3.5.3: Response to the sinusoidal input signal xa(t) = sin t (a), (b) position of the mass m2 and
(c) position of the mass m1

3.6 Using transfer functions for calculations

For combinations of transfer functions simple rules for determining the resulting transfer function can be
derived. The combinations are of the type that transfer function blocks are connected. In making any
transfer function block connection it is assumed that the connection does not load the block to which the
connection is being made.

a) Series connection
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From the diagram in Figure 3.6.1 it follows that

Y (s) = G2(s)Xe2(s)
Xe2(s) = Xa1(s) = G1(s)U(s)
Y (s) = G2(s)G1(s)U(s) .

The total transfer function of this series connection is

G(s) =
Y (s)
U(s)

= G1(s)G2(s) . (3.6.1)

� � � � � � � � � �

� 0 � �
�

� " � 0 � �
� �

� " � 0 �
�

Figure 3.6.1: Series connection of two transfer functions

b) Parallel connection

For the output of both functions it follows from Figure 3.6.2 that

Xa1(s) = G1(s)U(s)
Xa2(s) = G2(s)U(s) .

The output of the total system is

Y (s) = Xa(s) = Xa1(s) +Xa2(s) = [G1(s) +G2(s)]U(s),

and from this the transfer function of a parallel connection is

G(s) =
Y (s)
U(s)

= G1(s) +G2(s) . (3.6.2)

�

�
� � � � �

� � � � �

� 0 � � � " 0 �

�
" �

� " �

Figure 3.6.2: Parallel connection of two transfer functions

c) Feedback loop

From Figure 3.6.3 the output is

Y (s) = Xa(s) = [U(s) −
(+)Xa2(s)]G1(s) .

Since
Xa2(s) = G2(s)Y (s)

one obtains
Y (s) = [U(s) −

(+)G2(s)Y (s)]G1(s) ,
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and from this

Y (s) =
G1(s)

1 +
(−)G1(s)G2(s)

U(s) .

The total transfer function of the feedback loop is

G(s) =
Y (s)
U(s)

=
G1(s)

1 +
(−)G1(s)G2(s)

. (3.6.3)

� �

� � �

� �
� � �

�
�
� � �
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"
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�
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Figure 3.6.3: Feedback using two elements

As the output of G1(s) is fed back via G2(s) to the input, this is called feedback. One has to distinguish
between a positive feedback for positive adding of Xa2(s) and a negative feedback for negative adding of
Xa2(s).

Example 3.6.1
For the special case of G1(s) being a pure amplifier with a high gain K → ∞, one obtains for negative
feedback

G(s) =
K

1 +KG2(s)
=

1
1
K

+G2(s)
≈ 1
G2(s)

.

The entire technique of operational amplifiers is based on this principle. In a feedback loop for which
G1(s) is an amplifier with K → ∞ then an element G2(s) can be used to realise any transfer function
within certain limits. �

Interactive Questions 3.3
Test your basic knowledge about transfer functions

Interactive Questions 3.4
Test your knowledge about transfer functions and stability

Interactive Questions 3.5
Test your knowledge about transfer functions and electrical circuits

Interactive Questions 3.6
Test your knowledge about transfer functions and electrical elements

Interactive Questions 3.7
Test your knowledge about simple combinations of transfer functions

Interactive Questions 3.8
Test your knowledge about complicated combinations of transfer functions

Interactive Questions 3.9
Test your knowledge about transfer functions with dead time

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction01.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction02.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction03.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction04.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction05.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction06.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TransferFunction/TransferFunction07.html
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Frequency Response

Module units
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4.4 Some important transfer function elements . . . . . . . . . . . . . . . . . . . 4-7

4.4.1 The proportional element (P element) . . . . . . . . . . . . . . . . . . . . . . . 4-7

4.4.2 The integrator (I element) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

4.4.3 The derivative element (D element) . . . . . . . . . . . . . . . . . . . . . . . . 4-8

4.4.4 The 1st-order lag element (PT1 element) . . . . . . . . . . . . . . . . . . . . . 4-9

4.4.5 The proportional plus derivative element (PD element) . . . . . . . . . . . . . 4-12

4.4.6 The derivative lag element (DT1 element) . . . . . . . . . . . . . . . . . . . . . 4-12

4.4.7 The 2nd-order lag element (PT2 element and PT2S element) . . . . . . . . . . 4-13

4.4.8 Bandwidth of a system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

4.4.9 Example for the construction of a Bode plot . . . . . . . . . . . . . . . . . . . . 4-19

4.5 Systems with minimum and non-minimum phase behaviour . . . . . . . . . 4-20

4.6 Systems with dead time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

Module overview. This comprehensive module deals with classical frequency-response techniques. Def-
initions are given starting from the transfer function and its graphical representation in the frequency
domain and from the input-output experiment using sinusoidal signals. As this module is the basis for
other modules on control system analysis and design using frequency-response techniques, most emphasis
is put on the graphical representation techniques of the Nyquist and Bode plots and their application to
standard elements to get a feel about the frequency-response characteristics of these elements. Rules for
constructing and analysing frequency-response characteristics are given. Finally, the behaviour of non-
minimum phase systems is shown. The reader can test his knowledge about frequency response method
by some interactive questions, examples and poblems.

Module objectives. When you have completed this module you should be able to:

1. Understand the behaviour of linear dynamical systems in the frequency domain.

2. Apply graphical methods (Bode and Nyquist diagram) to describe dynamical systems.

3. Describe and design systems using frequency-response characteristics of standard elements.

4. Understand the behaviour of non-minimum phase systems.

Module prerequisites. Transfer function.

4-1
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4.1 Definitions

In order to represent a transfer function G(s) in graphical form, there are different possibilities. Rep-
resenting |G(s)| and argG(s) over the complex plane s = σ + jω two three-dimensional diagrams are
needed. Figure 4.1.1 shows an example for the magnitude of the transfer function

G(s) =
s− 1

s2 + s+ 1.25
=

s− 1
(s+ 0.5 − j)(s+ 0.5 + j)

.

The two yellow peaks are at the pole positions where |G(−0.5± j)| → ∞ and the blue negative peak is at

Figure 4.1.1: Magnitude in dB of a transfer function over the complex plane s = σ + jω

the position of the zero s = 1 where |G(1)| = 0 or |G(1)|dB → −∞, respectively. This three-dimensional
representation clearly shows the influence of the poles and zeros on the magnitude of the transfer function.
Such diagrams are difficult to handle and are fortunately not necessary for the analysis and design of
control systems, because many properties can be investigated by using the frequency response G(jω).
The frequency response is just the cut through the three-dimensional diagrams of G(s) at the imaginary
axis (σ = 0). For the magnitude diagram in Figure 4.1.1 the intersection of this cut and the surface is at
the red curve, which represents the magnitude of the frequency response. This curve is symmetric with
respect to ±ω and therefore the frequency response G(jω) is only considered for positive frequencies ω.

Another interesting possibility to represent a transfer function G(s) in graphical form, is to map the s
plane into the complex G plane as shown in section A.2. The result is a cartesian representation of a
band of curves G(σ + jω) as shown in Figure A.2.1. For σ = 0, i.e. the special case s = jω, the transfer
function G(s) migrates into the frequency response G(jω) and we obtain the Nyquist plot of the frequency
response, which will be discussed later in section 4.2.

The frequency response G(jω) is an immediately physically interpretable and measurable quantity. To
show this, the frequency response will be represented by the complex entity

G(jω) = R(ω) + jI(ω) (4.1.1)

with the real part R(ω) and the imaginary part I(ω), and by the amplitude response A(ω) and phase
response ϕ(ω) in polar notation as

G(jω) = A(ω) ejϕ(ω) . (4.1.2)
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If the system is excited by a sinusoidal input xe(t) with amplitude x̂e and frequency ω, i.e.

xe(t) = x̂e sinωt , (4.1.3)

then in the case of a linear continuous-time system the output signal will oscillate in the steady state
with the same frequency ω, but with another amplitude x̂a and with a certain phase shift ϕ = ωtϕ
(Figure 4.1.2a). Both oscillations xe(t) and xa(t) can be represented by two vectors of length proportional

���
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�
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�
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��

"�

�� � � � � �

� � � � � 0 � � � � � � � �
1

� " � � � 0 � " � � � � � � � � � �
1

� � � � �

� " � � �

Figure 4.1.2: (a) Sinusoidal input signal xe(t) and corresponding output signal xa(t) of a linear element
in steady state (b) vector representation of both signals

to their amplitudes x̂e and x̂a according to Figure 4.1.2b. They are rotating with the phase shift ϕ and
the same speed ω. For the system output one gets

xa(t) = x̂a sin(ωt+ ϕ) . (4.1.4)

If this experiment is conducted for different frequencies ων(ν = 0, 1, 2, . . .) with x̂e = const, then one
notices that the amplitude x̂a and the phase ϕ of the output signal depend on the frequency ων . Therefore
for each frequency ων one gets

x̂a,ν = x̂a(ων) and ϕν = ϕ(ων) .

Now from the ratio of the values x̂e and x̂a(ω) the amplitude of the frequency response

A(ω) =
x̂a(ω)
x̂e

= |G(jω)| =
√
R2(ω) + I2(ω) (4.1.5)

can be represented as a function of frequency. Furthermore, the phase shift ϕ(ω) will be represented as
the phase of the frequency response. For the phase

ϕ(ω) = argG(jω) = tan−1 I(ω)
R(ω)

(4.1.6)

is valid, where the value of the tan−1 function in the range 0◦ to 360◦ must be found through the signs
of R(ω) and I(ω).

From this experiment it is obvious that the amplitude response A(ω) and phase response ϕ(ω) of the
frequency response G(jω) can be directly measured by applying sinusoidal input signals xe(t) of different
frequencies. The total frequency response G(jω) for all frequencies ω = 0 to ω → ∞ describes completely
the behaviour of a linear continuous-time system, like the the transfer function G(s) or the step response
h(t). In some cases only some partial information is sufficient in order to reconstruct the total frequency
response. As will be shown later only a knowledge of the real part R(ω) or of the amplitude response
A(ω) may be necessary.
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Between the representations of a linear system in the time domain and frequency domain there are some
general and simple relationships. E.g. on the basis of the initial and final value theorems two important
relations between the transfer function G(s), the Frequency response G(jω) and the step response h(t)
or H(s) are valid:

lim
t→0+

h(t) = lim
s→∞ sH(s) = lim

s→∞G(s) = lim
jω→∞

G(jω) , (4.1.7a)

lim
t→∞h(t) = lim

s→0
sH(s) = lim

s→0
G(s) = lim

jω→0
G(jω) . (4.1.7b)

The suppositions for the application of the initial and final value theorems are the existence of the related
limits in the time domain according to section 2.3.

4.2 Nyquist plot of a frequency response

If in the experiment described above for each value of ων the value of

G(jων) = A(ων) ejϕ(ων)

is plotted in the complex G plane, one obtains the Nyquist plot of the frequency response, which is
parameterised by the frequency ω. Figure 4.2.1 shows such a curve drawn from measurements of eight

� � � �� �
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Figure 4.2.1: Example of a Nyquist plot drawn from measurements

frequencies. Using Eqs. (4.1.7a) and (4.1.7b) the initial and final values of the step response h(t) can be
estimated from a Nyquist plot based on such measurements (Figure 4.2.2). If G(jω) is known analytically

�� �
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Figure 4.2.2: Relations between initial and final value of the frequency response G(jω) and the step
response h(t)
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the step response can be calculated from G(s) by using

h(t) = �
−1

{
1
s
G(s)

}
. (4.2.1)

The graphical representation of a frequency response using a Nyquist plot has among other things the
advantage that the frequency responses, both of a series connection and a parallel connection of two
systems, can be simply constructed graphically. Here the vectors of the Nyquist plots for the same values
of ω must be taken. For the case of a parallel connection the vectors will be added, and for the case of
a series connection the vectors will be multiplied by multiplying the lengths of the vectors and adding
their angles according to Figure 4.2.3.
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Figure 4.2.3: Addition (a) and multiplication (b) of frequency responses in Nyquist plots

Interactive Questions 4.1
Test your knowledge about frequency response and Nyquist plots

Interactive Questions 4.2
Test your knowledge about frequency response and Nyquist plots with other questions

Interactive Questions 4.3
Test your knowledge about frequency response and Nyquist plots with more demanding questions

4.3 Bode plot

If the absolute value A(ω) and the phase ϕ(ω) of the frequency responseG(jω) = A(ω) ejϕ(ω) are separately
plotted over the frequency ω according to Figure 4.3.1, one obtains the amplitude response and the phase
response. Both together are the frequency response characteristics. A(ω) and ω are normally drawn with
a logarithm and ϕ(ω) with a linear scale. This representation is called a Bode diagram or Bode plot.
Usually A(ω) will be specified in decibels [dB]. By definition this is

A(ω)dB = 20 log10A(ω) [dB] . (4.3.1)

The logarithmic representation of the amplitude response A(ω)dB has consequently a linear scale in this
diagram and is called the magnitude.

The logarithmic representation has some advantages for series connections of transfer functions. For
complicated frequency responses, e.g. with

G(s) = K
(s− sZ1) . . . (s− sZm)
(s− sP1) . . . (s− sPn)

(4.3.2)

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FrequencyResponse/FrequencyResponse01.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FrequencyResponse/FrequencyResponse02.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FrequencyResponse/FrequencyResponse04.html


4-6 MODULE 4. FREQUENCY RESPONSE

� % ) � �
�

� �

� �

� �

� 5

. 6 � 5

� � ) � 5

� � ( � 5

. � �

�

� �

� �

� * � � � 3 � . � 4 � �

� � ( � 5

� � ) � 5

� 6 � 5

� 5
� * � � �

� %

' � 3 � . � 4

� �)

�

� �

�

� � � � � �� � � � � � � �
� 7

� � � � � � � �

. � �

� � 3 � . � 4
' � 3 � . � 4

Figure 4.3.1: Plot of a frequency response: (a) linear, (b) logarithmic presentation (ω on a logarithmic
scale) (Bode plot)

for s = jω, it can be represented as series connections of the frequency responses of simple elements of
the form

Gi(jω) =

{
K = const for i = 0
(jω − sZi) for i = 1, 2, . . . ,m

(4.3.3)

and

Gi(jω) =
1

jω − sPν

for i = m+ 1,m+ 2, . . . ,m+ n ,
ν = 1, 2, . . . , n . (4.3.4)

From this it follows that
G(jω) = KG1(jω) . . . Gm+n(jω) , (4.3.5)

with
Gi(jω) = Ai(ω) ejϕi(ω) for i = 1, . . . ,m+ n .

From the representation

G(jω) = KA1(ω)A2(ω) . . . Am+n(ω) ej[ϕ0(ω) + ϕ1(ω) + ϕ2(ω) + . . .+ ϕm+n(ω)] (4.3.6)

and
A(ω) = |K| |G1(jω)| |G2(jω)| . . . |Gm+n(jω)| = |K|A1(ω)A2(ω) . . . Am+n(ω) ,

respectively, one obtains the logarithmic characteristic of the magnitude

A(ω)dB = 20 log10 [|K|A1(ω)A2(ω) . . . Am+n(ω)] (4.3.7)
= |K|dB +A1(ω)dB +A2(ω)dB + . . .+Am+n(ω)dB

and the phase characteristic

ϕ(ω) = ϕ0(ω) + ϕ1(ω) + ϕ2(ω) + . . .+ ϕm+n(ω) (4.3.8)

with ϕ0(ω) = 0◦ for K > 0 and ϕ0(ω) = −180◦ for K < 0. Thus, the frequency response of a series
connection is obtained by addition of the individual frequency response characteristics.

A further advantage of this logarithmic representation is for the determination of the inverse of a fre-
quency response, that is for 1/G(jω) = G−1(jω). Here

20 log10

[
|G(jω)|−1

]
= −20 log10 |G(jω)| = −20 log10A(ω)

and
arg[G−1(jω)] = − arg[G(jω)] (4.3.9)
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are valid, the curves of A(ω) and ϕ(ω) need only to be mirrored at the axes 20 log10A = 0 (0-dB line)
and ϕ = 0◦.

Because of the double logarithmic and of the single logarithmic scale of A(ω) and ϕ(ω), respectively, the
curve of A(ω) and that of ϕ(ω) can be approximated by line segments. This approximation by lines allows
the analysis and synthesis of control systems using simple geometric constructions. They are important
concepts for the control engineer.

4.4 Some important transfer function elements

In the following the transfer function G(s), frequency response G(jω), Nyquist plot and the Bode diagram
for some important elements will be derived and shown.

4.4.1 The proportional element (P element)

The P element describes a pure proportional relationship between input and output:

xa(t) = K xe(t) , (4.4.1)

with the arbitrary positive or negative constant K. K is called the gain of the P element. The transfer
function of this system is

G(s) = K . (4.4.2)

The locus of the frequency response
G(jω) = K (4.4.3)

is for all frequencies a point on the real axis with distance K from the origin. This means that the phase
response ϕ(ω) is zero for K > 0 or −180◦ for K < 0. The characteristic of the magnitude is

A(ω)dB = 20 log10K = KdB = const .

4.4.2 The integrator (I element)

The dynamical behaviour of this element is described in the time domain by

xa(t) =
1
TI

t∫
0

xe(τ) dτ + xa(0) (4.4.4)

with input and output signals xe(t) and xa(t), respectively, and with the time constant TI, which has the
dimension ’time’. This element integrates the input signal. Setting xa(0) = 0 one obtains by taking the
Laplace transform of Eq. (4.4.4) the transfer function of the I element as

G(s) =
1
s TI

, (4.4.5)

and with s = jω the frequency response

G(jω) =
1

jω TI
=

1
ω TI

e−j
π
2 . (4.4.6)

From this the amplitude and phase responses

A(ω) =
1
ω TI

and ϕ(ω) = −π
2

follow. For the magnitude characteristic one obtains

A(ω)dB = +20 log10

1
ω TI

= −20 log10 ω TI . (4.4.7)
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The graphical representation of Eq. (4.4.7) gives a line with a slope of -20dB/decade, or equivalently
-6dB/octave, in the Bode diagram, Figure 4.4.1a. The phase response is independent of the frequency.
The Nyquist plot of the frequency response

G(jω) = −j
1
ω TI

coincides with the negative imaginary axis, as shown in Figure 4.4.1b.
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Figure 4.4.1: (a) Magnitude and phase response (b) Nyquist plot of the frequency response of an
integrator

4.4.3 The derivative element (D element)

The relationship between the input xe(t) and output xa(t) of a derivative element is described by

xa(t) = TD
d
dt
xe(t) . (4.4.8)

This element differentiates the input signal xe(t) and therefore is called a derivative element, or in short
D element. The associated transfer function is

G(s) = s TD , (4.4.9)

and with s = jω it follows that the frequency response

G(jω) = jω TD = ω TDej
π
2 , (4.4.10)

from which the magnitude
A(ω)dB = 20 log10 ω T (4.4.11)

and the phase response
ϕ(ω) =

π

2
(4.4.12)

follow. It can easily be seen, that the I and D elements are related by an inversion. Therefore the curves
of the magnitude and phase response of the D element can be found – as shown above – by mirroring
those of the I element at the 0-dB line and ϕ = 0 line, respectively. This is obvious from Eqs. (4.4.11)
and (4.4.12). Figure 4.4.2 shows the Bode diagram and the Nyquist plot of the frequency response of the
D element. The slope of the line A(ω) is +20dB/decade and the phase response is independent of the
frequency.

The D element discussed here is – as already mentioned in section 3.3 – an idealisation and therefore not
a physically realisable element. For practical applications the D element will be approximated by the
DT1 element (see section 4.4.6).
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Figure 4.4.2: (a) Magnitude and phase response (b) Nyquist plot of the frequency response of a D
element

4.4.4 The 1st-order lag element (PT1 element)

The 1st-order lag element or in short PT1 element is an element with an output signal xa(t) that for a
step input xe(t) has a certain initial slope and approaches asymptotically the final value. An example of
such an element is the simple RC lag circuit shown in Figure 4.4.3. When at time t = 0 a voltage ue = 2V
is applied, the voltage ua at the output will approach exponentially with the time constant T = RC the
final value ua = 2V.
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Figure 4.4.3: Simple RC lag as an example of a 1st-order lag element

The circuit involves a single energy storage element, the capacitor C. The differential equation of this
RC lag is

xa(t) +RCẋa(t) = xe(t) . (4.4.13)

For the general notation of a PT1 element one obtains the differential equation

xa(t) + T ẋa(t) = K xe(t) . (4.4.14)

If the initial condition xa is set to zero, on taking the Laplace transform the transfer function is

G(s) =
K

1 + s T
, (4.4.15)

and it follows that with s = jω the frequency response is

G(jω) = K
1

1 + jω T
. (4.4.16)

With the breakpoint frequency ωB =
1
T

one obtains

G(jω) = K
1

1 + j
ω

ωB

= K
1 − j

ω

ωB

1 +
(
ω

ωB

)2 . (4.4.17)
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The amplitude response is

A(ω) = |G(jω)| = K
1√

1 +
(
ω

ωB

)2
(4.4.18)

and the phase response is

ϕ(ω) = tan−1 I(ω)
R(ω)

= − tan−1 ω

ωB
. (4.4.19)

The magnitude characteristic derived from Eq. (4.4.18) is

A(ω)dB = 20 log10K − 20 log10

√
1 +
(
ω

ωB

)2

. (4.4.20)

Eq. (4.4.20) can be asymptotically approximated by lines for:

a)
ω

ωB
<< 1 by

A(ω)dB ≈ 20 log10K = KdB (initial asymptote) ,

with
ϕ(ω) ≈ 0 ;

b)
ω

ωB
>> 1 by

A(ω)dB ≈ 20 log10K − 20 log10

ω

ωB
(final asymptote) ,

with
ϕ(ω) ≈ −π

2
.

In the Bode diagramA(ω)dB can be consequently approximated by two lines. The progression of the initial
asymptote is horizontal, whereas the final asymptote shows a slope of -20dB/decade. The intersection of
both lines (breakpoint) can be determined from

20 log10K = 20 log10K − 20 log10

ω

ωB

and provides the frequency
ω = ωB .

Therefore ω = ωB is called the breakpoint frequency. As can be easily seen from Figure 4.4.4a, the
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Figure 4.4.4: (a) Magnitude and phase response (b) Nyquist plot of the frequency response of a PT1

element

deviation between A(ω)dB and the asymptotes has a maximum at the breakpoint for ωB. The exact
values are

A(ωB) = K
1√
2

and ϕ(ωB) = −π
4
.
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The deviation of the magnitude characteristic from the asymptotes for ω = ωB is

∆A(ωB)dB = −20 log10

√
2 dB ≈ −3 dB .

The deviations at the other frequencies are symmetrical from the breakpoint on the logarithmic scale, as
can be seen directly from Table 4.4.1. This is the reason why the magnitude and phase characteristics can
be easily constructed on a Bode diagram. The phase curve is approximately zero up to one tenth of the
breakpoint frequency, and −90◦ beyond 10 time the breakpoint frequency. In between, it is approximately
a straight line with slope 45◦ per decade through −45◦ at the breakpoint frequency.

Table 4.4.1: Magnitude, phase response and deviation ∆A(ω) of the exact magnitude from the asymptotes
for a PT1 element with K = 1

ω

ωB
A(ω)dB ϕ(ω) ∆A(ω)dB

0.03 0.0 - 2◦ 0.00
0.1 −0.04 - 6◦ −0.04

0.25 −0.26 - 14◦ −0.26
0.5 −0.97 - 27◦ −0.97

0.76 −2.00 - 37◦ −2.00
1.0 −3.00 - 45◦ −3.00

1.31 −4.35 - 53◦ −2.00
2.0 −6.99 - 63◦ −0.97
4.0 −12 - 76◦ −0.26

10.0 −20 - 84◦ −0.04
30.0 −30 - 88◦ 0.00

As already shown in section A.2 the locus of the frequency response of a PT1 element is a semicircle,
which starts for ω = 0 at K on the real axis and stops for ω → ∞ at the origin, as shown in Figure 4.4.4b.

The constant T = 1/ωB in the transfer function and on the frequency response, respectively, is usually
called the time constant of the PT1 element. It can be determined also by the point of intersection of
the line with the initial slope and the horizontal line of the final asymptote, h(∞), of the step response
h(t) as shown in Figure 4.4.5. This time constant can also be physically interpreted. It is the time when

�
�  �

� � � �

� � � �

� / ' � � � � � �

Figure 4.4.5: Graphical representation of the step response, h(t), of a PT1 element

the step response has reached approx. 63% of the final value, h(∞). K is – similar to the P element –
called the gain of the PT1 element. It is defined as the value of the frequency response at ω = 0.

DYNAST study example 4.1
Simple automobile model

DYNAST study example 4.2
D.C. motor - open loop

http://virtual.cvut.cz/dyn/examples/examples/control/cruise/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/dcmotor/index.html
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4.4.5 The proportional plus derivative element (PD element)

The PD element shows both proportional and derivative behaviour and is described by the transfer
function

G(s) = K(1 + s T ) . (4.4.21)

Apart from the gain factor K this element is the inverse of the PT1 element. Hence for K = 1 one obtains
the magnitude and phase response by mirroring at the 0-dB axis and the ϕ(ω) = 0 line, respectively
(compare Figure 4.4.6 with 4.4.4). The locus of the frequency response

G(jω) = K(1 + jω T ) (4.4.22)

is a semi-line, which starts for ω = 0 on the real axis at K and progresses parallel to the imaginary axis
for increasing values of ω.
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Figure 4.4.6: (a) Magnitude and phase response (b) Nyquist plot of the frequency response of a PD
element

4.4.6 The derivative lag element (DT1 element)

This element has a step response which initially contains a step and then decreases exponential to zero
with a characteristic time constant as shown in Figure 4.4.7. Figure 4.4.8 shows an example of such a

#

�
�  �

� � � �

Figure 4.4.7: Graphical representation of the step response, h(t), of a DT1 element

system; a simple RC high pass filter. The differential equation of this circuit is

C
d(ue − ua)

dt
=
ua

R
,

which can be written as

ua +RC
dua

dt
= RC

due

R
.
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Figure 4.4.8: Simple RC high-pass circuit as an example of a DT1 element

Applying the Laplace transform one obtains the transfer function

G(s) =
Ua(s)
Ue(s)

=
RCs

1 +RCs
. (4.4.23)

The generalised notation of the DT1 element is

G(s) = K
Ts

1 + Ts
. (4.4.24)

For constructing the Bode plot one starts with the frequency response

G(jω) = K
jω T

1 + jω T
, (4.4.25)

which on substituting ωB =
1
T

gives

G(jω) = Kj
ω

ωB

1

1 + j
ω

ωB

=
ω

ωB
K

ω

ωB
+ j

1 +
(
ω

ωB

)2 . (4.4.26)

From Eq. (4.4.26) it follows that

A(ω) = |G(jω)| =
ω

ωB
K

1√
1 +
(
ω

ωB

)2
,

and

A(ω)dB = 20 log10

ω

ωB
+ 20 log10K − 20 log10

√
1 +
(
ω

ωB

)2

. (4.4.27)

After some calculations the phase response can be shown to be

ϕ(ω) =
π

2
− tan−1

(
ω

ωe

)
. (4.4.28)

Comparing Eq. (4.4.27) with Eqs. (4.4.20) and (4.4.23) shows that the magnitude characteristic of the
DT1 element can be obtained by adding the corresponding curves of a PT1 element and a D element.
The same also holds for the phase response ϕ(ω). With this information the curves of the frequency
response characteristics and of the Nyquist diagram can be simply constructed according to Figure 4.4.9.

4.4.7 The 2nd-order lag element (PT2 element and PT2S element)

A 2nd-order lag element is characterised by two independent energy storages. Depending on the damping
properties and the position of the poles of G(s), respectively, one distinguishes between oscillating and
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Figure 4.4.9: (a) Magnitude and phase responses (b) Nyquist plot of the frequency response of a DT1

element

aperiodic behaviour. If a 2nd-order lag element has a conjugate complex pair of poles, then it shows an
oscillating behaviour (PT2S behaviour). If both poles are on the negative real axis, then the element has
a lag behaviour (PT2 behaviour).

The RLC network of Figure 4.4.10 is an example of such an element. From the equation of the mesh

ieR+ L
die
dt

+ ua = ue (4.4.29)

with

ie = C
dua

dt
(4.4.30)

the differential equation becomes

LC
d2ua

dt2
+RC

dua

dt
+ ua(t) = ue(t) . (4.4.31)

Interactive Questions 4.4
Test using other example

The transfer function is

G(s) =
Ua(s)
Ue(s)

=
1

1 +RC s+ LC s2
. (4.4.32)

For the 2nd-order lag element the general notation of the transfer function

G(s) =
K

1 + T1s+ T 2
2 s

2
(4.4.33)

is chosen. Introducing terms which characterise the time behaviour, that is the damping ratio

ζ =
1
2
T1

T2
(4.4.34)

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TimeResponse/TimeResponse01.html
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Figure 4.4.10: Simple RLC network as an example of a 2nd-order lag element

and the natural frequency (frequency of the undamped oscillation)

ω0 =
1
T2

, (4.4.35)

one obtains from Eq. (4.4.33)

G(s) =
K

1 +
2ζ
ω0

s+
1
ω2

0

s2
=

K

D(s)
. (4.4.36)

For s = jω the frequency response

G(jω) =
K

1 + j2ζ
ω

ω0
− ω2

ω2
0

= K

[
1 −
(
ω

ω0

)2
]
− j2ζ

ω

ω0[
1 −
(
ω

ω0

)2
]2

+
[
2ζ

ω

ω0

]2 . (4.4.37)

results. The amplitude response is

A(ω) =
K√[

1 −
(
ω

ω0

)2]2
+
(

2ζ
ω

ω0

)2
(4.4.38)

and the phase response

ϕ(ω) = − tan−1
2ζ

ω

ω0

1 −
(
ω

ω0

)2 . (4.4.39)

Here the ambivalence of the tan−1 function has to be observed. For the magnitude characteristic one has
from Eq. (4.4.38)

A(ω)dB = 20 log10K − 20 log10

√[
1 −
(
ω

ω0

)2]2
+
(

2ζ
ω

ω0

)2

. (4.4.40)

The progression of A(ω)dB can be approximated by the following asymptotes:

a) For
ω

ω0
<< 1 by

A(ω)dB ≈ 20 log10K (initial asymptote) ,

with
ϕ(ω) ≈ 0 .

b) For
ω

ω0
>> 1 by

A(ω)dB ≈ 20 log10K − 20 log10

(
ω

ω0

)2

≈ 20 log10K − 40 log10

(
ω

ω0

)
(final asymptote) ,
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with
ϕ(ω) ≈ −π .

In the Bode diagram the final asymptote is a line with a slope of -40dB/decade. The point of intersection
of both asymptotes follows from

20 log10K = 20 log10K − 40 log10

(
ω

ω0

)
to be the normalised frequency ω

ω0
. The exact value of A(ω)dB may deviate considerably from the point

of intersection at ω = ω0, because it is

A(ω0)dB = 20 log10K − 20 log10 2ζ

according to Eq. (4.4.38). For ζ < 0.5 this value is above, for ζ > 0.5 below the asymptotes.

Figure 4.4.11 shows for 0 < ζ ≤ 2.5 and K = 1 the magnitude and phase responses in a Bode diagram.
This graphical representation contains the cases of PT2S and PT2 behaviour, which will be discussed in
section A.3.2. From Figure 4.4.11 it can be seen that a maximum magnitude exists for some values of the
damping ratio ζ. This maximum occurs at the so called resonant peak frequency ωp. A detailed analysis
of this resonance can be found in section A.3.1.
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Figure 4.4.11: Bode diagram of a 2nd-order lag element with the transfer function G(s) =
1/
[
1 + s2ζ/ω0 + (s/ω0)2

]

Figure 4.4.12 shows the Nyquist plots of 2nd-order lag elements with high and low damping. From
Eq. (4.4.37) it follows that for ω = ω0 the real part of G(jω) is zero. Therefore the locus of the frequency
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response intersects with the imaginary axis at ω = ω0 independent of the values of ζ, as can be seen in
Figure 4.4.12.
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Figure 4.4.12: Nyquist plots of 2nd-order lag elements, (a) PT2 element, (b) PT2S element

The modes of a dynamical system are determined according to Eq. (3.5.3) by the roots of the characteristic
equation or by the poles of the transfer function, respectively. From the characteristic equation of the
2nd-order lag element

P (s) ≡ D(s) = 1 +
2ζ
ω0
s+

1
ω2

0

s2 = 0 (4.4.41)

one obtains the poles of the transfer function as

s1,2 = −ω0ζ ± ω0

√
ζ2 − 1 . (4.4.42)

The oscillating behaviour of a 2nd-order lag element is dependent on the position of the poles in the s
plane. For a graphical analysis the step response h(t) is a useful tool. Table 4.4.2 shows step responses
and the corresponding poles for different values of ζ. These five cases will be analysed and discussed in
more detail in section A.3.2.

4.4.8 Bandwidth of a system

An important term that has not been defined so far is the bandwidth of a system. Lag elements with
a proportional behaviour, e.g. PT1, PT2 and PT2S elements as well as PTn elements (n PT1 elements
in series connection), show a so-called low-pass property. This means that they pass low frequencies
whereas high frequencies in signals are attenuated by the strongly decreasing amplitude response of the
frequency response. In order to describe this behaviour the concept of bandwidth is introduced. This is
the frequency ωb at which the magnitude of the frequency response is decreased by 3dB from the value
of the initial horizontal asymptote, see Figure 4.4.13.

�� ��  
� �

� � 7�

� � � � � 7

Figure 4.4.13: Definition of the bandwidth ωb of systems with lags (ωp resonant peak frequency, ω0

natural frequency of the undamped oscillation; ω on logarithmic scale)
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Table 4.4.2: Pole positions in the s plane and step responses for elements with the transfer function
G(s) = 1/

[
1 + s2ζ/ω0 + (s/ω0)2

]
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4.4.9 Example for the construction of a Bode plot

In section 4.3 it has been shown how Bode plots of a system with rational transfer functions can be
generated by decomposing the system into smaller elements, such as those shown in Table A.8.3. In this
section a detailed example will be given.

A Bode plot is to be drawn for a system, which has only real poles and zeros. The given transfer function

G(s) = K1
(s+ 0.1) (s+ 2)
s(s+ 5) (s+ 20)

, with K1 = 890

is rearranged into the form

G(s) = K2

( s

0.1
+ 1
)(s

2
+ 1
)

s

(
2
5

+ 1
) ( s

20
+ 1
) ; K2 = K1/500 = 1.78 .

This system can now be decomposed into an integrator, two PD and two PT1 elements, that is

G(s) =
K2

s

︸︷︷︸
= G1(s)

( s

0.1
+ 1
)

︸ ︷︷ ︸
G2(s)

(s
2

+ 1
)

︸ ︷︷ ︸
G3(s)

1
s

5
+ 1︸ ︷︷ ︸

G4(s)

1
s

20
+ 1︸ ︷︷ ︸

G5(s)

.

From this simple analysis the Bode plot can be determined by adding the Bode plots of the elements G1

to G5 according to Figure 4.4.14a. In this figure the variable quantities ωBi in the terms (s/ωBi + 1)±1

� � �

% �

� �

� �

� � �

� % & 5

� 5

� 6 � 5

� �

�

� � �

6 � 5

% & 5

�� / � � � � � � � � � � �

�

�

� �

� � � � � � �

��

� > " � �

%�

&�

�
�

��

��
�

��
�

��
�

%�
�

��
%

�
&�

�
�

�
�

� � 7
#

�

�

� � � $

� � � $

� � � $

� � $

� � � �

�

� �
&

� �

� �
� '

� * �

� / � '

& �

� � �

� � �

� / &
& � �

� * �

� > " � �
� � � � � 7

� � � �

� � � � � �

$ � 2 � 3 � 4

� � 3 � 4

� � $ � �

� 3 � . � 4

3 � . � 4

3 � . � 4

Figure 4.4.14: Representation of a dynamic system by two frequency response diagrams: (a) Bode plot,
(b) Nyquist plot

for i = 1, 2, 3 and 4 are the breakpoint frequencies in the Bode plot. Also shown in Figure 4.4.14 is the
Nyquist plot of the frequency response. Both representations of Figure 4.4.14 basically contain the same
information about the system.

Based on the example given above the procedure for constructing a Bode plot of a given system can be
recapitulated:
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a) The given transfer function must be put into the form

G(s) = K
(s− sZ1) . . . (s− sZm)
(s− sP1) . . . (s− sPn)

= K

m∏
µ=1

(
−sZµ

)
n∏

ν=1
sPν �=0

(−sPν )

1
sk

m∏
µ=1

(
1 +

s

−sZµ

)
n∏

ν=1
sPν �=0

(
1 +

s

−sPµ

)

with k = 0, 1, 2, . . . ,

where possible poles of G(s) at sPν = 0 will be specially considered according to their multiplicity
k.

b) Then for s = jω the asymptotes of the elements will be used to approximate A(ω)dB and ϕ(ω).

c) If necessary corrections of the approximations can be performed.

4.5 Systems with minimum and non-minimum phase behaviour

Stable systems without dead time, which are described by the transfer function

G(s) =
N(s)
D(s)

and which do not have zeros in the right half s plane, are called minimum phase systems. They are
characterised by the fact that for a known amplitude response A(ω) = |G(jω)| in the range of 0 ≤ ω <∞
the corresponding phase response ϕ(ω) can be calculated fromA(ω) and that the value of ϕ(ω) determined
has its minimum modulus for the given A(ω).

If a transfer function has poles and/or zeros in the right half s plane then this system shows non-minimum
phase behaviour. The modulus of the phase response is then always larger than that for a system with
minimum phase behaviour, which has the same amplitude response.

In order to illustrate the non-minimum phase behaviour, two systems will be considered, which have
in fact the same amplitude response A(ω) but differ considerably in the phase response. The transfer
functions of the two systems are

Ga(s) =
1 + sT

1 + sT1
and Gb(s) =

1 − sT

1 + sT1

with 0 < T < T1. The distributions of the poles and zeros of Ga(s) and Gb(s) in the s plane is shown in
Figure 4.5.1. The amplitude response of the corresponding frequency responses Ga(jω) (minimum phase
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Figure 4.5.1: Distribution of poles and zeros in the s plane (a) Ga(s) and (b) Gb(s)

system) and Gb(jω) (non-minimum phase system) is in both cases the same, as

Aa(ω) = Ab(ω) =

√
1 + (ωT )2

1 + (ωT1)2
.



4.5. SYSTEMS WITH MINIMUM AND NON-MINIMUM PHASE BEHAVIOUR 4-21

For the phase responses one obtains

ϕa(ω) = − tan−1 ω(T1 − T )
1 + ω2T1T

and
ϕb(ω) = − tan−1 ω(T1 + T )

1 − ω2T1T

a different result, which is shown in Figure 4.5.2. For ϕb(ω) the ambivalence of the tan−1 function has
to be observed. Here the minimum phase response of ϕa(ω) can be clearly seen.
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Figure 4.5.2: Phase response of two transfer functions with identical amplitude, but with minimum and
non-minimum phase behaviour: |ϕa| < |ϕb|

The transfer functions of non-minimum phase systems, like Gb(s), can always been composed by a series
connection of a minimum phase system and a pure phase shift element, which are described by the
transfer functions Ga(s) and GA(s):

Gb(s) = GA(s)Ga(s) . (4.5.1)

A pure phase shift element, also called all-pass element, is characterised by the fact, that the modulus of
its frequency response GA(jω) has a value of unity at all frequencies. For this example one obtains

Gb(s) = GA(s)Ga(s)

or
1 − sT

1 + sT1
=

1 − sT

1 + sT

1 + sT

1 + sT1
.

From this, the transfer function of the all-pass element (1st order) is

GA(s) =
1 − sT

1 + sT
,

which has the amplitude response
AA(ω) = 1 (4.5.2)

and the phase response

ϕA(ω) = − tan−1 2ωT
1 − (ωT )2

= −2 tan−1 ωT .

This all-pass element has a phase response ϕA(ω) from 0◦ to -180◦. The condition of Eq. (4.5.2) is only
fulfilled by systems for which the distribution of zeros of the transfer function GA(s) in the s plane is
symmetric to the jω axis. This is shown in Figure 4.5.3 for a stable 4th-order all-pass system.

The transfer function of an nth-order all-pass system is

GA(s) = ± (s− s̃1) (s− s̃2) . . . (s− s̃n)
(s− s1) (s− s2) . . . (s− sn)

, (4.5.3)

where the corresponding poles si and zeros s̃i for i = 1, 2, . . . , n only differ in the signs of their real parts
(Re si = −Re s̃i).

For minimum phase systems, as already mentioned and shown in section A.4, the phase response ϕ(ω)
can be unambiguously determined from the amplitude response A(ω). This is not valid for non-minimum
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Figure 4.5.3: Poles (x) and zeros (o) of a 4th-order all-pass system

phase systems. The verification of whether a system is non-minimum or minimum phase can be easily
estimated from the progression of ϕ(ω) and A(ω)dB for high frequencies. For a minimum phase system,
which is described by the transfer function

G(s) =
N(s)
D(s)

with m = degreeN(s) and n = degreeD(s) one obtains for ω → ∞ the phase

ϕ(∞) = −90◦(n−m) . (4.5.4)

For a low-pass system with non-minimum phase behaviour the modulus of this phase value is always
larger than that given by Eq. (4.5.4). In both cases the magnitude response has a slope of

−20(n−m) dB /decade

for ω → ∞.

4.6 Systems with dead time

A typical system with non-minimum phase behaviour is the dead time element (PTt element), which is
described by the transfer function

G(s) = e−sTt . (4.6.1)

The frequency response is
G(jω) = e−jωTt

with the amplitude response
A(ω) = |G(jω)| = 1

and the phase response (in radians)
ϕ(ω) = −ωTt .

The locus of G(jω) is a circle around the origin, starting with ω = 0 on the real axis at R(ω) = 1 and
perpetually traversing the circle with increasing values of ω as shown in Figure 4.6.1.

DYNAST study example 4.3
Explanation of plotting frequency responses in DYNAST by way of an example

Problem 4.1
Frequency response - seven problems

http://virtual.cvut.cz/dyn/examples/examples/control/ac13fresp/index.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Problems/FrequencyRespProblems.pdf
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Figure 4.6.1: (a) Nyquist plot and (b) phase of a dead time element
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Module 5

Stability of linear control systems

Module units
5.1 Stable and unstable systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

5.2 Definition of stability and stability conditions . . . . . . . . . . . . . . . . . 5-2

5.3 Algebraic stability criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

5.3.1 The Hurwitz criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

5.3.2 Routh criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

5.3.3 Nyquist criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

5.3.4 Nyquist criterion using Nyquist plots . . . . . . . . . . . . . . . . . . . . . . . . 5-8

5.3.5 Simplified forms of the Nyquist criterion . . . . . . . . . . . . . . . . . . . . . . 5-10

5.3.6 The Nyquist criterion using Bode plots . . . . . . . . . . . . . . . . . . . . . . 5-11

Module overview. Stability is the base requirement for the design of a control system. This module
gives a first insight into the design of closed-loop systems and the problem of their stability. It is shown
by definitions what stability means. Then the most important stability criteria using the characteristic
polynomial (Hurwitz, Routh) are introduced. Most emphasis is put on the Nyquist criterion, which can
be used with Nyquist and Bode diagrams to design stable closed-loop systems with given stability margins.
To simplify the stability test in the frequency domain with Nyquist or Bode diagrams several rules are
given. All terms, techniques and rules are illustrated by examples.

Module objectives. When you have completed this module you should be able to:

1. Understand the stability of linear dynamical systems.

2. Understand the algebraic stability criteria for linear systems.

3. Know how to test the stability of linear systems described by transfer functions.

4. Know how to test the stability of linear systems described by frequency-response characteristics.

5. Know how to test the stability of a closed loop from open-loop data.

Module prerequisites. Transfer function, characteristic polynomial,determinants, frequency response,
Bode diagram, Nyquist diagram.

5-1
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5.1 Stable and unstable systems

The stability of control systems is an important property. Considering any bounded input signal xe(t) of
a system, and if the output signal xa(t) of the system to such a signal is also bounded, then the system is
called bounded-input-bounded-output stable. If the output signal does not show this property, the system
is unstable. For illustration see Figure 5.1.1.

�

�

�

�

"�"�
� � � � � �

Figure 5.1.1: (a) Stable and (b) unstable system response xa(t) to a bounded input signal xe(t)

5.2 Definition of stability and stability conditions

Because of its feedback structure a control system can become unstable, e.g. oscillations with increasing
amplitudes in the signals can occur. In section 5.1 a signal-based definition of stability is established,
which relies on the boundedness of the input-output signals. In this section we focus on a definition of
stability for linear systems that is independent of the input-output signals. First the following definition
is introduced:

A linear time-invariant system according to Eq. (3.1.3) is called (asymptotically) stable, if its
weighting function decays to zero, i.e. if

lim
t→∞ g(t) = 0 (5.2.1)

is valid. If the modulus of the weighting function increases with increasing t to infinity, the
system is called unstable.

A special case is a system where the modulus of the weighting function does not exceed a finite
value as t → ∞ or for which it approaches a finite value. Such systems are called critically
stable. Examples are undamped PT2S and I elements, see sections 4.4.2 and 4.4.7.

This definition shows that stability is a system property for linear systems. If Eq. (5.2.1) is valid, then
there exists no initial condition and no bounded input signal which drives the output to infinity. This
definition can be directly applied to the stability analysis of linear systems by determining the value of
the weighting function for t→ ∞. If this value exists, and if it is zero, the system is stable. However, in
most cases the weighting function is not given in an explicit analytic form and therefore it is costly to
determine the final value. The transfer function G(s) of a system is often known and as it is the Laplace
transform of the weighting function g(t), there is an equivalent stability condition for G(s) according
to Eq. (5.2.1). The analysis of this condition – see section A.5 – shows that for the stability analysis
it is sufficient to check the poles of the transfer function G(s) of the system, that is the roots si of its
characteristic equation

P (s) ≡ D(s) = a0 + a1s+ s2s
2 + . . .+ ans

n = 0 . (5.2.2)

Now the following necessary and sufficient stability conditions can be formulated:

a) Asymptotic stability

A linear system is only asymptotically stable, if for the roots si of its characteristic equation

Re si < 0 for all si(i = 1, 2, . . . , n)

is valid, or in other words, if all poles of its transfer function lie in the left-half s plane.
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b) Instability

A linear system is only unstable, if at least one pole of its transfer function lies in the right-half s
plane, or, if at least one multiple pole (multiplicity r ≥ 2) is on the imaginary axis of the s plane.

c) Critical stability

A linear system is critically stable, if at least one single pole exists on the imaginary axis, no pole
of the transfer function lies in the right-half s plane, and in addition no multiple poles lie on the
imaginary axis.

It has been shown above that the stability of linear systems can be assessed by the distribution of the
roots of the characteristic equation in the s plane (Figure 5.2.1). For control problems there is often
no need know these root with high precision. For a stability analysis it is interesting to know whether
all roots of the characteristic equation lie in the left-half s plane or not. Therefore simple criteria are
available for easily checking stability, called stability criteria. These are partly in algebraic, partly in
graphical form.
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Figure 5.2.1: Stability of a linear system discussed by the distribution of the roots of the characteristic
equation in the s plane

Interactive Questions 5.1
Test your knowledge about stability

5.3 Algebraic stability criteria

The algebraic stability criteria are based on the characteristic equation, Eq. (5.2.2), of the system to be
analysed. They contain algebraic conditions as inequalities between coefficients ai, which are only valid
if all roots of the polynomial lie in the left-half s plane.

5.3.1 The Hurwitz criterion

A polynomial
P (s) = a0 + a1s+ . . .+ ans

n (5.3.1)

with k complex conjugate pairs of roots and (n− 2k) real roots can always be represented as

P (s) = an(s2 − 2d1 + d2
1 + ω2

1) . . . (s
2 − 2dk + d2

k + ω2
k)(s− s2k+1) . . . (s− sn) . (5.3.2)

If all roots of the polynomial of P (s) are in the left-half s plane then for an > 0 all constants −dj and
−sj in Eq. (5.3.2) are positive. From this follows that all coefficients aj of the polynomial P (s), which
are products and sums of positive numbers, are also positive. This result is formulated in the so-called
Stodola criterion:

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/TimeResponse/TimeResponse04.html
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For the polynomial to have all roots with negative real parts it is necessary that

sgna0 = sgna1 = . . . = sgn an . (5.3.3)

These conditions are also sufficient for n = 1 and n = 2 as can be easily verified by calculating the roots.
However, for n ≥ 3 this is no longer the case.

Example 5.3.1
The polynomial with positive coefficients

P (s) = s3 + s2 + 4s+ 30 = (s+ 3)(s2 − 2s+ 10)

fulfills the Stodola criterion, but not all the roots s1 = −1, s2,3 = 1 ± j3 have negative real parts. �

A polynomial for which all roots si(i = 1, 2, . . . , n) have negative real parts is called Hurwitzian. There-
fore, according to the stability conditions introduced in section 5.2 a linear system is only asymptotically
stable, if its characteristic polynomial is Hurwitzian. The Hurwitz criterion for the coefficients of a
Hurwitz polynomial is as follows:

A polynomial P (s) is Hurwitzian, if and only if for an > 0 all determinants

D1 = an−1 > 0

D2 =
∣∣∣∣an−1 an

an−3 an−2

∣∣∣∣ > 0

D3 =

∣∣∣∣∣∣
an−1 an 0
an−3 an−2 an−1

an−5 an−4 an−3

∣∣∣∣∣∣ > 0

until

Dn−1 =

∣∣∣∣∣∣∣∣∣∣

an−1 an . . . 0
an−3 an−2 . . . .
. . . . . .
. . . . . .
0 0 . . . a1

∣∣∣∣∣∣∣∣∣∣
> 0 (5.3.4)

Dn = a0Dn−1 > 0 .

are positive.

The following schema of the coefficients can be used to build the Hurwitz determinants:

D1 an−1 an 0 0 0

D2 an−3 an−2 an−1 an 0

D3 an−5 an−4 an−3 an−2 an−1 . . .

D4 an−7 an−6 an−5 an−4 an−3 . . .

. . . . .

The Hurwitz determinants Dν are characterised by the diagonal coefficients an−1, an−2, . . . , an−ν (ν =
1, 2, . . . , n) and by the increasing indices from left to right. Coefficients with indices larger than n are set
to zero. For applying this criterion all determinants until Dn−1 have to be calculated. Calculation of the
last determinant Dn is trivial.
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While for a 2nd-order system the conditions of the determinants are automatically fulfilled as soon as
the coefficients a0, a1, a2 are positive, for a 3rd-order system one obtains the Hurwitz conditions

D1 = a2 > 0

D2 =
∣∣∣∣a2 a3

a0 a1

∣∣∣∣ = a1a2 − a0a3 > 0

D3 =

∣∣∣∣∣∣
a2 a3 0
a0 a1 a2

0 0 a0

∣∣∣∣∣∣ = a0D2 > 0 .

It goes without saying that the determinant conditions will be only applied if the easily checkable condi-
tions of Eq. (5.3.3) are fulfilled. The Hurwitz criterion is not only practical for the stability analysis of a
system with given coefficients ai, but also of a system with free parameters. This is the task when the
range of parameters must be determined for which the system is asymptotically stable. Therefore the
following example is given.

Example 5.3.2
Figure 5.3.1 shows a control loop, for which the range of K0 must be determined such that the closed
loop is asymptotically stable. The time constants T1 and T2 of both lag elements are known and positive.
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Figure 5.3.1: Stability analysis of a simple control loop

With the transfer function of the open loop

G0(s) =
K0

s(1 + T1s) (1 + T2s)

=
K0

s+ (T1 + T2) s2 + T1T2s3

one obtains for the closed-loop transfer function

GW(s) =
Y (s)
W (s)

=
G0(s)

1 +G0(s)

and by substituting G0(s)

GW(s) =
K0

K0 + s+ (T1 + T2) s2 + T1T2s3
.

The characteristic equation of the closed loop is

P (s) = K0 + s+ (T1 + T2) s2 + T1T2s
3 = 0 .

According to the Stodola and Hurwitz criteria the following conditions must be met for asymptotic
stability:

a) Coefficients a0 = K0, a1 = 1, a2 = (T1 + T2) and a3 = T1T2 must be positive. From this the lower
limit K0 > 0 follows.

b) Furthermore
(a1a2 − a3a0) > 0

must be valid.
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With the coefficients given above it follows that

T1 + T2 − T1T2K0 > 0

and for the upper limit of K0

K0 <
T1 + T2

T1T2
.

The closed loop is asymptotically stable for the range

0 < K0 <
T1 + T2

T1T2
.

�

5.3.2 Routh criterion

For given coefficients ai of the characteristic equation the method of Routh, which is an alternative to
the method of Hurwitz, can be applied, see section A.6. Here the coefficients ai(i = 0, 1, . . . , n) will be
arranged in the first two rows of the Routh schema, which contains n+ 1 rows:

n an an−2 an−4 an−6 . . . 0

n− 1 an−1 an−3 an−5 an−7 . . . 0

n− 2 bn−1 bn−2 bn−3 bn−4 . . . 0

n− 3 cn−1 cn−2 cn−3 cn−4 . . . 0
...

...

3 dn−1 dn−2 0

2 en−1 en−2 0

1 fn−1

0 gn−1

The coefficients bn−1, bn−2, bn−3, . . . in the third row are the results from cross multiplication the first
two rows according to

bn−1 =
an−1an−2 − anan−3

an−1

bn−2 =
an−1an−4 − anan−5

an−1

bn−3 =
an−1an−6 − anan−7

an−1

....

Building the cross products one starts with the elements of the first row. The calculation of these b values
will be continued until all remaining elements become zero. The calculation of the c values are performed
accordingly from the two rows above as follows:

cn−1 =
bn−1an−3 − an−1bn−2

bn−1

cn−2 =
bn−1an−5 − an−1bn−3

bn−1

cn−3 =
bn−1an−7 − an−1bn−4

bn−1

...
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From these new rows further rows will be built in the same way, where for the last two rows finally

fn−1 =
en−1dn−2 − dn−1en−2

en−1

and

gn−1 = en−2

follows. Now the Routh criterion is:

A polynomial P (s) is Hurwitzian, if and only if the following three conditions are valid:

a) all coefficients ai(i = 0, 1, . . . , n) are positive,

b) all coefficients bn−1, cn−1 in the first column of the Routh schema are positive.

Example 5.3.3

P (s) = 240 + 110s+ 50s2 + 30s3 + 2s4 + s5 .

The Routh schema is:

5 1 30 110 0

4 2 50 240 0

3 5 −10 0

2 54 240

1 −32.22 0

0 240

As in the first row of the Routh schema a coefficient is negative the system is unstable. �

For proving instability it is sufficient to build the Routh schema only until negative or zero value occurs
in the first column. In the example given above the schema could have been stopped at the 5th row.

Another interesting property of the Routh scheme says, that the number of roots with positive real parts
is equal to the number of changes of sign of the values in the first column.

5.3.3 Nyquist criterion

This graphical method, which was originally developed for the stability analysis of feedback amplifiers, is
especially suitable for different control applications. With this method the closed-loop stability analysis
is based on the locus of the open-loop frequency response G0(jω). Since only knowledge of the frequency
response G0(jω) is necessary, it is a versatile practical approach for the following cases:

a) For many cases G0(jω) can be determined by series connection of elements whose parameters are
known.

b) Frequency responses of the loop elements determined by experiments or G0(jω) can be considered
directly.

c) Systems with dead time can be investigated.

d) Using the frequency response characteristic of G0(jω) not only the stability analysis, but also the
design of stable control systems can be easily performed.
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5.3.4 Nyquist criterion using Nyquist plots

To derive this criterion one starts with the rational transfer function of the open loop

G0(s) =
N0(s)
D0(s)

(5.3.5)

and makes the following assumptions:

1. The polynomials N0(s) and D0(s) are relatively prime.

2.
degreeN0(s) = m ≤ n = degreeD0(s) , (5.3.6)

which is always valid for realisable systems, see section 3.3.

The poles βi of the open loop are the roots of the characteristic equation

D0(s) = 0. (5.3.7)

For stability analysis just the poles αi of the closed loop are of interest, i.e. the roots of the characteristic
equation, which are determined by setting the denominator of the closed-loop transfer function to zero.
From this condition

1 +G0(s) =
N0(s) +D0(s)

D0(s)
=
Ng(s)
D0(s)

= 0 (5.3.8a)

and
P (s) ≡ Ng(s) = N0(s) +D0(s) = 0 (5.3.8b)

follows. Because of Eq. (5.3.6) degreeNg(s) = n is valid. Thus the function G′(s) = 1 +G0(s) must be
investigated in more detail. The zeros of this function match the poles of the closed loop and its poles
match the poles of the open loop. Therefore this function can be represented by

G′(s) = 1 +G0(s) = k′0

n∏
i=1

(s− αi)

n∏
i=1

(s− βi)
, (5.3.9)

where αi are the poles of the closed loop and βi the poles of the open loop. With respect to the position
of the poles it is assumed according to Figure 5.3.2 that
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Figure 5.3.2: Poles of the open and closed loop in the s plane (multiple poles are counted according to
their multiplicity)

a) from the n poles αi of the closed loop

N are lying in the right-half s plane,

ν are on the imaginary axis, and
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(n−N − ν) in the left-half s plane.

Accordingly,

b) from the n open-loop poles βi

P are lying in the right-half s plane,

µ on the imaginary axis, and

(n− P − µ) in the left-half s plane.

P and µ are assumed to be known. Then N and ν will be determined from the knowledge about the
frequency response locus of G0(jω). Therefore with s = jω the frequency response

G′(jω) = 1 +G0(jω) =
Ng(jω)
D0(jω)

(5.3.10)

is calculated, for which the phase response is given by

ϕ(ω) = arg[G′(jω)] = arg[Ng(jω)] − arg[D0(jω)] .

When ω traverses the range of 0 ≤ ω ≤ ∞, the change in the phase ∆ϕ = ϕ(∞) − ϕ(0) consists of the
parts from the polynomials Ng(jω) and D0(jω) and is given by

∆ϕ = ∆ϕg − ∆ϕ0 .

Each root of the polynomials Ng(s) and D0(s), respectively, provides for ∆ϕg and ∆ϕ0, respectively, an
amount of +π/2, if they lie in the left-half s plane, and each root on the right-hand side of the imaginary
axis provides an amount of −π/2. These phase changes are continuous with respect to ω.

Each root jδ on the imaginary axis for δ > 0 causes during the traverse of jω at jδ a stepwise change of
π in the phase. This discontinuous part of the phase will not be considered in what follows.

Using the terms given above, for the continuous part ∆ϕS of the phase change ∆ϕ one obtains

∆ϕS = [(n−N − ν) −N ]π/2 − [(n− P − µ) − P ]π/2
= (n− 2N − ν)π/2 − (n− 2P − µ)π/2 ,

or

∆ϕS = [2(P −N) + µ− ν]π/2 . (5.3.11)

If besides P and µ, ∆ϕs is also known, then from Eq. (5.3.11) it can be determined, whether N > 0
or/and ν > 0 is valid, i.e. whether and how many closed-loop poles are in the right-half s plane and on
the imaginary axis.

To determine ∆ϕS, the locus G′(jω) = 1 +G0(jω) can be drawn on the Nyquist diagram and the phase
angle checked. Expediently one moves this curve by 1 to the left in the G0(jω) plane. Thus for stability
analysis of the closed loop the locus G0(jω) of the open loop according to Figure 5.3.3 has to be drawn.
Here ∆ϕS is the continuous change in the angle of the vector from the so called critical point (-1,j0) to
the moving point on the locus of G0(jω) for 0 ≤ ω ≤ ∞. Points where the locus passes through the point
(-1,j0) or where it has points at infinity correspond to the zeros and poles of G′(s) on the imaginary
axis, respectively. These discontinuities are not taken into account for the derivation of Eq. (5.3.11).
Figure 5.3.4 shows an example of a G0(jω) where two discontinuous changes of the angle occur. Thereby
the continuous change of the angle consists of three parts

∆ϕS = ∆ϕAB + ∆ϕCD + ∆ϕDO

= −ϕ1 − (2π − ϕ1 − ϕ2) − ϕ2 = −2π .

The rotation is counter clockwise positive.

As the closed loop is only asymptotically stable for N = ν = 0, then from Eq. (5.3.11) the general case
of the Nyquist criterion follows:
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Figure 5.3.3: Nyquist diagrams of G′(jω) and G0(jω)
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Figure 5.3.4: Determination of continuous changes in the angle ∆ϕS

The closed loop is asymptotically stable, if and only if the continuous change in the angle of
the vector from the critical point (-1,j0) to the moving point of the locus G0(jω) of the open
loop is

∆ϕS = (P + µ/2)π . (5.3.12)

For the case with a negative gain K0 of the open loop the locus is rotated by 180◦ relative to the case
with a positive K0. The Nyquist criterion remains valid also in the case of a dead time in the open loop.

5.3.5 Simplified forms of the Nyquist criterion

It follows from Eq. (5.3.12) that for an open-loop stable system, that is P = 0 and µ = 0, then ∆ϕS = 0.
Therefore the Nyquist criterion can be reformulated as follows:

If the open loop is asymptotically stable, then the closed loop is only asymptotically stable,
if the frequency response locus of the open loop does neither revolve around or pass through
the critical point (-1,j0).

Another form of the simplified Nyquist criterion for G0(s) with poles at s = 0 is the so called ’left-hand
rule’:

The open loop has only poles in the left-half s plane with the exception of a single or double
pole at s = 0 (P, I or I2 behaviour). In this case the closed loop is only stable, if the critical
point (-1,j0) is on the left hand-side of the locus G0(jω) in the direction of increasing values
of ω.
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This form of the Nyquist criterion is sufficient for most cases. The part of the locus that is significant
is that closest to the critical point. For very complicated curves one should go back to the general case.
The left-hand rule can be graphically derived from the generalised locus according to section A.2. The
orthogonal (σ, ω)-net is observed and asymptotic stability of the closed loop is given, if a curve with σ < 0
passes through the critical point (-1,j0). Such a curve is always on the left-hand side of G0(jω).

5.3.6 The Nyquist criterion using Bode plots

Because of the simplicity of the graphical construction of the frequency response characteristics of a
given transfer function the application of the Nyquist criterion is often more simple using Bode plots.
The continuous change of the angle ∆ϕS of the vector from the critical point (-1,j0) to the locus of G0(jω)
must be expressed by the amplitude and phase response of G0(jω). From Figure 5.3.5 it can be seen that
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Figure 5.3.5: Positive (+) and negative (–) intersections of the locus G0(jω) with the real axis on the
left-hand side of the critical point

this change of the angle is directly related to the count of intersections of the locus with the real axis
on the left-hand side of the critical point between (−∞,−1). The Nyquist criterion can therefore also
represented by the count of these intersections if the gain of the open loop is positive.

Regarding the intersections of the locus of G0(jω) with the real axis in the range (−∞,−1), the transfer
from the upper to the lower half plane in the direction of increasing ω values are treated as positive
intersections while the reverse transfer are negative intersections (Figure 5.3.5). The change of the angle
is zero if the count of positive intersections S+ is equal to the count of negative intersections S−. The
change of the angle ∆ϕS depends also on the number of positive and negative intersections and if the
open loop does not have poles on the imaginary axis, the change of the angle is

∆ϕS = 2π(C+ − C−) .

In the case of an open loop containing an integrator, i.e. a single pole in the origin of the complex plane
(µ = 1), the locus starts for ω = 0 at δ − j∞, where an additional +π/2 is added to the change of the
angle. For proportional and integral behaviour of the open loop

∆ϕS = 2π(C+ − C−) + µπ/2 µ = 0, 1 (5.3.13)

is valid. In principle this relation is also valid for µ = 2, but the locus starts for ω = 0 at −∞ + jδ
(Figure 5.3.6), and this intersection would be counted as a negative one if δ > 0, i.e. if the locus for small
ω is in the upper half plane of the real axis. But de facto there is for δ > 0 (and accordingly δ < 0) no
intersection. This follows from the detailed investigation of the discontinuous change of the angle, which
occurs at ω = 0. As only a continuous change of the angle is taken into account and because of reason of
symmetry the start of the locus at ω = 0 is counted as a half intersection, positive for δ < 0 and negative
for δ > 0, which is analogous to the definition given above (Figure 5.3.6). For continuous changes of the
angle

∆ϕS = 2π(C+ − C−) (µ = 2) (5.3.14)

is valid. Comparing Eqs. (5.3.13) and (5.3.14), respectively, with Eq. (5.3.12) then the Nyquist criterion
can be formulated as:



5-12 MODULE 5. STABILITY OF LINEAR CONTROL SYSTEMS

��

�

��� �����

�

$ � 2 � 3 �
�
4$ � 2 � 3 �

�
4

� � 3 �
�
4� � 3 �

�
4


 � < " � � 0 � �
" � � 0 � � 8 �


 � = " � � 0 � � 8 �
" � � 0 � �

Figure 5.3.6: Count of the intersections on the left-hand side of the critical point for I2 behaviour of the
open loop

The open loop with the transfer function G0(s) has P poles in the left-half s plane and possibly
a single (µ = 1) or double pole (µ = 2) at s = 0. If the locus of G0(jω) has C+ positive and
C− negative intersections with the real axis to the left of the critical point, then the closed
loop is only asymptotically stable, if

D∗ = C+ − C− =

⎧⎪⎨
⎪⎩
P

2
for µ = 0, 1

P + 1
2

for µ = 2
(5.3.15)

is valid. For the special case, that the open loop is stable (P = 0, µ = 0), the number of
positive and negative intersections must be equal.

From this it follows that the difference of the number of positive and negative intersections in the case of
µ = 0, 1 is an integer and for µ = 2 not an integer. From this follows immediately, that for µ = 0, 1 the
number P is even, for µ = 2 the number P + 1 is uneven and therefore in all cases P is an even number,
such that the closed loop is asymptotically stable. This is only valid if D∗ ≥ 1.

The Nyquist criterion can now be transferred directly into the representation using frequency response
characteristics. The magnitude response A0(ω)dB, which corresponds to the locus G0(jω), is always
positive at the intersections of the locus with the real axis in the range of (−∞,−1). These points of
intersection correspond to the crossings of the phase response ϕ0(ω) with lines ±180◦, ±540◦ etc., i.e. a
uneven multiple of 180◦. In the case of a positive intersection of the locus, the phase response at the
±(2k + 1) 180◦ lines crosses from below to top and reverse from top to below on a negative intersection
as shown in Figure 5.3.7. In the following these crossings will be defined as positive (+) and negative
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Figure 5.3.7: Frequency response characteristics of G0(jω) = A0(ω) ejϕ0(ω) and definition of positive (+)
and negative (-) crossings of the phase response ϕ0(ω) with the -180◦ line

(-) crossings of the phase response ϕ0(ω) over the particular ±(2k + 1) 180◦ lines, where k = 0, 1, 2, . . .
may be valid. If the phase response starts at -180◦ this point is counted as a half crossing with the
corresponding sign. Based on the discussions above the Nyquist criterion can be formulated in a form
suitable for frequency response characteristics:
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The open loop with the transfer function G0(s) has P poles in the right-half s plane, and
possibly a single or double pole at s = 0. C+ are the number of positive and C− of negative
crossings of the phase response ϕ0(ω) over the ±(2k + 1) 180◦ lines in the frequency range
where A0(ω)dB > 0 is valid. The closed loop is only asymptotically stable, if

D∗ = C+ − C− =

⎧⎪⎨
⎪⎩
P

2
for µ = 0, 1

P + 1
2

for µ = 2

is valid. For the special case of an open-loop stable system (P = 0, µ = 0)

D∗ = C+ − C− = 0

must be valid.

Table 5.3.1 shows some examples of the Nyquist criterion in the representation using frequency response
characteristics.

Finally the ’left-hand rule’ will be given using Bode diagrams, because this version is for the most cases
sufficient and simple to apply.

The open loop has only poles in the left-half s plane with the exception of possibly one single
or one multiple pole at s = 0 (P, I or I2 behaviour). In this case the closed loop is only
asymptotically stable, if G0(jω) has a phase of ϕ0 > −180◦ for the crossover frequency ωC at
A0(ωC)dB = 0.

This stability criterion offers the possibility of a practical assessment of the ’quality of stability’ of a
control loop. The larger the distance of the locus from the critical point the farther is the closed loop
from the stability margin. As a measure of this distance the terms gain margin and phase margin are
introduced according to Figure 5.3.8. The phase margin

�
�

�
�

� 7;
�

�
�

�
�

;
�

�

��

�
�

;
� ��

�� �

$ � 2 � 3 � � 4

� � 3 �
�
4

� � � � � � 7

� � � � �

� � � � �

� � � � � �

� � � $ � �

;
�

Figure 5.3.8: Phase and gain margin ϕC and AP or APdB , respectively, in the (a) Nyquist diagram and
(b) Bode diagram

ϕC = 180◦ + ϕ0(ωC) (5.3.16)

is the distance of the phase response from the -180◦ line at the crossover frequency ωC, i.e. at the crossing
of the magnitude response with the 0dB line (|G0| = 1). The gain margin

APdB = A0(ωP)dB (5.3.17)

is the distance of the magnitude response from the 0dB line at the phase of ϕ0 = −180◦.

A well damped control system should yield the following characteristics:

APdB =
{

−12 dB to −20 dB for command response
−3.5 dB to −9.5 dB for disturbance response

ϕC =
{

40◦ to 60◦ for command response
20◦ to 50◦ for disturbance response .
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Table 5.3.1: Examples of stability analysis using the Nyquist criterion with frequency response charac-
teristics

No. Bode Diagram Stability Analysis

1
�

�

�

�� � ! � �

�

�

�
�
� � �

� 7

� � � � �
⇒

S+ = 1
S− = 2
D∗ = −1
P = 2

⎫⎪⎪⎬
⎪⎪⎭⇒ D∗ �= P/2: unstable

2 �
�

�

�� � ! �
��

�

�
�	

�
�
� � �

� 7

� � � � �
⇒

S+ = 3/2
S− = 1
D∗ = 1/2
P = 0

⎫⎪⎪⎬
⎪⎪⎭⇒ D∗ =

P + 1
2

: stable if
2 poles in
the origin

3
�

�

�

�� � ! �
�

�

�
�
� � �

� 7

� � � � � ⇒

S+ = 0
S− = 1
D∗ = −1
P = 0

⎫⎪⎪⎬
⎪⎪⎭⇒ D∗ �= P/2: unstable

4
�

�

�

�� � ! �

�

�
�
� � �

� 7

� � � � �
⇒

S+ = 0
S− = 0
D∗ = 0
P = 0

⎫⎪⎪⎬
⎪⎪⎭⇒ D∗ = P/2: stable
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The crossover frequency ωC is a measure of the dynamical quality of the control loop. The higher ωC the
higher the bandwidth of the closed loop, and the faster the reaction on command inputs or disturbances.
As the bandwidth that frequency is understood, at which the magnitude A(ω) of the closed-loop frequency
response has fallen off approximately to zero.

Interactive Questions 5.2
Test your knowledge about gain and phase margin

Problem 5.1
Stability - three questions

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FrequencyResponse/FrequencyResponse03.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Problems/StabilityProblems.pdf


5-16 MODULE 5. STABILITY OF LINEAR CONTROL SYSTEMS



Module 6

The root-locus method

Module units
6.1 Introduction and basic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.2 General rules for constructing root loci . . . . . . . . . . . . . . . . . . . . . 6-5

6.3 Example of an application of the root-locus method . . . . . . . . . . . . . 6-10

Module overview. Based on the pole and zero distributions of an open-loop system the stability of the
closed-loop system can be discussed as a function of one scalar parameter. The root-locus method shown
in this module is a technique that can be used as a tool to design control systems. The basic ideas and
its relevancy to control system design are introduced and illustrated. Ten general rules for constructing
root loci for positive and negative gain are shortly presented such that they can be easily applied. This
is demonstrated by some discussed examples, by a table with sixteen examples and by a comprehensive
design of a closed-loop system of higher order.

Module objectives. When you have completed this module you should be able to:

1. Understand root-locus diagrams.

2. Draw root-locus diagrams.

3. Apply the root-locus method to design control systems.

4. Discuss the stability of closed-loop systems with respect to variations in one parameter.

Module prerequisites. Stability, closed loop, transfer function, poles and zeros.

6.1 Introduction and basic ideas

A designer can determine whether his design for a control system meets the specifications if he knows
the desired time response of the controlled variable. By deriving the differential equations for the control
system and solving them, an accurate solution of the system’s performance can be obtained, but this
approach is not feasible for other than simple systems. It is not easy to determine from this solution just
what parameters in the system should be changed to improve the response. A designer wishes to be able
to predict the performance by an analysis that does not require the actual solution of the differential
equations.

The first thing that a designer wants to know about a given system is whether or not it is stable. This
can be determined by examining the roots obtained from the characteristic equation

1 +G0(s) = 0 (6.1.1)

6-1
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of the closed loop. The work involved in determining the roots of this equation can be avoided by applying
the Hurwitz or Routh criterion as shown in section 5.3. Determining in this way whether the system is
stable or unstable does not satisfy the designer, because it does not indicate the degree of stability of
the system, i.e., the amount of overshoot and the settling time of the controlled variable for a step input.
Not only must the system be stable, but the overshoot must be maintained within prescribed bounds
and transients must die out in a sufficiently short time.

The root-locus method described in this section not only indicates whether a system is stable or unstable
but, for a stable system, also shows the degree of stability. The root locus is a plot of the roots of the
characteristic equation of the closed loop as a function of the gain. This graphical approach yields a clear
indication of the effect of gain adjustment with relatively small effort.

With this method one determines the closed-loop poles in the s plane – these are the roots of Eq.(6.1.1)
– by using the known distribution of the poles and zeros of the open-loop transfer function G0(s). If
for instance a parameter is varied, the roots of the characteristic equation will move on certain curves
in the s plane as shown by the example in Figure 6.1.1. On these curves lie all possible roots of the
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Figure 6.1.1: Plot of all roots of the characteristic equation s2 + 2s+ p = 0 for 0 ≤ p <∞. Values of p
are red and underlined.

characteristic equation for all values of the varied parameter from zero to infinity. These curves are
defined as the root-locus plot of the closed loop. Once this plot is obtained, the roots that best fit the
system performance specifications can be selected. Corresponding to the selected roots there is a required
value of the parameter which can be determined from the plot. When the roots have been selected, the
time response can be obtained. Since the process of finding the root locus by calculating the roots for
various values of a parameter becomes tedious, a simpler method of obtaining the root locus is desired.
The graphical method for determining the root-locus plot is shown in the following.

An open-loop transfer function with k poles at the origin of the s plane is often described by

G0(s) =
K0

sk

1 + β1s+ . . .+ βms
m

1 + α1s+ . . .+ αn−ksn−k
m ≤ n , (6.1.2)

where K0 is the gain of the open loop. In order to represent this transfer function in terms of the
open-loop poles and zeros it is rewritten as

G0(s) = k0

m∏
µ=1

(s− sZµ)

n∏
ν=1

(s− sPν )
= k0G(s) (6.1.3a)
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or

G0(s) = k0

m∏
µ=1

(−sZµ)

n−k∏
ν = 1
sPν �= 0

(−sPν )

1
sk

m∏
µ=1

(
1 +

s

−sZµ

)
n−k∏
ν = 1
sPν �= 0

(
1 +

s

−sPν

) (6.1.3b)

with k0 > 0 and sZν �= sPν . The relationship between the factor k0 and the open-loop gain K0 is

K0 = k0

m∏
µ=1

(−sZµ)

n−k∏
ν = 1
sPν �= 0

(−sPν )

1
sk

. (6.1.4)

The characteristic equation of the closed loop using Eq. (6.1.3a) is

1 + k0G(s) = 0 (6.1.5a)

or
G(s) = − 1

k0
. (6.1.5b)

All complex numbers si = si(k0), which fulfil this condition for 0 ≤ k0 ≤ ∞, represent the root locus.

From the above it can be concluded that the magnitude of k0G(s) must always be unity and its phase
angle must be an odd multiple of π. Consequently, the following two conditions are formalised for the
root locus for all positive values of k0 from zero to infinity:

a) Magnitude condition:

|G(s)| =
1
k0

(6.1.6)

b) Angle condition

ϕ(s) = argG(s) = ±180◦(2 k + 1) for k = 0, 1, 2, . . .
k0 ≥ 0

(6.1.7)

In a similar manner, the conditions for negative values of k0 (−∞ ≤ k0 < 0) can be determined. The
magnitude conditions is the same, but the angle must satisfy the

c) Angle condition
ϕ(s) = argG(s) = ±k 360◦ for k = 0, 1, 2, . . .

k0 < 0 .
(6.1.8)

Apparently the angle condition is independent of k0. All points of the s plane that fulfil the angle condition
are the loci of the poles of the closed loop by varying k0. The calibration of the curves by the values of
k0 is obtained by the magnitude condition according to Eq. (6.1.6). Based upon this interpretation of
the conditions the root locus can constructed in a graphical/numerical way.

Once the open-loop transfer function G0(s) has been determined and put into the proper form, the poles
and zeros of this function are plotted in the s plane.

Example 6.1.1
Consider the example

G0(s) =
K0

s(s+ 2)
=

k0

(s− sP1) (s− sP2)

with sP1 = 0, sP2 = −2 and k0 = K0. The poles of the closed-loop transfer function

GW(s) =
K0

s2 + 2s+K0
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are the roots s1 and s2 of the characteristic equation

P (s) = s2 + 2s+K0 = 0

and are given by

s1,2 = −1 ±
√

1 −K0 .

As s1 = sP1 = 0 and s2 = sP2 = −2 it can be seen that for K0 = 0 the poles of the closed loop
transfer function are identical with those of the open-loop transfer function G0(s). For other values K0

the following two cases are considered:

a) K0 ≤ 1: Both roots s1 and s2 are real and lie on the real axis in the range of −2 ≤ σ ≤ −1 and
−1 ≤ σ ≤ 0;

b) K0 > 1: The roots s1 and s2 are conjugate complex with the real part Re s1,2 = −1, which does
not depend on K0, and the imaginary part Im s1,2 = ±

√
K0 − 1.

The curve has two branches as shown in Figure 6.1.2. At (sP1 + sP2)/2 = −1 is the breakaway point of
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Figure 6.1.2: Root locus of a simple second-order system

the two branches. Checking the angle condition the condition

ϕ(s) = arg{G(s)} = arg
{

1
s(s+ 2)

}
= − arg s− arg(s+ 2) != ±180◦(2k + 1)

must be valid. The complex numbers s and (s+2) have the angles ϕ1 and ϕ2 and the magnitudes |s| and
|s+2|. The triangle (−2, 0, −1+ j) in Figure 6.1.2 yields the angle condition. Evaluating the magnitude
condition according to Eq. (6.1.6)

|G(s)| =
∣∣∣∣ 1
s(s+ 2)

∣∣∣∣ = 1
K0

one obtains the value K0 on the root locus. E.g. for s = −1 + j the gain of the open loop is

K0 = |s(s+ 2)|s = −1 + j = 2 .

The value of K0 at the breakaway point sB = −1 is

K0 = | − 1(−1 + 2)| = 1 .

�

Table 6.1.1 shows further examples of some 1st- and 2nd-order systems.
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Table 6.1.1: Root loci of 1st- and 2nd-order systems

G0(s) root locus G0(s) root locus

k0

s

��

�
k0

(s+ σ1)2 + ω2
1

$ �

�
�$ �

�$ ���
��

k0

s2

$ �

�
k0

(s− sP1)(s− sP2)

$ �

�
�;

�
�;

�

k0

s− sP1

$ �

�
�;

�

k0(s− sZ1)
(s− sP1)

|sZ1 | > |sP1 |

$ �

�
�

;��?
�

k0

s2 + ω2
1

$ �

�
�$ �

�$ ��

k0(s− sZ1)
(s− sP1)

|sZ1 | < |sP1 |

$ �

�
�

;� �
?�

6.2 General rules for constructing root loci

To facilitate the application of the root-locus method for systems of higher order than 2nd, rules can be
established. These rules are based upon the interpretation of the angle condition and the analysis of the
characteristic equation. The rules presented aid in obtaining the root locus by expediting the manual
plotting of the locus. But for automatic plotting using a computer these rules provide checkpoints to
ensure that the solution is correct.

Though the angle and magnitude conditions can also be applied to systems having dead time, in the
following we restrict to the case of the open-loop rational transfer functions according to Eq. (6.1.3a)

G0(s) = k0
(s− sZ1) (s− sZ2) . . . (s− sZm)
(s− sP1) (s− sP2) . . . (s− sPn)

, k0 ≥ 0 (6.2.1a)

or

G0(s) = k0
b0 + b1a+ . . .+ bm−1s

m−1 + sm

a0 + a1s+ . . .+ an−1sn−1 + sn
= k0

N0(s)
D0(s)

. (6.2.1b)

As this transfer function can be written in terms of poles and zeros sPν and sZµ (ν = 1, 2, . . . n; µ =
1, 2, . . . ,m) G0(s) can be represented by their magnitudes and angles

G0(s) = k0
|s− sZ1 | ejϕZ1 |s− sZ2 | ejϕZ2 . . . |s− sZm | ejϕZm

|s− sP1 | ejϕP1 |s− sP2 | ejϕP2 . . . |s− sPn | ejϕPn

or

G0(s) = k0

m∏
µ=1

|s− sZµ |
n∏

ν=1
|s− sPν |

e
j

⎛
⎜⎝

m∑
µ=1

ϕZµ −
n∑

ν=1

ϕPν

⎞
⎟⎠
. (6.2.2)

From Eq. (6.1.6) the magnitude condition
m∏

µ=1
|s− sZµ |

n∏
ν=1

|s− sPν |
=

1
k0

(6.2.3)
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and from Eq. (6.1.7) the angle condition

ϕ(s) =
m∑

µ=1

ϕZµ −
n∑

ν=1

ϕPν = ±180◦(2 k + 1) for k = 0, 1, 2, . . . (6.2.4)

follows. Here ϕZµ and ϕPν denote the angles of the complex values (s− sZµ) and (s− sPν ), respectively.
All angles are considered positive, measured in the counterclockwise sense. If for each point the sum of
these angles in the s plane is calculated, just those particular points that fulfil the condition in Eq. (6.2.4)
are points on the root locus. This principle of constructing a root-locus curve – as shown in Figure 6.2.1
– is mostly used for automatic root-locus plotting.
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Figure 6.2.1: Pole-zero diagram for construction of the root locus

In the following the most important rules for the construction of root loci for k0 > 0 are listed:

Rule 1 Symmetry As all roots are either real or complex conjugate pairs so that the root locus is
symmetrical to the real axis.

Rule 2 Number of branches The number of branches of the root locus is equal to the number of
poles n of the open-loop transfer function.

Rule 3 Locus start and end points The locus starting points (k0 = 0) are at the open-loop poles
and the locus ending points (k0 = ∞) are at the open-loop zeros. (n − m) branches end at
infinity. The number of starting branches from a pole and ending branches at a zero is equal to the
multiplicity of the poles and zeros, respectively. A point at infinity is considered as an equivalent
zero of multiplicity equal to n−m.

Rule 4 Real axis locus If the total number of poles and zeros to the right of a point on the real axis
is odd, this point lies on the locus.

Rule 5 Asymptotes There are n−m asymptotes of the root locus with a slope of

αk = arg s =
±180◦(2k + 1)

n−m
. (6.2.5)

For (n−m) = 1, 2, 3 and 4 one obtains the asymptote configurations as shown in Figure 6.2.2.

Rule 6 Real axis intercept of the asymptotes The real axis crossing (σa, j0) of the asymptotes
is at

σa =
1

n−m

{
n∑

ν=1

Re sPν −
m∑

µ=1

Re sZµ

}
. (6.2.6)

Rule 7 Breakaway and break-in points on the real axis At least one breakaway or break-in point
(σB, j0) exists if a branch of the root locus is on the real axis between two poles or zeros, respec-
tively. Conditions to find such real points are based on the fact that they represent multiple real
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Figure 6.2.2: Asymptote configurations of the root locus

roots. In addition to the characteristic equation (6.1.1) for multiple roots the condition

d
ds

[1 +G0(s)] =
d
ds
G0(s) = 0 . (6.2.7)

must be fulfilled, which is equivalent to

n∑
ν=1

1
s− sPν

=
m∑

µ=1

1
s− sZµ

(6.2.8)

for s = σB. If there are no poles or zeros, the corresponding sum is zero.

Rule 8 Complex pole/zero angle of departure/entry The angle of departure of pairs of poles
with multiplicity rP� is

ϕP�,D =
1
rP�

⎧⎪⎪⎨
⎪⎪⎩−

n∑
ν=1
ν �=�

ϕPν +
m∑

µ=1

ϕZµ ± 180◦(2k + 1)

⎫⎪⎪⎬
⎪⎪⎭ (6.2.9)

and the angle of entry of the pairs of zeros with multiplicity rZ�

ϕZ�,E =
1
rZ�

⎧⎪⎪⎨
⎪⎪⎩−

m∑
µ=1
µ�=�

ϕZµ +
n∑

ν=1

ϕPν ± 180◦(2k + 1)

⎫⎪⎪⎬
⎪⎪⎭ . (6.2.10)

Rule 9 Root-locus calibration The labels of the values of k0 can be determined by using

k0 =

n∏
ν=1

|s− sPν |
m∏

µ=1
|s− sZµ |

. (6.2.11)

For m = 0 the denominator is equal to one.

Rule 10 Asymptotic stability The closed loop system is asymptotically stable for all values of k0

for which the locus lies in the left-half s plane. From the imaginary-axis crossing points the critical
values k0crit can be determined.

The rules shown above are for positive values of k0. According to the angle condition of Eq. (6.1.8) for
negative values of k0 some rules have to be modified. In the following these rules are numbered as above
but labelled by a *.

Rule 3* Locus start and end points The locus starting points (k0 = 0) are at the open-loop poles
and the locus ending points (k0 = −∞) are at the open-loop zeros. (n − m) branches end at
infinity. The number of starting branches from a pole and ending branches at a zero is equal to the
multiplicity of the poles and zeros, respectively. A point at infinity is considered as an equivalent
zero of multiplicity equal to n−m.
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Rule 4* Real axis locus If the total number of poles and zeros to the right of a point on the real
axis is even including zero, this point lies on the locus.

Rule 5* Asymptotes There are n−m asymptotes of the root locus with a slope of

αk = arg s =
±360◦k
n−m

. (6.2.12)

Rule 8* Complex pole/zero angle of departure/entry The angle of departure of pairs of poles
with multiplicity rP� is

ϕP�,D =
1
rP�

⎧⎪⎪⎨
⎪⎪⎩−

n∑
ν=1
ν �=�

ϕPν +
m∑

µ=1

ϕZµ ± 360◦k

⎫⎪⎪⎬
⎪⎪⎭ (6.2.13)

and the angle of entry of the pairs of zeros with multiplicity rZ�

ϕZ�,E =
1
rZ�

⎧⎪⎪⎨
⎪⎪⎩−

m∑
µ=1
µ�=�

ϕZµ +
n∑

ν=1

ϕPν ± 360◦k

⎫⎪⎪⎬
⎪⎪⎭ . (6.2.14)

The root-locus method can also be applied for other cases than varying k0. This is possible as long as
G0(s) can be rewritten such that the angle condition according to Eq. (6.2.4) and the rules given above
can be applied. This will be demonstrated in the following two examples.

Example 6.2.1
Given the closed-loop characteristic equation

a0 + a1s+ . . .+ an−1s
n−1 + sn = 0 ,

the root locus for varying the parameter a1 is required. The characteristic equation is therefore rewritten
as

1 + a1
s

a0 + a2s2 + . . .+ sn
= 0 .

This form then correspondents to the standard form

1 +G0(s) = 1 + a1
N0(s)
D0(s)

= 0

to which the rules can be applied. �

Example 6.2.2
Given the closed-loop characteristic equation

s3 + (3 + α) s2 + 2s+ 4 = 0 ,

it is required to find the effect of the parameter α on the position of the closed-loop poles. The equation
is rewritten into the desired form

1 + α
s2

s3 + 3s2 + 2s+ 4
= 0 .

�

Using the rules 1 to 10 one can easily predict the geometrical form of the root locus based on the
distribution of the open-loop poles and zeros. Table 6.2.1 shows some typical distributions of open-loop
poles and zeros and their root loci.

For the qualitative assessment of the root locus one can use a physical analogy. If all open-loop poles are
substituted by a negative electrical charge and all zeros by a commensurate positive one and if a massless
negative charged particle is put onto a point of the root locus, a movement is observed. The path that
the particle takes because of the interplay between the repulsion of the poles and the attraction of the
zeros lies just on the root locus. Comparing the root locus examples 3 and 9 of Table 6.2.1 the ’repulsive’
effect of the additional pole can be clearly seen.



6.2. GENERAL RULES FOR CONSTRUCTING ROOT LOCI 6-9

Table 6.2.1: Typical distributions of open-loop poles and zeros and the root loci
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6.3 Example of an application of the root-locus method

The systematic application of the rules from section 6.2 for the construction of a root locus is shown in
the following non-trivial example for the open-loop transfer function

G0(s) =
k0(s+ 1)

s(s+ 2) (s2 + 12s+ 40)
. (6.3.1)

The degree of the numerator polynomial is m = 1. This means that the transfer function has one zero
(sZ1 = −1). The degree of the denominator polynomial is n = 4 and we have the four poles (sP1 = 0,
sP2 = −2, sP3 = −6+j2, sP4 = −6− j2). First the poles (x) and the zeros (o) of the open loop are drawn
on the s plane as shown in Figure 6.3.1. According to rule 3 these poles are just those points of the root

$ �
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$ %
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Figure 6.3.1: Root locus of G0(s) = k0(s+1)
s(s+2) (s+6+j2) (s+6−j2) . Values of k0 are in red and underlined.

locus where k0 = 0 and the zeros where k0 → ∞. We have (n−m) = 3 branches that go to infinity and
the asymptotes of these three branches are lines which intercept the real axis according to rule 6. From
Eq. (6.2.6) the crossing is at

σa =
(0 − 2 − 6 − 6) − (−1)

3
= −13

3
= −4.33 (6.3.2)

and the slopes of the asymptotes are according to Eq. (6.2.5)

αk =
±180◦(2k + 1)

3
= ±60◦(2k + 1) k = 0, 1, 2, . . . (6.3.3)
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i.e. α0 = 60◦, α1 = +180◦, α2 = −60◦ .

The asymptotes are shown in Figure 6.3.1 as blue lines. Using Rule 4 it can be checked which points
on the real axis are points on the root locus. The points σ with −1 < σ < 0 and σ < −2 belong to
the root locus, because to the right of them the number of poles and zeros is odd. According to rule 7
breakaway and break-in points can only occur pairwise on the real axis to the left of -2. These points are
real solutions of the Eq. (6.2.8). Here we have

1
s

+
1

s+ 2
+

1
s+ 6 − j2

+
1

s+ 6 + j2
=

1
s+ 1

(6.3.4)

or
3s4 + 32s3 + 106s2 + 128s+ 80 = 0 .

This equation has the solutions sB1 = −3.68, sB2 = −5.47 and sB3.4 = −0.76 ± j0.866. The real roots
sB1 = −3.68 and sB2 = −5.47 are the positions of the breakaway and the break-in point. The angle
of departure ϕP3,D of the root locus from the complex pole at sP3 = −6 + j2 can be determined from
Figure 6.3.2 according to Eq. (6.2.9):

ϕP3,D = −90◦ − 153.4◦ − 161.6◦ + 158.2◦ ± 180◦(2k + 1) (6.3.5)
= −246.8◦ + 180◦ = −66.8◦ .

With this specifications the root locus can be sketched. Using rule 9 the value of k0 can be determined
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Figure 6.3.2: Calculating the angle of departure ϕP3,D of the complex pole sP3 = −6 + j2

for some selected points. The value at the intersection with the imaginary axis is

k0,crit =
7.2 · 7.4 · 7.9 · 11.1

7.25
= 644.4 .
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Module 7

Behaviour of linear continuous-time
control systems

Module units
7.1 Dynamical behaviour of a closed loop system . . . . . . . . . . . . . . . . . 7-1

7.2 Static properties of the closed loop . . . . . . . . . . . . . . . . . . . . . . . . 7-6

7.2.1 Transfer function G0(s) with delayed P behaviour . . . . . . . . . . . . . . . . 7-7

7.2.2 Transfer function G0(s) with delayed I behaviour . . . . . . . . . . . . . . . . . 7-7

7.2.3 Transfer function G0(s) with delayed I2 behaviour . . . . . . . . . . . . . . . . 7-8

7.3 Performance indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

7.3.1 Time-response specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

7.3.2 Integral performance indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10

7.3.3 Determination of quadratic performance indices . . . . . . . . . . . . . . . . . . 7-12

Module overview. Before a control system is designed it is necessary to specify what is expected for
the closed-loop control behaviour. The dynamical behaviour and its static properties must be described.
The basic requirements for control system design are given. These are precisely defined for the case of
disturbance and command behaviour and illustrated by examples. Performance indices to measure the
quality of the control system in the time domain using standard quantities are introduced, e.g. maximum
overshoot, rise time and settling time. Integral performance indices and their determination in the s
domain for the case of quadratic forms are also given.

Module objectives. When you have completed this module you should be able to:

1. Know the basic requirements of control system design.

2. Determine static and dynamic properties.

3. Judge and measure the performance of control systems in the time domain.

Module prerequisites. Transfer function, Laplace transform.

7.1 Dynamical behaviour of a closed loop system

Prepared with an understanding of models, transfer functions and basics about control loops, we now
consider control systems and the types of feedback design principles available. Figure 7.1.1 shows a
block diagram of a closed loop system with the four classical components: controller, actuator, plant and

7-1
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Figure 7.1.1: The basic components of a control loop

measurement device. It is often convenient to combine the controller and actuator into one controller
component, while the measurement device is often assigned to the plant. Usually a set of disturbances
z′i(i = 1, 2, . . .) may occur, each of them can enter the plant at different locations. The transition behaviour
of the plant and of the parts of the plant between disturbance input and plant output, respectively, is
denoted by Gpzi

(s). From this a block diagram of the closed loop system is obtained according to
Figure 7.1.2.
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Figure 7.1.2: Block diagram of the closed-loop system

For linear plants all the disturbances Z ′
i can be combined into one single cumulative disturbance

Z(s) =
n∑

i=1

Z ′
i(s)GPzi

(s)

according to Figure 7.1.2. This cumulative disturbance will act at the plant output (see Figure 7.1.3).
Furthermore, by a suitable choice of GPzi

(s) it can be shown that the structure from Figure 7.1.2 is also
valid for disturbances z′i(t) entering at other locations in the closed loop.
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Figure 7.1.3: Block diagram of the closed-loop system with cumulative disturbance Z(s)

The transition behaviour of this control loop is specified according to the two inputs (command and
disturbance) either command behaviour or disturbance behaviour. The transfer function of the controller
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elements – briefly called in the following only controller – is GC(s) and those of the plant GP(s). From
Figure 7.1.3 the controlled variable of the closed loop is

Y (s) = Z(s) + [W (s) − Y (s)]GC(s)GP(s) .

Rearranging, then it follows

Y (s) =
1

1 +GC(s)GP(s)
Z(s) +

GC(s)GP(s)
1 +GC(s)GP(s)

W (s) . (7.1.1)

Using this equation, the control system tasks already mentioned in section 1.3 can be formulated more
precisely as follows:

a) For W (s) = 0 the transfer function of the closed loop for disturbance behaviour the disturbance
transfer function

GZ(s) =
Y (s)
Z(s)

=
1

1 +GC(s)GP(s)
(7.1.2)

is obtained.

b) Similarly for Z(s) = 0 the transfer function of the closed loop for command behaviour is the command
transfer function

GW(s) =
Y (s)
W (s)

=
GC(s)GP(s)

1 +GC(s)GP(s)
. (7.1.3)

Both transfer functions GZ(s) and GW(s) contain the dynamical control factor

R(s) =
1

1 +G0(s)
(7.1.4)

with
G0(s) = GC(s)GP(s) . (7.1.5)

Opening the closed loop for W (s) = 0 and Z(s) = 0 according to Figure 7.1.4 at an arbitrary location
and defining with respect to the route of the transfer elements the input as xe(t) and the output as xa(t),
the transfer function of the open loop

Gopen(s) =
Xa(s)
Xe(s)

= −GC(s)GP(s) = −G0(s) (7.1.6)

is obtained.

� �
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;
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Figure 7.1.4: Open control loop

If G0(s) can be described by a rational fraction, by setting the denominator of Eq. (7.1.2) or Eq. (7.1.3)
to zero one obtains for the closed loop the condition

1 +G0(s) = 0 (7.1.7)
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analogous to Eq. (3.5.3) for the characteristic equation in the form

P (s) = a0 + a1s+ a2s
2 + . . .+ ans

n = 0 . (7.1.8)

The overall goal in designing a control system is to use the principle of feedback to cause the controlled
variable to follow a desired command variable accurately regardless of the command variable’s path and
to minimise the effect of any external disturbances or changes in the dynamics of the plant. Reaching
this goal economically the standard structure of Figure 7.1.3 is a relatively complex task if one must meet
the basic requirements listed below:

a) The minimum requirement is that the closed loop is stable.

b) Disturbances z(t) should be rejected or they must have a small influence on the controlled variable
y(t).

c) The controlled variable y(t) should track the command input w(t) as precisely and as fast as possible.

d) The closed loop should be as insensitive as possible with respect to changes in the plant parameters.

In order to fulfil the requirements in the ideal case, the command transfer function must be according to
requirement c)

GW(s) =
Y (s)
W (s)

=
G0(s)

1 +G0(s)
= 1 , (7.1.9)

and the disturbance transfer function according to requirement b)

GZ(s) =
Y (s)
Z(s)

=
1

1 +G0(s)
= 0 . (7.1.10)

A rigorous realisation of these requirements is not possible for physical and technical reasons. The
problem will be illustrated using the following simple example.

Example 7.1.1
A common actuator in control systems is the DC motor. It provides rotary motion for a current input.
The dynamical behaviour between current u(t) and speed y(t) is described by the simplified transfer
function

GP(s) =
Y (s)
U(s)

=
KP

1 + Ts
. (7.1.11)

In order to compensate the plant dynamics, a candidate controller may be

GC(s) = KC(1 + Ts) . (7.1.12)

The open-loop transfer function is

G0(s) = GC(s)GP(s)

= KC(1 + Ts)
KP

1 + Ts
= KCKP , (7.1.13)

which shows a proportional behaviour. On step inputs to the controller the speed will jump, which
is physically not possible due to the inertia of the motor. According to section 3.3 the controller in
Eq.(7.1.12) is not realisable. Adding a pole in the controller transfer function to the left in the s plane at
sC = −10/T will cure this problem, but with a delayed speed response. Figure 7.1.5a shows the controlled
speed for a unit step in the command input. The time constant of the closed loop system changes as
the feedback gain increases. Increasing the controller gain KC will speed-up the behaviour and reduce
the steady-state error, but will also increase the control effort as shown in Figure 7.1.5b. As the current
of the motor is limited for physical reasons the manipulated variable u(t) is also limited. Increasing the
controller gain KC to an arbitrary high value is not suitable. During the design of a controller such
limitations have to be taken into account.

It is often true that closed-loop systems have a faster response as the feedback gain is increased, and if
there are no other effects, this is generally desirable. However, systems typically also become less well
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Figure 7.1.5: Step response of the closed loop, (a) speed and (b) current for different open-loop gains

damped and even unstable as the gain increases. This is shown when we mount the same DC motor on a
robotic manipulator and control the speed of the manipulator arm using the same type of controller. In
this case the speed of the arm movement is the controlled variable y(t). The transfer function between
the current of the DC motor and the speed of the arm is

GP(s) =
Y (s)
U(s)

=
KP

(1 + Ts)(1 + 2ζ
ω0
s+ ( s

ω0
)2)

. (7.1.14)

Figure 7.1.6 shows the step response of this control system. �
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Figure 7.1.6: Step response of the closed loop for different open-loop gains for ζ = 4 and ω0 = 2/T

From the example given above it can be seen that a definite limit exists on how high we can make the
gain. But there is a design tradeoff between gain and steady-state error. Attempts to resolve the conflict
between small steady-state errors and good transient or dynamic responses must be undertaken. These
two essential aspects of performance are considered when a control system is designed: the transient
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performance and the steady-state performance. The following sections deal with these aspects in more
detail.

7.2 Static properties of the closed loop

Frequently the behaviour of an open loop (according to Figure 7.1.4 and Eq. (7.1.5)) can be described
by a generalised transfer function of the form

G0(s) =
K0

sk

1 + β1s+ . . .+ βms
m

1 + α1s+ . . .+ αn−ksn−k
e−Tts m ≤ n , (7.2.1)

where the constant k = 0, 1, 2, . . . denotes the type of transfer function G0(s). K0 is the gain of the open
loop. Therefore G0(s) shows for

k = 0; delayed proportional behaviour (delayed P behaviour)
k = 1; delayed integral behaviour (delayed I behaviour)
k = 2; delayed double integral behaviour (delayed I2 behaviour) .

We assume now that the term of the rational fraction in Eq. (7.2.1) contains only poles in the left half
s plane. For the different types of transfer functions G0(s) with different forms of the command signal
w(t) or of the disturbance z(t) the steady state of the closed loop for t→ ∞ can be analysed.

With
E(s) = W (s) − Y (s) (7.2.2)

from Eqs. (7.1.1) and (7.1.6) it follows for the control error

E(s) =
1

1 +G0(s)
[W (s) − Z(s)] . (7.2.3)

Under the assumption, that the limit of the control error e(t) for t→ ∞ exists, one obtains by using the
final value theorem of the Laplace transform (see section 2.3) the steady-state value of the control error

lim
t→∞ e(t) = lim

s→0
sE(s) . (7.2.4)

For the case of all disturbances being related to the plant output from Eq. (7.2.3) it follows that – sign
apart – both types of inputs, command or disturbance, can be treated equally. Hence in the following to
represent both types of input signals the term Xe(s) is chosen as the input signal. Using both Eqs. (7.2.3)
and (7.2.4) the steady-state values of the control error for the different signal types of xe(t) and for
different types of transfer functions G0(s) of the open loop can be obtained. These values characterise
the behaviour of the control loop. They are obtained consecutively for the most important cases.

For further treatment the following test signals according to Figure 7.2.1 are used:

a) Step input signal :
Xe(s) =

xe0

s
, (7.2.5)

where xe0 is the height of the step.

b) Ramp input signal :

Xe(s) =
xe1

s2
, (7.2.6)

where xe1 describes the slope of the ramp signal xe(t) .

c) Parabolic input signal :
Xe(s) =

xe2

s3
, (7.2.7)

where xe2 is a measure of the acceleration of the parabolic signal xe(t) .
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Figure 7.2.1: Different input signals xe(t), which are frequently used for the disturbance z(t) and com-
mand input w(t): (a) step, (b) ramp and (c) parabolic input signal

Following Eq. (7.2.3) the control error is obtained by

E(s) =
1

1 +G0(s)
Xe(s) , (7.2.8)

where the difference between command and disturbance behaviour is only in the sign of Xe(s) (distur-
bance: Xe(s) = −Z(s); command: Xe(s) = W (s)). Inserting this relation into Eqs. (7.2.5) to (7.2.7) the
corresponding control error can be obtained for different types of transfer functions G0(s). This will be
demonstrated in the following.

7.2.1 Transfer function G0(s) with delayed P behaviour

For this case from Eq. (7.2.1) the transfer function is

G0(s) = K0
1 + β1s+ . . .+ βms

m

1 + α1s+ . . .+ ansn
e−Tts . (7.2.9)

This transfer function describes an open control loop with delayed P behaviour. The variable K0 is the
gain of this open control loop. In this case it is composed of the gain of the controller KC and of the
plant KP in multiplicative form

K0 = KCKP . (7.2.10)

With Eq. (7.2.4) one obtains for the steady-state error of the closed control loop

lim
t→∞ e(t) = lim

s→0
s

1
1 +G0(s)

Xe(s) (7.2.11)

and for the step signal with Eq. (7.2.5)

e∞ = lim
t→∞ e(t) =

1
1 +K0

xe0 . (7.2.12)

It can be shown for a ramp input signal according to Eq. (7.2.6) that the double pole in Eq. (7.2.8) in
the time domain corresponds to e(t) = const ·t · σ(t) such that

e∞ = lim
t→∞ e(t) → ∞ , (7.2.13)

which is not finite. A similar situation results for a parabolic input signal using Eq. (7.2.7).

7.2.2 Transfer function G0(s) with delayed I behaviour

From Eq. (7.2.1) it follows for this case that

G0(s) =
K0

s

1 + β1s+ . . . βms
m

1 + α1s+ . . .+ αn−1sn−1
e−Tts . (7.2.14)
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The inherent open control loop shows delayed I behaviour. With Eq. (7.2.11) one obtains for the steady-
state error of the closed loop for the case of a step input signal

e∞ = lim
t→∞ e(t) = 0 , (7.2.15)

and in the case of a ramp input signal

e∞ = lim
t→∞ e(t) =

1
K0

xe1 . (7.2.16)

Furthermore in the case of parabolic input signal we have the same result as Eq. (7.2.13).

DYNAST study example 7.1
Cruise control of a car

DYNAST study example 7.2
D.C. motor position control

DYNAST study example 7.3
Double integrator plant

DYNAST study example 7.4
2nd-order plant

DYNAST study example 7.5
Load disturbance - 2nd-order plant

7.2.3 Transfer function G0(s) with delayed I2 behaviour

The transfer function for this particular case is

G0(s) =
K0

s2
1 + β1s+ . . .+ βms

m

1 + α1s+ . . .+ αn−2sn−2
e−Tts (7.2.17)

and it describes a system with delayed I2 behaviour. For the steady-state error of the closed loop system
it follows in the case of a stable loop for a step and ramp input signal

e∞ = lim
t→∞ e(t) = 0 , (7.2.18)

and for a parabolic input signal

e∞ = lim
t→∞ e(t) =

1
K0

xe2 . (7.2.19)

From these results, especially from Eqs. (7.2.12), (7.2.16) and (7.2.19) and from Table 7.2.1 it follows,
that the steady-state error e∞, which characterises the static behaviour of the control loop is in all cases
smaller the larger the loop gain K0 given by Eq. (7.2.10). In the case of delayed P behaviour of the open
loop the steady-state error e∞ is much smaller the smaller the value of the static control factor

R =
1

1 +K0
. (7.2.20)

Often a large loop gain K0 rapidly leads to instability of the closed loop. For setting K0 usually a
compromise is made unless selecting an appropriate type of controller such that the steady-state error
vanishes. Both, the dynamical and especially the static behaviour depend strongly on the choice of the
controller. Therefore, in the following the most important types of standard controllers will be introduced.

http://virtual.cvut.cz/dyn/examples/examples/control/cruise-p/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/dcmotor-p/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/ac1vframp/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/ac4rampic/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/ac10load_dist/index.html
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Table 7.2.1: Steady-state error for different type of systems of G0(s) and different input signals xe(t)
(command and disturbance signals if all disturbances will act at the plant output)

Type of system of G0(s)
according to Eq. (7.2.1)

Input signal
Xe(s)

Steady-state
error e∞

xe0

s

1
1 +K0

xe0

k = 0
(delayed

xe1

s2
∞

P behaviour) xe2

s3
∞

xe0

s
0

k = 1
(delayed

xe1

s2
1
K0

xe1

I behaviour) xe2

s3
∞

xe0

s
0

k = 2
(delayed

xe1

s2
0

I2 behaviour)
xe2

s3
1
K0

xe2

7.3 Performance indices

7.3.1 Time-response specifications

Specifications for a control system design often involve certain requirements associated with the time
response of the closed-loop system. The requirements are specified by the behaviour of the controlled
variable y(t) or by the control error e(t) on well defined test signals. The most important test signal
is a unit step on the input of the control system and requirements are placed on the behaviour of the
controlled variable y(t) = hW(t), as shown in Figure 7.3.1. The requirements for a unit step response are
expressed in terms of the following standard quantities:

• The maximum overshoot Mp is the magnitude of the overshoot after the first crossing of the steady-
state value (100%). This value is normally expressed as a percentage of the steady-state value of
the controlled variable.

• The peak time tp is the time required to reach the maximum overshoot.

• The settling time tε is the time for the controlled variable first to reach and thereafter remain within
a prescribed percentage ±ε of the steady-state value. Common values of ε are 2%, 3% or 5%.

• The rise time tr is the time required to reach first the steady-state value (100%). It may also be
defined as the time to reach the vicinity of the steady-state value particularly for a response with
no overshoot, e.g. the time between 10% and 90%. The 50% rise time tr,50 is defined as the time
to first reach 50% of the final value.

Similarly, the behaviour on step disturbances can be characterised as shown in Figure 7.3.2. Here likewise
the terms ’maximum overshoot’ and ’settling time’ are defined.
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Figure 7.3.1: Typical under-damped response of a control system to step command inputs
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Figure 7.3.2: Typical under-damped response of a control system to step disturbances

These standard quantities are measures of some properties of the control system. Mp and tε essentially
characterise the damping and tr and tp the speed, i.e. the dynamics of the control behaviour. The
steady-state error e∞ as described in section 7.2 is a typical characteristic of the static behaviour.

These quantities describe the deviation of the step response from the ideal case described in section 7.1
and the goal of the design of a control system is to hold them as small as possible. In most cases one can
restrict the values of the three quantities tr, tε and MP.

7.3.2 Integral performance indices

It generally happens that a control system design problem reaches the point where one or more parameters
are to be selected to give the best performance. If a measure or index of performance can be expressed
mathematically, the problem can be solved for the best choice of the adjustable parameters. The resulting
system is termed optimal with respect to the selected criterion.

Introducing a performance index
Ja = w1tr + w2tε + w3MP , (7.3.1)

composed of the quantities as discussed in section 7.3.1 and minimising Ja is unsuitable. This is because
one has to subjectively specify the weights w1, w2 and w3, and a straight mathematical approach to solve
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the minimisation problem is not available.

The selection of an appropriate performance index is as much a part of the design process as calculating the
final system. An optimal value of an inappropriate performance measure may result in poor performance.
Commonly used performance indices are based on integral performance measures. From Figure 7.3.1 one
can see that the area between the 100% line and the step response hW(t) is surely a measure for the
deviation of the control loop from the ideal response for a step command input. Likewise for the deviation
of the disturbance rejection from the ideal case Figure 7.3.2 shows the area between the 0% line and hZ(t)
to be a good measure. In both cases the total area below the control error e(t) = w(t) − y(t) is involved.
It is obvious to introduce the integral

Jk =

∞∫
0

fk[e(t)] dt (7.3.2)

as a performance measure, where fk[e(t)] is one of the functions given in Table 7.3.1, e.g. e(t), |e(t)|t and
e2(t). These types of integral performance indices can also include derivatives of the control error or terms
of the manipulated variable u(t) − u∞ that adds a penalty for control effort. Using such performance

Table 7.3.1: The most common integral performance indices

performance index properties

JIE =
∞∫
0

e(t) dt
Integral of error: suitable for highly damped
or monotonic responses; simple mathematical
treatment.

JIAE =
∞∫
0

|e(t)| dt Integral of absolute value of error: suitable for
non-monotonic responses; awkward analysis.

JISE =
∞∫
0

e2(t) dt
Integral of squared error: highly penalising
large control errors; settling time is larger than
for JIAE; good analytical treatment.

JITAE =
∞∫
0

|e(t)| t dt
Integral of time multiplied by the absolute
value of error: effect like JIAE; regards the
permanence of the control error.

JISTqE =
∞∫
0

[e(t) tq]2 dt

Integral of the squared time to the q times er-
ror: effect like JISE, but adds a heavy penalty
for errors that do not die out rapidly; does not
try to eliminate too quickly the inevitable ini-
tial error for a step input; less overshoot MP

and shorter settling time tε; good analytical
treatment.

JGISE =
∞∫
0

[e2(t) + αė2(t)] dt
Generalised integral of squared error: re-
sponses more favourable than JISE; choice of
the weight α subjective.

JISESC =
∞∫
0

[e2(t) + β(u(t) − u∞)2] dt

Integral of squared error and squared control
effort: Larger overshoot MP, but essentially
shorter settling time tε; choice of the weight β
subjective.

indices one can now define the integral criterion as follows:

A control system is better the smaller the value of Jk of the selected performance index.
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Therefore the integral criterion

Jk =

∞∫
0

fk[e(t)] dt = Jk(c1, c2, . . .)
!= Min (7.3.3)

always requires minimising Jk by adjusting the controller parameters c1, c2, . . ..

7.3.3 Determination of quadratic performance indices

The integral performance indices JIAE and JITAE from Table 7.3.1 have the disadvantage that they have
to be evaluated in the time domain, either by laborious computation or by simulation. All the other
squared error type of indices are more pleasant because of calculating its value in the s-domain rather
than in the time domain. Therefore the analysis is simpler. This will be shown in the following for JISE.

The performance index is given by

JISE =

∞∫
0

e2(t) dt (7.3.4)

Applying the convolution theorem in the frequency domain from Eq. (2.3.11) for s = c = 0 and f1(t) =
f2(t) = e(t), one obtains Parseval’s theorem

JISE =

∞∫
0

e2(t) dt =
1

2πj

+j∞∫
−j∞

E(s)E(−s) ds . (7.3.5)

When E(s) is expressed as a ratio of polynomials

E(s) =
b0 + b1s+ . . .+ bn−1s

n−1

a0 + a1s+ . . .+ ansn
, (7.3.6)

different methods are available to evaluate the integral. For calculation of the integral a recursion formula
is available. Its solution has also been tabulated up to quite high values of n in terms of the coefficients
of the polynomials. Table 7.3.2 below gives a short list. For a detailed analysis, e.g. when the integral
depends on some parameters, a general algebraic approach using determinants is more suitable as shown
in section A.7.

Table 7.3.2: Values for the integral
n JISE

1
b20

2a0a1

2
b21a0 + b20a2

2a0a1a2

3
b22a0a1 +

(
b21 − 2b0b2

)
a0a3 + b20a2a3

2a0a3 (−a0a3 + a1a2)

The more general form

JISTqE =

∞∫
0

[e(t) tq]2 dt (7.3.7)

of a squared performance index can be easily evaluated. Since the Laplace transform of te(t) according
to the complex differentiation theorem Eq. (2.3.7) is equal to −dE(s)

ds , one obtains

JISTqE =

∞∫
0

[e(t) tq]2 dt =
1

2πj

+j∞∫
−j∞

dq

dsq
E(s)

dq

dsq
E(−s) ds . (7.3.8)
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Since it is easy to compute the derivatives of a polynomial the above integral can be computed using
simple algebra and the aforementioned recursive formula.

Example 7.3.1
Determining the best damping ratio for a second-order system is a simple example of the use of perfor-
mance indices. Let us assume that the command transfer function of a control system is described by
Eq. (4.4.36) with K = 1 as

GW(s) =
ω2

0

ω2
0 + 2ζω0 s+ s2

.

The control error for a unit step input is

E(s) =
1
s

[
1 − ω2

0

ω2
0 + 2ζω0 s+ s2

]
=

2ζω0 + s

ω2
0 + 2ζω0 s+ s2

. (7.3.9)

From Table 7.3.2 we have

JISE =
1 + 4ζ2

4ζω0
.

As this function is a parabola in ζ, with minimum given by

dJISE

dζ
=

4ζ2 − 1
4ζ2ω0

= 0

the minimum square error to a step input occurs for ζ = 0.5 . �

Demonstration Example 7.1
A virtual experiment using manual control

http://virtual.cvut.cz/experiments/cstr.html
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Module 8

PID control and associated
controller types

Module units
8.1 The classical three-term PID controller . . . . . . . . . . . . . . . . . . . . . 8-1

8.2 Optimal tuning of PID controllers . . . . . . . . . . . . . . . . . . . . . . . . 8-3

8.3 Advantages and disadvantages of the different types of controllers . . . . . 8-4

8.4 Empirical tuning rules according to Ziegler and Nichols . . . . . . . . . . . 8-6

Module overview. Proportional-integral-derivative (PID) control constitutes the heuristic approach to
controller design that has found wide acceptance in industrial applications. This type of controller family
is introduced and its behaviour discussed in detail. Both, empirical tuning using the rules according to
Ziegler and Nichols and the optimal tuning using quadratic performance indices are shown. A comparison
of the controller members of this family using performance indices is given to demonstrate the differences
in their control behaviour.

Module objectives. When you have completed this module you should be able to:

1. Understand PID-type controllers.

2. Tune PID-type controllers using the rules of Ziegler and Nichols.

Module prerequisites. Transfer function, performance indices.

8.1 The classical three-term PID controller

We have seen in section 7.1 that proportional feedback control can reduce error responses but that it
still allows a non-zero steady-state error for a proportional system. In addition, proportional feedback
increases the speed of response but has a much larger transient overshoot. When the controller includes
a term proportional to the integral of the error, then the steady-state error can be eliminated, as shown
in section 7.2. But this comes at the expense of further deterioration in the dynamic response. Addition
of a term proportional to the derivative of the error can damp the dynamic response. Combined, these
three kinds of actions form the classical PID controller, which is widely used in industry.

This principle mode of action of the PID controller can be explained by the parallel connection of the P,
I and D elements shown in Figure 8.1.1. From this diagram the transfer function of the PID controller is

GC(s) =
UC(s)
E(s)

= Kp +
KI

s
+KDs . (8.1.1)

8-1



8-2 MODULE 8. PID CONTROL AND ASSOCIATED CONTROLLER TYPES

� �

�#

9
#

* 2#

�
�
� ��

� �
��*

2

�

 
�

� 	 �
#��

�

� ��

9
 �

�

Figure 8.1.1: Block diagram of the PID controller

The controller variables are

KC = Kp gain

TI =
Kp

KI
integral action time

TD =
KD

Kp
derivative action time

Eq. (8.1.1) can be rearranged to give

GC(s) = KC

(
1 +

1
TIs

+ TDs

)
. (8.1.2)

These three variables KC, TI and TD are usually tuned within given ranges. Therefore, they are often
called the tuning parameters of the controller. By proper choice of these tuning parameters a controller
can be adapted for a specific plant to obtain a good behaviour of the controlled system.

If follows from Eq. (8.1.2) that the time response of the controller output is

uC(t) = KCe(t) +
KC

TI

t∫
0

e(τ) dτ +KCTD
de(t)
dt

. (8.1.3)

Using this relationship for a step input of e(t), i.e. e(t) = σ(t), the step response h(t) of the PID controller
can be easily determined. The result is shown in Figure 8.1.2a. One has to observe that the length of
the arrow KCTD of the D action is only a measure of the weight of the δ impulse.
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Figure 8.1.2: Step responses (a) of the ideal and (b) of the real PID controller

In the previous considerations it has been assumed that a D behaviour can be realised by the PID con-
troller. This is an ideal assumption and in reality the ideal D element cannot be realised (see section 3.3).
In real PID controllers a lag is included in the D behaviour. Instead of a D element in the block diagram
of Figure 8.1.1 a DT1 element with the transfer function

GD(s) = KD
TVs

1 + TVs
(8.1.4)
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is introduced. From this the transfer function of the real PID controller or more precisely of the PIDT1

controller follows as
GC(s) = Kp +

KI

s
+KD

TVs

1 + TVs
. (8.1.5)

Introducing the controller tuning parameters

KC = Kp, TI =
KC

KI
and TD =

KDTV

KC

it follows

GC(s) = KC

(
1 +

1
TIs

+ TD
s

1 + TVs

)
. (8.1.6)

The step response h(t) of the PIDT1 controller is shown in Figure 8.1.2b. This response from t = 0 gives
a large rise, which declines fast to a value close to the P action, and then migrates into the slower I
action. The P, I and D behaviour can be tuned independently. In commercial controllers the ’D step’
at t = 0 can often be tuned 5 to 25 times larger than the ’P step’. A strongly weighted D action may
cause the actuator to reach its maximum value, i.e. it reaches its ’limits’.

As special cases of PID controllers one obtains for:

a) TD = 0 the PI controller with transfer function

GC(s) = KC

(
1 +

1
TIs

)
; (8.1.7)

b) TI → ∞ the ideal PD controller with the transfer function

GC(s) = KC (1 + TDs) (8.1.8)

and the PDT1 controller with the transfer function

GC(s) = KC

(
1 + TD

s

1 + TVs

)
; (8.1.9)

c) TD = 0 and TI → ∞ the P controller with the transfer function

GC(s) = KC . (8.1.10)

The step responses of these types of controllers are compiled in Figure 8.1.3. A pure I controller may
also be applied and this has the transfer function

GC(s) = KI
1
s

=
KC

TIs
. (8.1.11)

8.2 Optimal tuning of PID controllers

The measure of the quality of the transient response of a PID controlled system can be performed by
calculating an integral performance index as shown in section 7.3.2. The best controller is one that has
the minimum performance index. When this performance index is a minimum for a specified input, the
system performance is said to be optimal. When the input signal is specified the quadratic performance
index JISE can be calculated for a given plant transfer function as a function of the tuning parameters,
e.g. KC, TI, TD and TV.

The mathematical calculation of this performance index for given values of the tuning parameters is simple
as shown in section 7.3.3. But getting the optimal parameters is a non-trivial task. Though computerised
optimisation algorithms are available to calculate the optimal parameter setting, for the case of quadratic
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Figure 8.1.3: Step responses of the PID controller family

performance indices a mathematical analysis is possible. The approach shown in section A.7 gives more
insight into the controller settings and can be applied to all types of plants and PID controllers.

In the following the command and disturbance behaviour of a control system with a real PID controller
and a plant with the transfer function

GP(s) =
KP

(1 + Ts)4
. (8.2.1)

will be investigated. The response of the control error to step changes w(t) = w0σ(t) in the command
input and z′(t) = z0σ(t) in the plant input is

E(s) =
w0 − z0GC

1 +GCGP

1
s
.

For the plant (Eq. (8.2.1)) and the real PID controller (Eq. (8.1.6)) one obtains

E(s) =
w0TI(1 + Ts)4(1 + TVs) − z0KPTI(1 + TVs)

TI(1 + Ts)4(1 + TVs)s+KCKP [1 + (TI + TV)s+ (TD + TV)s2]
, (8.2.2)

which is in the form of Eq. (7.3.6) or Eq. (A.7.5) for k = KCKP.

Applying the analysis shown in section A.7 to the JISE performance index one gets the diagrams in
Figure 8.2.1, separately for the command and disturbance inputs. The integral action time constant is
normalised by TIN = TI

4T . These diagrams are shown for the optimal value TD = TDopt = 8
3T of the

derivative action time constant. The filter time constant is TV = 0.1TD. The diagrams show a rather
rectangular stability area that makes tuning of KC and TI for a fixed TD easy from the stability point of
view. But the performance characteristics are quite different. The optimal parameters for the two cases
differ by about a factor of two. Therefore, an optimal tuned controller is in general never optimally tuned
for command and disturbance inputs.

8.3 Advantages and disadvantages of the different types of con-
trollers

In the following the disturbance behaviour is investigated using the controllers introduced in section 8.1.
Their parameters are tuned optimally according to the performance index JISE from section 7.3.2. The
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plant is given by Eq. (8.2.1). Figure 8.3.1 shows for the different types of controller the responses to a
step disturbance z0σ(t) of the controlled variable y, which is normalised by KPz0. These curves indicate
that because w(t) ≡ 0 the relation e(t) = −y(t) is valid.

For discussing these curves the term settling time t3% according to section 7.3.1 is used, which is related
to the steady state of the uncontrolled case

y∞,without = KPz0 . (8.3.1)

In addition, the different cases should be compared with respect to the normalised maximum overshoot
Mp/(KPz0).

The different cases are discussed below:

a) The P controller shows a relatively high maximum overshoot Mp/(KPz0), a long settling time t3%
as well as a steady-state error e∞.
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Figure 8.2.1: Stability and performance diagram for step changes (a) in the command input (w0 = 1,
z0 = 0) and (b) in the plant input (z0 = 1, w0 = 0)
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b) The I controller has a higher maximum overshoot than the P controller due to the slowly starting
I behaviour, but no steady-state error.

c) The PI controller fuses the properties of the P and I controllers. It shows a maximum overshoot
and settling time similar to the P controller but no steady-state error.

d) The real PD controller according to Eq. (8.1.9) with TV = TD/10 has a smaller maximum overshoot
due to the ’faster’ D action compared with the controller types mentioned under a) to c). Also
in this case a steady-state error is visible, which is smaller than in the case of the P controller.
This is because the PD controller generally is tuned to have a larger gain KC due to the positive
phase shift of the D action. For the results shown in Figure 8.3.1 the gain for the P controller is
KC = 2.68 and for the PD controller KC = 4.74. The plant has a gain of KP = 1.

e) The PID controller according to Eq. (8.1.6) with TV = TD/10 fuses the properties of a PI and PD
controller. It shows a smaller maximum overshoot than the PD controller and has no steady state
error due to the I action.

The qualitative concepts of this example are also relevant to other type of plants with delayed proportional
behaviour. This discussion has given some first insights into the static and dynamic behaviour of control
loops.

8.4 Empirical tuning rules according to Ziegler and Nichols

Many industrial processes show step responses with pure aperiodic behaviour according to Figure 8.4.1.
This S-shape curve is characteristic of many high-order systems and such plant transfer functions may
be approximated by the mathematical model

GP(s) =
KP

1 + Ts
e−Tts , (8.4.1)

which contains a 1st-order delay element and a dead time. Figure 8.4.1 shows the approximation by a
PT1Tt element.

Here the step response is characterised by constructing the tangent at the turning point T with the
following three values: KP ( gain of the plant), Tr (rise time) and Tu (delay time). Then a rough
approximation according to Eq. (8.4.1) is to set Tt = Tu and T = Tr.

For a plant of the type described above a lot of tuning rules for standard controllers have been developed.
These have been mostly developed empirically from simulation studies. The most famous empirical tuning
rules are those of Ziegler and Nichols. These tuning rules have been derived to provide step responses for
the closed loop, where the response shows a decrease of the amplitude of approx. 25% per period. For
the application of these rules according to Ziegler and Nichols two different approaches can be used:

a) Method of the stability margin(I): Here, the following steps are used:

1. The controller is switched to pure P action.

2. The gainKC of the P controller is continuously increased until the closed loop shows permanent
oscillations. The value of the gain KC at this state is denoted as the critical controller gain
KCcrit.

3. The length of period Tcrit (critical period) of the oscillations is measured.

4. From KCcrit and Tcrit one determines the controller tuning values KC, TI and TD using the
formulas given in Table 8.4.1.

b) Method of the step response (II): In the case of an industrial plant it is often not possible, suitable or
allowed to drive the plant into permanent oscillations for determining KCcrit and Tcrit. Measuring
the step response of the plant does not generally cause difficulties. Therefore, in many cases the
second form of the Ziegler-Nichols approach is more expedient. The rules are based directly on the
slope KP/Tr of the tangent at the turning point and on the delay Tu of the step response. One
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Figure 8.4.1: Describing the step response of a process by the three characteristic values KP (gain of
the plant), Tr (rise time) and Tu (delay time)

has to observe that the measurement of the step response needs only to be taken at the turning
point T, as the slope of the tangent already describes the ratio KP/Tr. Using the measured data
Tu and KP/Tr as well as the formula given in Table 8.4.1 the controller tuning parameters can be
determined by simple calculations.

Table 8.4.1: Controller tuning parameters according to Ziegler and Nichols
Controller parameters

Type of controller KC TI TD

P 0.5 KCcrit - -

Method I PI 0.45 KCcrit 0.85 Tcrit -

PID 0.6 KCcrit 0.5 Tcrit 0.12 Tcrit

P
1
KP

Tr

Tu
- -

Method II PI
0.9
KP

Tr

Tu
3.33 Tu -

PID
1.2
KP

Tr

Tu
2 Tu 0.5 Tu

Demonstration Example 8.1
A virtual experiment using PID control for tracking

Demonstration Example 8.2
A virtual experiment using PID control for high-precision positioning

DYNAST study example 8.1
PI control of a PT1Tt plant

DYNAST study example 8.2
PID control of a PT1Tt plant

http://virtual.cvut.cz/experiments/optocon.html
http://virtual.cvut.cz/experiments/hydraulic.html
http://virtual.cvut.cz/dyn/examples/examples/control/ac3pid1/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/ac3pid2/index.html
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DYNAST study example 8.3
Disturbance response for PI control of a PT1Tt plant

http://virtual.cvut.cz/dyn/examples/examples/control/ac8distpi/index.html
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Module 9

Design of controllers using pole-zero
compensators

Module units
9.1 Characteristics in frequency and time domain . . . . . . . . . . . . . . . . . 9-1

9.2 Controller design using frequency domain characteristics . . . . . . . . . . 9-10

9.3 Application of the design using frequency domain characteristics . . . . . 9-15

9.4 Controller design using the root-locus method . . . . . . . . . . . . . . . . . 9-18

Module overview. Frequency-response design is popular primarily because it provides good designs in
the face of uncertainty in the plant model. In order to design control systems with good performance the re-
lationships between performance indices in the time and frequency domains are discussed in detail. Based
on these, the rules and prerequisites of using a dominant pair of poles are introduced. The systematic
design of controllers using lead and lag elements is described in detail and a comprehensive example shows
the effectiveness of these methods. The methods are completely conducted using only frequency-response
characteristics shown by Bode diagrams. In the sequel, design using the root-locus method counterpart of
this design is outlined.

Module objectives. When you have completed this module you should be able to:

1. Judge and measure the performance of control systems in the frequency domain.

2. Design systematically controllers using lead lag elements by Bode diagrams.

3. Apply the root-locus method to design pole zero compensators.

Module prerequisites. Performance indices, frequency response, Bode diagram, Nyquist diagram, root-
locus method.

9.1 Characteristics in frequency and time domain

In the following the most important characteristics in the frequency domain of the open and closed loop
for command inputs for a closed loop having a transfer function with two complex poles will be given. This
section is based on the relationship between the frequency characteristics and the performance indices in
the time domain for the closed loop introduced in section 7.3.1.

A closed loop showing a step response hW(t) according to Figure 7.3.1 has a frequency response GW(jω)
with a peak as qualitatively shown in Figure 9.1.1. For describing this behaviour the following charac-
teristics mentioned earlier can be used:

9-1
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• resonant peak frequency ωp,

• resonant peak Mr,

• bandwidth ωb,

• phase angle ϕb = ϕ(ωb).

These characteristics are shown in Figure 9.1.1.
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Figure 9.1.1: Bode plot of the closed-loop frequency response

The closed loop for a PT2S element has the transfer function

GW(s) =
G0(s)

1 +G0(s)
=

ω2
0

s2 + 2ζω0s+ ω2
0

(9.1.1)

according to Eq. (4.4.36) with K = 1.

The natural frequency ω0 and the damping ratio ζ characterise the control behaviour completely. This
can be used as a good approximation for other transfer functions if they contain a dominant pair of poles
according to Figure 9.1.2.
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Figure 9.1.2: Distribution of poles of an element with a dominant pair of poles

This pair of poles is assumed to be the closest pair to the jω axis in the s domain and therefore it describes
the slowest mode and influences the dynamical behaviour of the system very strongly provided the other
poles are sufficiently far away on the left-hand side of the s plane.

The step response for the transfer function of Eq. (9.1.1) is

hW(t) =

{
1 − e−ζω0t

[
cos
(√

1 − ζ2ω0t
)

+
ζ√

1 − ζ2
sin
(√

1 − ζ2ω0t
)]}

σ(t) (9.1.2a)
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and according to Eq. (A.3.8) it can be put into the more suitable form

hW(t) =

{
1 − e−ζω0t√

1 − ζ2
cos
[(√

1 − ζ2ω0t
)
− ϕd

]}
σ(t) , (9.1.2b)

where for ϕd = sin−1 ζ or ζ = sinϕd is valid. From Eq. (9.1.2b) the weighting function, which follows by
differentiation, is

gW(t) = ḣW(t) =
ω0√
1 − ζ2

e−ζω0t sin
(√

1 − ζ2ω0t
)
σ(t) . (9.1.3)

Therewith the conditions are accomplished in order to determine the maximum overshoot, rise time and
settling time that depends on the characteristics in the frequency domain, e.g. natural frequency ω0 and
damping ratio ζ. With ω0 and ζ the interesting items AW maxdB and ωr can be calculated directly by the
Eqs. (A.3.1) and (A.3.2).

a) Determination of the maximum overshoot Mp:

For calculation of Mp the time t = tp > 0 will be determined at which ḣW(t) will be first zero
according to Eq. (9.1.3). This is when the the sin function in Eq. (9.1.3) has√

1 − ζ2 ω0t = π .

This gives
tp =

π

ω0

√
1 − ζ2

. (9.1.4)

From Eq. (9.1.2) it follows that the maximum overshoot is

Mp = hW(tp) − 1 = e
−

ζπ√
1 − ζ2

= f1(ζ) . (9.1.5)

The maximum overshoot is therefore only a function of the damping ratio ζ as shown in Figure 9.1.3.
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Figure 9.1.3: Maximum overshoot Mp = f1(ζ) (in %) relative to hW∞ = 100% as function of the
damping ratio ζ

b) Determination of the rise time tr,50:

In the following the rise time will not be calculated by the tangent at the turning point, but by
the tangent at time t = t50 (see Figure 7.3.1), where hW(t) reaches 50% of the stationary value
hW∞ = 1. So the time t50 must be determined, for which according to Eq. (9.1.2) hW(t50) = 0.5 is
valid. From Eq. (9.1.2a) it follows that

0.5 = 1 − e−ζω0t50

[
cos
(√

1 − ζ2ω0t50

)
+

ζ√
1 − ζ2

sin
(√

1 − ζ2ω0t50

)]
.
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This equation for the product ω0t50 must be evaluated numerically. One gets a function of the form

ω0t50 = f∗
2 (ζ) . (9.1.6)

From Eq. (9.1.3) it follows that

tr,50 =
1

ḣW(t50)
=

√
1 − ζ2

ω0e−ζω0t50 sin
(√

1 − ζ2ω0t50

) ,

and from this together with Eq. (9.1.6) the normalised rise time is

ω0tr,50 =

√
1 − ζ2

e−ζf∗
2 (ζ) sin

(√
1 − ζ2f∗

2 (ζ)
) = f2(ζ) , (9.1.7)

which also only depends on the damping ratio ζ. This relationship is shown in Figure 9.1.4.
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Figure 9.1.4: The product ω0tr,50 = f2(ζ) (normalised rise time) as a function of the damping ratio ζ

c) Determination of the settling time tε:

Using Eq. (9.1.2b) the decay of the amplitude to a value less than ε for t ≥ tε can be estimated
from the envelope of the response

e−ζω0tε√
1 − ζ2

≈ ε .

From this the normalised settling time

ω0tε ≈ 1
ζ

ln
1
ε

1√
1 − ζ2

(9.1.8)

follows. If ε = 3%(=̂0.03) is chosen, one gets

ω0t3% ≈ 1
ζ

[
3.5 − 0.5 ln(1 − ζ2)

]
= f3(ζ) . (9.1.9)

This relationship is shown in Figure 9.1.5 together with the normalised rise time ω0tr that will be
shown later in Figure 9.1.9.

Comparing the results from Figures 9.1.3 to 9.1.5 one can summarise as follows:

• The maximum overshoot Mp depends only on the damping ratio ζ.

• A change of the damping ratio ζ in the range of approximately ζ < 0.9 behaves contrary to the
settling time tε compared to the rise time tr,50, i.e. an increase of the damping ratio ζ in order to
obtain a smaller settling time tε increases the rise time tr,50.
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Figure 9.1.5: Normalised settling time ω0t3% ≈ f3(ζ) and normalised rise time ω0tr as functions of the
damping ratio ζ

• For a fixed damping ratio ζ the parameter ω0 determines the speed of the control loop. A large
value of ω0 shows a small settling and rise time.

For the practical application of the diagrams in Figures 9.1.3 to 9.1.5 the following example is given.

Example 9.1.1
The response on step changes in the set-point value hW(t) of a closed loop with a dominant pair of poles
should show a maximum overshoot of Mp ≤ 10%, a rise time of tr,50 ≤ 1 s and a settling time of t3% ≤ 4 s.
How must the damping ratio ζ and the natural frequency ω0 be chosen?

With the given value of Mp one obtains from Figure 9.1.3 the damping ratio

ζ = 0.58 .

For this value of ζ with tr,50 = 1 s the natural frequency

ω0 =
f2(0.58)

1 s
= 2.05 s−1

follows from Figure 9.1.4. But from Figure 9.1.5 for t3% = 4 s the required natural frequency is

ω0 =
f3(0.58)

4 s
= 1.6 s−1 .

The rise time of tr,50 = 1 s is the sharper requirement. Therefore, ω0 = 2.05 s−1 must be chosen. For the
pair (ω0, ζ) from Eq. (A.3.1) the resonant peak frequency

ωp = ω0

√
1 − 2ζ2 = 1.17 s−1

and from Eq. (A.3.2) the resonant peak

Mr =
1

2ζ
√

1 − ζ2
= 0.06

giving
Mr = 0.49 dB ,

respectively, can be determined. �
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In order to estimate the bandwidth ωb for a given damping ratio ζ, the relationship between these two
parameters is often needed. Based on the bandwidth ωb as defined in Figure 4.4.13, that is

|GW(jωb)| =
1√
2
|GW(0)| ,

it follows after a short calculation using Eq. (9.1.1) for s = jω and ω = ωb that

ωb

ω0
=
√

1 − 2ζ2 +
√

(1 − 2ζ2)2 + 1 = f4(ζ) (9.1.10)

and

ϕb = tan−1
2ζ
√

(1 − 2ζ2) +
√

(1 − 2ζ2)2 + 1

2ζ2 −
√

(1 − 2ζ2)2 + 1
= f5(ζ) . (9.1.11)

Furthermore, one obtains using Eqs. (9.1.7) and Eq. (9.1.10)

ωbtr,50 = f2(ζ) f4(ζ) = f6(ζ) . (9.1.12)

The graphs of the functions f4(ζ), f5(ζ) and f6(ζ) are shown in Figure 9.1.6.
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Figure 9.1.6: Characteristics ωb/ω0 = f4(ζ), ϕb = f5(ζ) and ωbtr,50 = f6(ζ) depending on the damping
ratio ζ of the closed loop with PT2S behaviour

By approximation of f4(ζ), f5(ζ) and f6(ζ) the following ’rules of thumb’ can be determined:

1.
ωb

ω0
≈ 1.84 − 1.21 ζ for 0.3 < ζ < 1.0 , (9.1.13)

2. |ϕb| ≈ π − 2.23 ζ for 0 ≤ ζ ≤ 0.8 , (9.1.14)

3. ωbtr,50 ≈ 2.3 for 0.3 < ζ < 0.8 . (9.1.15)

Applying these rules to Example 9.1.1 with ω0 = 2.05 s−1 and ζ = 0.58, the bandwidth ωb can be
determined either from Eq. (9.1.13) as

ωb ≈ 2.05 (1.84− 1.21 · 0.58) = 2.33 s−1

or with tt,50 = 1 s from Eq. (9.1.15) as
ωb ≈ 2.3 s−1 .

The Bode plot of a typical corresponding open-loop frequency response G0(jω) is shown in Figure 9.1.7.
From this and from Eqs. (5.3.16) and (5.3.17) one can use the characteristics:

• crossover frequency ωC,
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Figure 9.1.7: Bode plot of the open loop

• phase margin ϕC = 180◦ + ϕ(ωC),

• gain margin AP dB = |G0(ωP)|dB.

Since the closed-loop transfer function has been assumed to be approximated by Eq. (9.1.1), the corre-
sponding open-loop transfer function is

G0(s) =
GW(s)

1 −GW(s)
=

ω2
0

s(s+ 2ζω0)
(9.1.16a)

or
G0(s) =

K0

s

1
1 + Ts

(9.1.16b)

with K0 = ω0/(2ζ) and T = 1/(2ζω0). The frequency response of Eq. (9.1.16) is shown in Figure 9.1.8.
This Bode plot is considerably different from that of Figure 9.1.7. The system in Figure 9.1.7 does not
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Figure 9.1.8: Bode plotf the open loop with G0(s) according to Eq. (9.1.16b)

have an integrator. Furthermore, it is of order higher than two, as the phase characteristic exceeds the
value of -180◦. But close to the crossover frequency ωC, both Bode plots show a similar behaviour. If
for the magnitude response of a given system |G0(jω)| >> 1 is valid for ω << ωD and |G0(jω)| ≈ 0
for ω >> ωD, then G0(s) can often be approximated in the vicinity of the crossover frequency ωC by
Eqs. (9.1.16a) and (9.1.16b). The associated transfer function GW(s) contains a dominant conjugate
complex pair of poles. In order to transfer the known performance indices of a second-order system to
control systems of higher order, the design must be performed such that the magnitude response |G0(jω)|
decreases by 20dB/decade in the vicinity of ωC. For Eq. (9.1.16b) this is only possible if ωC < 1/T is
valid (compare with Figure 9.1.8). From Eq. (9.1.16a) one obtains under the condition

|G0(jωC)| = 1

after a short calculation
ωC

ω0
=
√√

4ζ4 + 1 − 2ζ2 = f7(ζ) . (9.1.17)
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With T = 1/(2ζω0) for ωC < 1/T from √√
4ζ4 + 1 − 2ζ2 < 2ζ

the condition ζ > 0.42 follows. When for the damping ratio a value of ζ > 0.42 is chosen, then it is
guaranteed that the magnitude response |G0|dB of the open loop falls off in the vicinity of the crossover
frequency ωC by 20dB/decade. Figure 9.1.9 shows that only the interval 0.5 < ζ < 0.7 is a range of
suitable damping ratios, since both, the rise time and the maximum overshoot, show acceptable values
from the performance index point of view. This also means that the phase and gain margin ϕC and AP dB

show proper values.

A
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Figure 9.1.9: Step response hW(t) of the closed loop with PT2S behaviour according to the transfer
function GW(s) of Eq. (9.1.1)

From these considerations one can conclude that for control systems with minimum-phase behaviour,
which can be approximately described by a PT2S element, the magnitude response |G0(jω)|dB of the open
loop must decrease by 20dB/decade in the vicinity of the crossover frequency ωC if a good performance
is to be achieved, i.e. a sufficient large phase margin ϕC.

As already mentioned in section 5.3.6, the crossover frequency ωC is an important performance index of
the dynamical behaviour of the closed loop. The larger ωC, the larger is the bandwidth ωb of GW(jω)
in general, and the faster is the reaction to set-point changes. For the frequency response for set-point
changes one gets approximately

GW(jω) =
G0(jω)

1 +G0(jω)
≈
{

1 for |G0(jω)| >> 1
G0(jω) for |G0(jω)| << 1 .

(9.1.18)

From this, the asymptote of the magnitude response of GW(jω) can be determined (Figure 9.1.10). If
|G0(jω)|dB decreases in the vicinity of ωC by 20dB/decade, then for this range

G0(jω) ≈ ωC

jω

is valid, and thus it follows that

GW(jω) ≈ 1

1 + j
ω

ωb

.
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Figure 9.1.10: Piecewise determination of |GW(jω)|dB from |G0(jω)|dB in the Bode diagram

GW(jω) behaves in this range as a PT1 element. As generally known, the magnitude response of a PT1

element decreases by 3dB at the breakpoint frequency (here ωB = ωC). Therefore, the crossover frequency
ωC of the open loop is just the bandwidth ωb of the closed loop, i.e. ωC = ωb. From this it follows that
for minimum phase systems the frequency response of GW(jω) can be determined piecewise from G0(jω)
according to Figure 9.1.10. Thereby for fulfilling Eq. (9.1.18) in the lower frequency range the value
of |G0(jω)| and therefore also the loop gain K0 must be large to hold the steady-state error as small as
possible. This lower frequency range of |G0(jω)| is responsible for the steady-state behaviour of the closed
loop, whereas the middle frequency range is essential for the transient behaviour and is characteristic for
the damping. In order to avoid non-suppressable high-frequency disturbances of the set point w(t) in the
closed loop, |G0(jω)| and therefore also |GW(jω)| must decrease quickly in the upper frequency range.

From these ideas it is now possible to specify besides Eq. (9.1.17) additional important relationships
between the characteristics of the time response of the closed loop and the characteristics of the fre-
quency response of the open and partly of the closed loop. Using Eq. (9.1.7) and Eq. (9.1.17) it follows
immediately that

ωCtr,50 = f2(ζ) f7(ζ) = f8(ζ) . (9.1.19)

Figure 9.1.11 shows the graphical representation of f8(ζ). It is easy to check that this curve can be
described in the range of 0 < ζ < 1 by the approximation

ωCtr,50 ≈ 1.5 − Mp[%]
250

(9.1.20a)

or
ωCtr,50 ≈ 1.5 for Mp ≤ 20% or ζ > 0.5 . (9.1.20b)

A further relationship may be determined from the crossover frequency ωC for the phase margin as

ϕC = 180◦ + argG0(jωC)

= 180◦ − 90◦ − tan−1

(
1
2ζ

ωC

ω0

)
,

which yields

ϕC = tan−1

(
2ζ
ω0

ωC

)
= tan−1

[
2ζ

1
f7(ζ)

]
= f9(ζ) . (9.1.21)

Figure 9.1.11 also shows this function. By superposition of f9(ζ) with f1(ζ) one can show that in the
range of the mainly interesting values of the damping 0.3 ≤ ζ ≤ 0.8 the approximation

ϕC[◦] +Mp[%] ≈ 70 (9.1.22)

is valid. This ’rule of thumb’ can only be applied for values of the variables with the given dimensions in
squared brackets.
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Figure 9.1.11: Frequency domain characteristics of the open loop, ωC and ϕC, depending on the damping
ratio ζ of the closed loop with PT2S behaviour

9.2 Controller design using frequency domain characteristics

The relations fi(ζ)(i = 1, 2, . . . , 9) derived in the previous section for the closed loop behaviour of a
PT2S element, can be applied also to higher-order systems as long as these systems have a dominant pair
of poles. For this class of systems an efficient synthesis method exists as shown in the following. The
starting point of this method is the representation of the frequency response G0(jω) of the open loop on a
Bode diagram. The specifications of the closed loop that must be met are first given as characteristics of
the open loop according to the above section. The synthesis requires in the choice of a controller transfer
function GC(s), which modifies the open-loop transfer function such that the required characteristics are
met. The method consists of the following steps:

Step 1: In general, the characteristics of the time response of the closed loop, Mp, tr,50 and e∞,
are given. On the basis of these values from Table 7.2.1 the gain K0, from the rule of thumb for
ωC tr,50 ≈ 1.5 according to Eq. (9.1.20b), the crossover frequency ωC and from ϕC[◦] ≈ 70−Mp[%]
the phase margin ϕC will be determined, and from f1(ζ) the damping ratio ζ.

Step 2: First a P element will be chosen as controller such that the gain K0 determined during
step 1 will be met. By inserting additional elements in series (often called compensator or correction
elements) G0 will be changed such that the other values from step 1, ωC and ϕC, can be achieved
while the amplitude response |G0(jω)|dB decreases by 20dB/decade in the vicinity of the crossover
frequency ωC.

Step 3: It must be checked whether the response meets the required specifications. This can
be performed directly by determining Mp, tr,50 and e∞ by simulation, or indirectly by using the
formula in section 9.1 for the resonant peak Mr according to Eq. (A.3.2) and the bandwidth ωb

according to Eq. (9.1.15). These values must be verified by calculation of the closed-loop frequency
domain characteristic

GW(jω) =
G0(jω)

1 +G0(jω)
from the open-loop characteristic. In the case of too large deviations from the approximations of
Mr and ωb, step 2 must be repeated in a modified form.

This method does not inevitably deliver a proper controller during the first run and it is a trial-and-error
method that leads generally to satisfactory results after some recursions.
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For the design of this controller the methods given in section 8 for a standard controller are usually not
sufficient. The controller must be composed of different elements – as shown above in step 2. In this
procedure two special elements are of important interest, which have to perform a phase shift as shown
below:

a) The lead element

The increasing phase shift element is used to increase the phase in a certain frequency range. The transfer
function of this element is

GC(s) =
1 + Ts

1 + αTs
=

1 +
s

1/T

1 +
s

1/(αT )

, 0 < α < 1 . (9.2.1)

For s = jω the frequency response

GC(jω) =
1 + j

ω

ωZ

1 + j
ω

ωN

(9.2.2)

follows with the two breakpoint frequencies

ωZ =
1
T

(9.2.3a)

and
ωN =

1
αT

. (9.2.3b)

A further characteristic is the frequency ratio

mh =
ωN

ωZ
=

1
α
> 1 . (9.2.4)

From Eq. (9.2.1) the frequency response

GC(jω) = A(ω) ejϕ(ω)

=

√
1 + T 2ω2

1 + α2T 2ω2
ej(tan−1 Tω − tan−1 αTω) (9.2.5)

follows. The Nyquist plot is shown in Figure 9.2.1 and it is a semicircle. The maximum phase shift
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Figure 9.2.1: Nyquist plot of a lead element

ϕ(ω) = tan−1 Tω − tan−1 αTω

can be determined from the condition dϕ(ω)/dω = 0 for

ωmax =
√
ωZωN = ωN

1
√
mh

= ωZ
√
mh =

1
T

√
mh . (9.2.6)

As shown by the Bode plot in Figure 9.2.2 the lead element has at high frequencies an undesirable increase
in the magnitude response of

|∆GC|dB = 20 log10(1/α) = 20 log10mh .
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Figure 9.2.2: Bode diagram of the lead element

If Eq. (9.2.1) is broken down as

GC(s) =
1 + αTs

1 + αTs
+

(1 − α)Ts
1 + αTs

= 1 +
(

1
α
− 1
)

αTs

1 + αTs
, (9.2.7)

the lead element consists of a parallel connection of a P element with gain 1 and a DT1 element, which
is a special PDT1 controller (compare Eq. (8.1.9)). For the step response one obtains

hC(t) = σ(t)

⎡
⎣1 +

(
1
α
− 1
)
e
−
t

αT

⎤
⎦ , (9.2.8)

which is shown in Figure 9.2.3. For the practical design of lead elements the normalised phase diagram

� ��
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�
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�
" � #

Figure 9.2.3: Step response of the lead element

in Figure 9.2.4 is helpful. If the frequency ωmax is known, from this diagram the frequency ratio mh

can be determined. The lower breakpoint frequency ωZ can be either read from the diagram directly or
calculated from Eq. (9.2.6).

Example 9.2.1
The phase response of a transfer function must be shifted by ∆ϕ = 30◦ at ω = ωmax = 4 s−1. The
maximum of the phase shift of ∆ϕ = 30◦ is from Figure 9.2.4 for ω̄ = ω/ωZ ≈ 1.7 and mh = 3.
With ω = ωmax = 4 s−1 follows for the lower breakpoint frequency ωZ ≈ ωmax/1.7 or from Eq. (9.2.6)
ωZ = ωmax/

√
mh = 4/

√
3 = 2.31 s−1 and with Eq. (9.2.4) for the upper breakpoint frequency ωN =

mhωZ = 6.93 s−1. �
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Figure 9.2.4: Normalised phase responses of the lead element:
ϕ̄ = ϕ; ω̄ == ω/ωZ; m̄ = mh;
ωZ = lower breakpoint frequency; mhωZ = upper breakpoint frequency;
normalised phase responses of the lag element:
ϕ̄ = −ϕ; ω̄ = ω/ωN; m̄ = ms;
ωN = lower breakpoint frequency; msωN = upper breakpoint frequency

b) The lag element

The lag element is used to decrease the magnitude response above a certain frequency. Hereby a unde-
sirable decrease of the phase response occurs in a certain frequency range. The transfer function of this
lag element is

GC(s) =
1 + Ts

1 + αTs
=

1 +
s

(1/T )

1 +
s

(1/αT )

with α > 1 . (9.2.9)

For s = jω and the breakpoint frequencies ωZ =
1
T

and ωN =
1
αT

the frequency response is

GC(jω) =
1 + j

ω

ωZ

1 + j
ω

ωN

. (9.2.10)

Also in this case a frequency ratio can be defined as

ms =
ωZ

ωN
= α > 1 . (9.2.11)

The decrease of the amplitude response at high frequencies is

|∆GC|dB = −20 log10

1
α

= 20 log10ms . (9.2.12)

Figure 9.2.5 shows the Nyquist plot and Figure 9.2.6 the Bode diagram of the lag element. The rear-
rangement of Eq. (9.2.9) into

GC(s) =
1
α

+
1 − 1

α
1 + αTs

(9.2.13)
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Figure 9.2.5: Nyquist plot of the lag element
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Figure 9.2.6: Bode diagram of the lag element

shows that the lag element consists of a parallel connection of a P element with gain 1/α and a PT1

element with gain (1 − 1/α) and time constant αT . The step response of this lag element follows from
Eq. (9.2.13) as

hC(t) = σ(t)

⎡
⎣ 1
α

+
(

1 − 1
α

) ⎛⎝1 − e
−
t

αT

⎞
⎠
⎤
⎦ (9.2.14)

and is shown in Figure 9.2.7. It is easy to see that this relation is equal to Eq. (9.2.8) but with α > 1.
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Figure 9.2.7: Step response of the lag element

For practical working the phase diagram of Figure 9.2.4 can be used, which is in this case in principle
the same as that for the lead element but with different parameters and flipped over.

Example 9.2.2
The magnitude response |G0|dB of an open-loop system should be decreased at ω = 10 s−1 by 20dB,
whereby the maximum phase shift must be 10◦. From Eq. (9.2.12) it follows that |∆GC|dB = 20 dB =
20 log10ms and from this ms = 10. With ϕ = −10◦ and ms = 10 one obtains from the phase response
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ω̄ = ω/ωN ≈ 50, and with ω = 10 s−1 for the breakpoint frequencies ωN = 10/50 s−1 = 0.2 s−1 and
ωZ = msωN = 2 s−1. �

9.3 Application of the design using frequency domain charac-
teristics

In the following the design using the frequency domain characteristics will be demonstrated by an example.
The plant is given with the transfer function

GP(s) =
1

(1 + s)
(
1 +

s

3

) . (9.3.1)

For the step response of set-point changes hW(t) of the closed loop the rise time

tr,50 = 0.7 s (9.3.2a)

and the maximum overshoot
Mp = 25% (9.3.2b)

is specified. Furthermore, for a ramp command input

w(t) = w1σ(t) t

of the set point, the closed loop should show a steady-state error of

e∞ =
1
20

. (9.3.2c)

The design method will be performed according to section 9.2, assuming that the resultant system will
have a dominant pair of complex poles, using the following steps:

Step 1:

One obtains from Eq. (9.1.20) with the specification according to Eq. (9.3.2a) the approximation
of the crossover frequency as

ωC ≈ 1
tr,50

(
1.5 − Mp[%]

250

)
=

1
0.7

(1.5 − 0.1) ≈ 2 s−1 (9.3.3a)

and from Eq. (9.1.22) with Eq. (9.3.2b) the phase margin as

ϕC[◦] ≈ 70 −Mp[%] = 45 . (9.3.3b)

From the specification Eq. (9.3.2c) one obtains for a ramp command input according to Table 7.2.1
(case k = 1) for xe1 ≡ w1 = 1 the open-loop gain as

K0 = KCKP = 20 . (9.3.3c)

Step 2:

A) First, an I controller is chosen, GC1 (s) = KC/s, with the gain KC such that Eq. (9.3.3c) is fulfilled,
here KC = 20. The Bode diagram of the open loop transfer function

G01(s) = GC1 (s)GP(s) =
20

s(1 + s)
(
1 +

s

3

) (9.3.4)

is plotted in Figure 9.3.1. From this it can be seen that in order to achieve the requirements of
Eqs. (9.3.3a) and (9.3.3b)



9-16 MODULE 9. DESIGN OF CONTROLLERS USING POLE-ZERO COMPENSATORS

1. the phase of G01(jω) must be increased at ω = ωC by 53◦, and

2. the magnitude of G01(jω) decreased at ω = ωC by 11dB .

B) In order to fulfill the first requirement, the I controller will be extended by a lead element, whose
phase response at ω = ωC = 2 s−1 has a maximum of (53◦ + 6◦). Here in this case a 6◦ larger value
is used, as by the usage of a lag element in step 3 a small unavoidable decrease of the phase occurs.
From the phase diagram (Figure 9.2.4) one reads for ϕmax = 59◦ the frequency ratio of

mh ≈ 12 .

From this, one obtains for ω = ωmax = ωC with Eq. (9.2.6) or likewise from Figure 9.2.4 the
breakpoint frequencies

ωZ =
ωC√
mh

≈ 0.6 s−1

and
ωN = ωZmh ≈ 7.2 s−1 .

The transfer function of the extended controller is

GC2(s) = 20
1 +

s

0.6
s(1 +

s

7.2
)
. (9.3.5)

The open loop has now the transfer function

G02(s) = GC2(s)GP(s) = 20
1 +

s

0.6
s(1 + s)

(
1 +

s

3

)(
1 +

s

7.2

) . (9.3.6)

The associated frequency-domain characteristics are shown in Figure 9.3.1. Because of the ad-
ditional lead element also the magnitude response of G02(s) is slightly changed. Hence, in the
following step the magnitude response at ω = ωC must be decreased by 22dB instead of 11dB.

C) In order to reach this decrease of the magnitude at ω = ωC = 2 s−1 the controller will be further
extended by a lag element. From Eq. (9.2.12) it follows that

20 log10ms = 22 dB

and from this
ms = 12.6 .

The phase at ωC = 2 s−1 must not be influenced too much such that the upper breakpoint frequency
ωZ, and therefore also the lower breakpoint frequency ωN must be sufficiently far left from ωC. By
the special choice of the lead element in step 1, the lag element introduced during this step may
have a maximum phase decrease of 6◦. From this, one obtains with ms = 12.6 from Figure 9.2.4

ω

ωN
= 125

and especially for ω = ωC = 2 s−1

ωN =
ωC

125
= 0.016 s−1 .

For the upper breakpoint frequency it follows that

ωZ = ωNms = 0.2 s−1 .

The transfer function of the final controller is given by

GC(s) = 20
1 +

s

0.6
s(1 +

s

7.2
)

1 +
s

0.2
1 +

s

0.016

. (9.3.7)
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The transfer function of the open loop is

G0(s) = 20

(
1 +

s

0.2

) (
1 +

s

0.6

)
s
(
1 +

s

0.016

)
(1 + s)

(
1 +

s

3

) (
1 +

s

7.2

) .

The associated frequency response characteristics are shown in Figure 9.3.1.
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Figure 9.3.1: The magnitude (a) and phase (b) response of G01(jω), G02(jω) and G0(jω)

Step 3:

As the design based on frequency-domain characteristics is an approximate method, one should
verify the results by simulation studies and make sure of the match of the the results with the
initial specifications. The simulation results for the time responses are shown in Figure 9.3.2. The
required specifications for tr,50, Mp and e∞ are fulfilled. Furthermore, the manipulated variable
u(t) must be checked for realisability. If this in not the case, the initial specifications for the control
system must be modified.
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Figure 9.3.2: Step response hW(t) and ramp response rW(t) of the designed control system

9.4 Controller design using the root-locus method

The design using the root-locus method is directly connected to the considerations in section 9. There
the specifications of maximum overshoot, rise and settling time for a closed loop having a dominant pair
of poles have been converted into the conditions for the damping ratio ζ and for the natural frequency ω0

of the related transfer function GW(s). With ζ and ω0 the poles of the transfer function GW are directly
tightened as shown in Figure 9.1.2. An open-loop transfer function G0(s) must now be determined such
that the closed loop has a dominant pair of poles at the desired position, which is given by the values of
ω0 and ζ. Such an approach is also called pole assignment.

The root-locus method is – as generally known – a graphical method, which is used to analyse the position
of the closed-loop poles. This method offers the possibility to combine in the complex s plane the desired
dominant pair of poles with the root locus of the fixed part of the loop and to deform the root locus by
adding poles and zeros such that two of the branches traverse through the desired dominant pair of poles
at a certain gain K0. Figure 9.4.1 shows, how the root locus can be deformed to the right by adding a
pole and to the left by adding a zero.
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Figure 9.4.1: Deforming of the root locus (a) to the right by an additional pole, (b) to the left by an
additional zero in the open loop

The principal strategy during the controller design by the root-locus method will be shown in the following
using two examples.

Example 9.4.1
Given is a plant described by the transfer function

GP(s) =
1

s(s+ 3) (s+ 5)
. (9.4.1)
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For this plant a controller must be designed, such that the step response hW(t) of the closed loop shows
the following properties:

Mp = 16% and tr,50 = 0.6 s .

First, these specifications will be transformed. The conditions for ζ and ω0 are from Figures 9.1.3 and 9.1.4

ζ ≥ 0.5 and ω0 ≥ 1.85
0.6 s

= 3.1 s−1 .

In order to have a geometrical interpretation one should consider Figure 9.4.2, where a pair of complex
poles

sa,b = −ζω0 ± jω0

√
1 − ζ2

is shown. The distance d∗ of both poles sa,b from the origin is

d∗ =
√
ω2

0ζ
2 + (1 − ζ2)ω2

0 = ω0 . (9.4.2)

The angle α is

cosα =
ω0ζ

ω0
= ζ (9.4.3a)

or
α = cos−1 ζ , (9.4.3b)

where for the current case of ζ ≥ 0.5 the condition α ≥ 60◦ is met. The damping ratio ζ describes the
angle α, the frequency ω0 the distance d∗ of the dominant pair of poles from the origin.
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Figure 9.4.2: Pair of conjugate complex poles in the s plane

During the design one will try to increase the damping ratio not unnecessarily high as this step causes
an increase in the rise time tr,50 for a given natural frequency ω0 (Figure 9.1.4). Increasing the natural
frequency ω0 implies an increase of the speed of the control loop. But this parameter should not be
unnecessarily increased, otherwise the dominance of the pair of poles may be lost.

Figure 9.4.3 shows the root locus of the closed loop using a P controller. Potential positions for the
dominant pair of poles are drawn by the two thick blue lines H1 and H2. It is obvious that the design
using a pure P controller (changes in the gain K0) does not lead to the goal, as the root locus does
not traverse the two lines H1 and H2. Equally it is clear which steps have to be taken, such that the
two branches of the root locus under consideration traverse the two lines H1 and H2. If the two poles
s2 = −3 and s3 = −5 are shifted further left, the centre of gravity of the poles will move left and with it
the total curve without changing the structure of the system. One possibility is to perform this shift by
a simple lead element which compensates the pole s2 = −3 by a zero and a pole s4 = −10. The resulting
controller transfer function is

GC(s) = KC
1 + s/3
1 + s/10

= 3.33KC
s+ 3
s+ 10

(9.4.4)

and the transfer function of the modified open loop

G0(s) = 3.33KC
1

s(s+ 10) (s+ 5)
. (9.4.5)

The root locus of the closed loop is shown in Figure 9.4.4. It traverses the line H1 at sk. The associated
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Figure 9.4.3: Root locus of GW(s) (plant with P controller) and potential positions of the dominant
pairs of poles (blue thick lines)
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Figure 9.4.4: Root locus of GW(s) with modified controller according to Eq. (9.4.4)

gain at this point can be determined via the distances to the three poles from Eq. (6.2.11)

k0 = 3.33KC = |sk − 0| |sk + 5| |sk + 10| = 3.3 · 4.4 · 8.8

as
KC = 38.4 .

The step response of the closed loop in Figure 9.4.5 shows that the specifications are achieved.

It must be mentioned that a complete compensation (cancelling) of the pole s2 = −3 cannot be realised
exactly, as the plant parameters are not exactly known or may change within some bounds. Thus the
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Figure 9.4.5: Closed-loop step response with modified controller according to Eq. (9.4.4)

root locus will differ in the vicinity of the compensated pole from the ideal case of Figure 9.4.4, but
intersection with the two lines H1 and H2 is almost invariant. �

One realises by means of this example that the root-locus method is well suited to provide a fast and
first overview about the principal possibilities of corrections. Often the knowledge about the asymptotes
is already sufficient. The root-locus method is especially suited for stabilising unstable plants. This will
be explained by the second example.

Example 9.4.2
Given is an unstable plant with the transfer function

GP(s) =
1

(s+ 1) (s+ 5) (s− 1)
. (9.4.6)

At first, it is close to compensate the pole s1 = 1 by a corresponding zero. This would be possible,
e.g. using a first-order all-pass element with the transfer function

GC(s) =
s− 1
s+ 1

.

But because of the reason given above, the compensation of the unstable pole will be practically never
complete. So it must be performed without this procedure for stability reasons.

Another possibility is to provide feed back around the unstable plant so that the original unstable pole
in the closed loop is shifted into the left-half s plane. A simple P controller would yield the root locus
shown in Figure 9.4.6. This configuration is not stabilisable, as the two branches on the right-hand side
remain in the right-half s plane for all gain values. But if a controller is used that has a double zero at
s = −1 and a pole at s = 0, the pole at s = s2 = −1 will be substituted by a zero. The root locus will
be deformed to the left as shown in Figure 9.4.7.

This distribution of poles and zeros can be simply realised by a PID controller with the transfer function

GC(s) = KC
(s+ 1)2

s
= KC

(
2 +

1
s

+ s

)

= 2KC

(
1 +

1
2 s

+ 0.5 s
)
.

From Figure 9.4.7 it can be seen for higher gain values than the critical gain K0 crit the closed loop is
stable, as then all poles remain in the left-half s plane.
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Figure 9.4.6: Root locus of the closed loop consisting of an unstable plant and a P controller
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Figure 9.4.7: Root locus of the closed loop consisting of an unstable plant and a PID controller

As the stability of the closed-loop system is not influenced by the left-half-plane poles, a compensation
of these poles is possible. Even if this compensation is not completely possible, the system will be stable.
A compensation of the right-half-plane poles – as discussed above – should not be done. �

Demonstration Example 9.1
A virtual experiment stabilising a pendulum

http://virtual.cvut.cz/experiments/gyro.html
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Module overview. Analytical design methods are of interest when the plant model is given as a transfer
function and the plant parameters are known. Whereas the pole zero compensator systematic design
procedures are indirect methods based on performance indices and their graphical interpretation occur in
Bode diagrams, the compensator designs given here are direct methods based on a given transfer function
for the closed loop. First, an introduction into the specifications of closed-loop transfer functions is
given, then the method of Truxal and Guillemin including different examples of stable, unstable and non-
minimum phase plants is shown. This method is the basis of a generalised compensator design procedure
that can cope simultaneously both with disturbances and command changes, where the disturbance can
occur at different locations. A comprehensive example demonstrates the application.

Module objectives. When you have completed this module you should be able to:

1. Use standard forms to specify the closed-loop behaviour.

2. Design compensator controllers for stable, unstable and non-minimum phase plants.

3. Cope with disturbances for compensator-based control systems.

Module prerequisites. Transfer function, performance indices.

10-1
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10.1 Basic ideas of compensator design

In the following some analytical design methods will be discussed, which will lead directly to the design
solution in a strongly systematic way. In contrary to these direct design methods, the methods hitherto
discussed, e.g. the design method using frequency-domain characteristics or the root-locus method, are
indirect methods based more on systematic trial and error techniques iterating through some design steps.
The success depends strongly on the experience and skill of the designer. The starting point was always
the open loop, which was modified iteratively by adding lead and lag elements until the closed loop shows
the desired behaviour.

Whereas in the direct design methods one will always start from the behaviour of the closed loop. Mostly
a desired transfer function GW(s) ≡ KW(s) is given. In general this follows from the specification of
some performance indices, which, for example are required for the step response hW(t). For a series
of appropriate transfer functions a table of numerator and denominator polynomials of the associated
transfer function KW(s) and its distribution of zeros and poles to yield a specific response are given.
Then for a known plant behaviour the required controller can be directly calculated.

The controllers designed in this way are not always optimal. They guarantee the compliance of the
desired specification, e.g. maximum overshoot and settling time. A drawback of theses methods is that
they cannot be applied directly to systems with dead time.

10.2 Design by specifying the closed-loop transfer function

The desired transfer function of the closed loop is given by

KW(s) =
α(s)
β(s)

=
α0 + α1s+ . . .+ αvs

v

β0 + β1s+ . . .+ βusu
, u > v , (10.2.1)

where α(s) and β(s) are polynomials in s. In the following design methods, the distribution of poles and
zeros of KW(s) will be chosen, such that the performance indices for the step response hW(t) are fulfilled.
Often a detailed investigation of the distribution of poles and zeros of the desired transfer function is
not necessary, especially when the transfer function does not contain zeros and when – because of the
requirement KW(0) ≡ 1 – just yields α0 = β0 and in the simplest case

KW(s) =
β0

β0 + β1s+ . . .+ βusu
. (10.2.2)

For a closed loop with the transfer function according to Eq. (10.2.2) different possibilities exist, the so
called standard forms, which can be used by a table lookup for the step response hW(t), distribution of
poles of KW(s) and the coefficients of the denominator polynomial β(s).

A first possibility is a distribution of poles with a real multiple pole at s = −ω0. Here and in the following
sections, the term ω0 is a relative frequency, not the natural frequency. Thus one obtains for the step
response of the desired behaviour

KW(s) =
ωu

0

(s+ ω0)u
. (10.2.3)

This is a series connection of u PT1 elements with the same time constant T = 1/ω0. This representation
is also called a binomial form. The standard polynomials β(s) of different order u are given in Table A.8.2.
As this table further shows, the normalised step response hW(ω0t) will become slower with increasing
order u. A design using this binomial form is only considered when the step response hW is required to
have no overshoot.

A further possibility of a standard form for KW(s) of Eq. (10.2.2) is the Butterworth form. In this form,
all u poles of KW(s) are equally distributed on a semicircle with radius ω0 in the left-half s plane and
centred at the origin. Table A.8.2 contains the standard polynomials β(s) and the associated normalised
step responses hW(ω0t).

Numerous further possibilities for the development of standard forms of Eq. (10.2.2) can be derived from
the integral criteria given in Table 7.3.1. For example, the minimum performance index JITAE is the
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basis of a standard form that is also shown in Table A.8.2. Further, often the minimum settling time tε
is used as the criterion. This table contains for ε = 5% the corresponding standard form.

Furthermore, for pole assignment the Weber method can be used. This specifies the desired closed-loop
transfer function

KW(s) =
5k(1 + κ2)ωk+2

0

(s+ ω0 + jκω0) (s+ ω0 − jκω0) (s+ 5ω0)k
(10.2.4)

by a real pole with multiplicity k = u− 2 and a pair of complex poles. Table A.8.1 contains for different
values of k and κ the normalised step responses hW(ω0t). By a proper choice of k, κ and ω0 a closed-loop
transfer function can be found that fulfils in many instances the desired performance.

10.3 The method of Truxal and Guillemin

For the closed loop shown in Figure 10.3.1 the behaviour is described by the transfer function
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Figure 10.3.1: Block diagram of the closed loop to be designed

GP(s) =
d0 + d1s+ d2s

2 + . . .+ dms
m

c0 + c1s+ c2s2 + . . .+ cnsn
=
D(s)
C(s)

, (10.3.1)

where the numerator and denominator polynomials D(s) and C(s) must have no common roots. Fur-
thermore, GP(s) is normalised to cn = 1 and m < n must be valid.

It is assumed that GP(s) is stable and minimum phase. For the controller to be designed, the transfer
function

GC(s) =
b0 + b1s+ b2s

2 + . . .+ bws
w

a0 + a1s+ a2s2 + . . .+ azsz
=
B(s)
A(s)

(10.3.2)

is chosen and normalised to az = 1. Because of the realisability of the controller the relation w =
degreeB(s) ≤ degreeA(s) = z must be valid. Now, the controller must be designed such that the closed
loop behaves like a given transfer function for Eq. (10.2.1), whereby KW(s) should be freely chosen under
the condition of the realisability of the controller. From the closed-loop transfer function

GW(s) =
GC(s)GP(s)

1 +GC(s)GP(s)
!= KW(s) (10.3.3)

one obtains the controller transfer function

GC(s) =
1

GP(s)
KW(s)

1 −KW(s)
(10.3.4)

or with the numerator and denominator polynomials given above

GC(s) =
B(s)
A(s)

=
C(s)α(s)

D(s)[β(s) − α(s)]
. (10.3.5)

The condition of realisability for the controller is

degree B(s) = w = n+ v ≤ degreeA(s) = z = u+m

or
u− v ≥ n−m . (10.3.6)

The pole excess (u − v) of the desired closed-loop transfer function KW(s) must be larger than or
equal to the pole excess (n − m) of the plant. Within these constraints the order of KW(s) is free.
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Figure 10.3.2: Compensation of the plant

According to Eq. (10.3.4) the controller contains the inverse plant transfer function 1/GP(s). This is
a total compensation of the plant as shown in the block diagram of Figure 10.3.2. For the realisation
of the controller Eq. (10.3.5) is used, not the controller structure as shown in this figure with the plant
inverse 1/GP(s). As the controller implicitly contains the plant inverse, i.e. the plant zeros are in the
set of the controller poles and the plant poles are in the set of the controller zeros, the plant must be
stable and minimum phase as mentioned at the beginning. Otherwise, the manipulated variable and/or
the controlled variable will show unstable behaviour.

Example 10.3.1
The plant transfer function is given as

GP(s) =
5

s(1 + 1.4s+ s2)
. (10.3.7)

The pole excess of the plant is n−m = 3. According to (10.3.6) the pole excess of the desired closed-loop
transfer function KW(s) must be

u− v ≥ 3 .

�

The coefficients of the transfer function KW(s) that obeys the realisability condition (10.3.6) are subjected
to practical constraints, like the maximum range of the manipulated variable, plant parameter errors and
measurement noise in the controlled variable, which is disturbing the controller output. The procedure
for the design of GC(s) will be demonstrated by the following example.

Example 10.3.2
For a plant with the transfer function

GP(s) =
1

(1 + s)2 (1 + 5s)
=

1
1 + 7s+ 11s2 + 5s3

=
D(s)
C(s)

(10.3.8)

a controller should be designed such that the closed loop shows optimal behaviour in the sense of the
performance index JITAE and has a rise time of tr,50 = 2.4 s.

First, it follows from the realisability condition Eq. (10.3.6) and from n −m = 3 − 0 = 3 that the pole
excess of the desired transfer function KW(s) is

u− v ≥ 3 .

Inspecting Table A.8.2 one obtains from the JITAE form for u = 3 and v = 0 the standard polynomial

β(s) = s3 + 1.75ω0s
2 + 2.15ω2

0s+ ω3
0 . (10.3.9)

From the associated step response hW(ω0t) it follows from Table A.8.2 that the normalised rise time

ω0tr,50 = 2.4 ,

and with this value from the specified rise time tr,50 = 2.4 s the relative frequency is ω0 = 1 s−1.
Eq. (10.3.9) is now

β(s) = s3 + 1.75s2 + 2.15s+ 1 .
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As for the chosen standard form for KW(s) the numerator polynomial is α(s) = 1, so it follows from
Eq. (10.3.5) that the compensator transfer function is

GC(s) =
C(s)α(s)

D(s) [β(s) − α(s)]
=

1 + 7s+ 11s2 + 5s3

1 + 2.15s+ 1.75s2 + s3 − 1

or

GC(s) =
1 + 7s+ 11s2 + 5s3

s(2.15 + 1.75s+ s2)
.

This controller contains an integrator. The time responses are shown in Figure 10.3.3. �
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Figure 10.3.3: Closed-loop behaviour for the example 10.3.2: hW(t) step response of the controlled
variable on step in the set point, hU(t) step response of the associated controlled variable, hP(t) step
response of the uncontrolled plant

If as a further example the plant given by Eq. (10.3.7) instead of Eq. (10.3.8) is taken, then for the same
KW(s) the controller is

GC(s) =
1 + 1.4s+ s2

(2.15 + 1.75s+ s2) 5
=

1 + 1.4s+ s2

10.75 + 8.75s+ 5s2
.

For these two very different plants the same closed-loop behaviour for the controlled variable can be
achieved.

In the considerations of this section it has been hitherto assumed that GP(s) is stable and minimum
phase. For plants that do not have this properties this design method cannot be applied in this form.
The method must be extended to the following:

A direct compensation of the plant poles and zeros by the controller must be avoided, otherwise stability
problems would arise. In these cases, the closed-loop transfer function KW(s) cannot be arbitrary. For
a stable non-minimum phase plant the transfer function KW(s) must be given such that the zeros of
KW(s) contain the right-half-plane zeros of GP(s). Whereas for an unstable plant the zeros of the transfer
function 1−KW(s) must contain the right-half-plane poles of GP(s). Of course, this restricts the choice
of KW(s) as the following examples demonstrate.

Example 10.3.3
For an all-pass plant with the transfer function

GP(s) =
1 − Ts

1 + Ts
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a controller is to be designed such that the closed loop has the desired transfer function

GW(s) ≡ KW(s) =
1

1 + T1s
.

Using Eq. (10.3.5) one gets for the controller transfer function

GC(s) =
1 + Ts

1 − Ts

1
T1s

.

This controller gives a direct compensation (cancellation) of the plant zero. This is undesirable as already
discussed above, and KW(s) must be selected as

KW(s) =
1 − Ts

(1 + T1s)2
.

With Eq. (10.3.5) one obtains the controller transfer function as

GC(s) =
1 + Ts

s[(2T1 + T ) + sT 2
1 ]

.

Because of this choice of KW(s), the closed loop shows also all-pass behaviour. This effect is more intense
the smaller the time constant T1 . Figure 10.3.4 shows the time responses of this control system. �
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Figure 10.3.4: Closed-loop behaviour of the example 10.3.3: hW(t) step response of the controlled
variable on step in the set point, hU(t) step response of the associated controlled variable, hP(t) step
response of the uncontrolled plant (T = 1 s; T1 = 0.5 s)

Example 10.3.4
The transfer function of the unstable plant

GP(s) =
1

1 − sT

is given and a controller GC(s) is required for which KW(s) fulfills the realisability condition u − v ≥ 1
and for which the zeros of 1 −KW(s) must contain the plant pole s = +1/T . This is expressed by the
approach

1 −KW(s) =
β(s) − α(s)

β(s)
=

(1 − sT )K(s)
β(s)

,

whereby K(s) is chosen such that

degree[(1 − sT )K(s)] = degreeβ(s)
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is valid. In the present case KW(s) should be chosen such that degreeβ(s) = u = 2. From this follows
degreeK(s) = 1. In order to have a stable KW(s) one can take

K(s) = −T1s .

and obtain
β(s) − α(s) = (1 − Ts) (−T1s) .

Observing the realisability condition, it follows that

(β0 − α0) + (β1 − α1) s+ β2s
2 = −T1s+ T1Ts

2 .

Comparing the coefficients and taking β2 = 1 one obtains

β0 − α0 = 0, β1 − α1 = −T1 and T1 T = 1

and finally

T1 =
1
T

and β0 = α0 .

The parameters β0 and β1 are still free and may now be chosen such that taking an acceptable behaviour
of the manipulated variable into account, a given damping ratio and natural frequency for KW can be
reached. Without going into details,

β0 = 1 and β1 = 2T1 =
2
T

will be chosen for the present case and from this it follows that

α0 = 1 and α1 = 3T1 =
3
T
.

The desired closed-loop transfer function will be

KW(s) =
1 + (3/T ) s

1 + (2/T ) s+ s2

and

1 −KW(s) =
(1 − Ts) (−s/T )
1 + (2/T ) s+ s2

.

The conditions for the design are fulfilled and for the controller transfer function one obtains from
Eq. (10.3.4) or Eq. (10.3.5)

GC(s) =
1 + (3/T ) s)

(1/T ) s
= 3
(

1 +
T

3
1
s

)
.

This design obviously produces a PI controller. The time responses of this control system are shown in
Figure 10.3.5 for T = 1 s. The relatively large maximum overshoot cannot be avoided with an acceptable
behaviour of the manipulated variable. �

10.4 Generalised compensator design method

10.4.1 The basic idea

With the following method a control system according to Figure 10.3.1 using the controller given by
Eq. (10.3.2) will be designed for a plant described by Eq. (10.3.1) such that the closed loop behaves like
the desired transfer function Eq. (10.2.1). Hereby the orders of the controller numerator and denominator
polynomials are equal, i.e. w = degreeB(s) = degreeA(s) = z. The closed-loop poles are the roots of the
characteristic equation, which one obtains from

1 +GC(s)GP(s) = 0 .
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Figure 10.3.5: Closed-loop behaviour of the example 10.3.4: hW(t) step response of the controlled
variable on step in the set point, hU(t) step response of the associated controlled variable

With respect to the polynomials defined in Eqs. (10.3.1) and (10.3.2) this gives

P (s) ≡ β(s) = A(s)C(s) +B(s)D(s) = 0 . (10.4.1a)

On the other hand it follows from Eq. (10.2.1) that

P (s) ≡ β(s) = β0 + β1s+ . . .+ βus
u = βu

u∏
i=1

(s− s1) = 0 . (10.4.1b)

This polynomial has order u = 2 + n, the coefficients depend linearly on the plant and controller param-
eters. Comparing both equations, the first coefficient is

β0 = a0c0 + b0d0 , (10.4.2a)

and the last because of m < n and az = cn = 1

βu = azcn = 1 . (10.4.2b)

A general representation is given by

βi = b0di + b1di−1 + . . .+ bwdi−w

+ a0ci + a1ci−1 + . . .+ azci−z ,
(10.4.2c)

whereby
dk = 0 for k < 0 and k > m

ck = 0 for k < 0 and k > n ,

and w = z. The coefficients βi are obtained from the poles. For the first, second last and last one gets

β0 =
u∏

i=1

(−si) (10.4.3a)

βu−1 =
u∑

i=1

(−si) (10.4.3b)

βu = 1 . (10.4.3c)
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While the coefficients βi according to Eqs. (10.4.3) are directly given by the closed-loop poles, the coef-
ficients βi of Eq. (10.4.2) contain the required controller parameters. Comparing both sides of the latter
equation one obtains the synthesis equation, which is a system of linear equations for 2z + 1 unknown
controller coefficients a0, . . . , az−1, b0, b1, . . . , bz. The number of equations is u = z+n. A unique solution
exists if z = n− 1.

A detailed analysis shows, however, that a controller obtained in this way does not usually achieve the
desired goals. Because of its small gain a finite steady-state error may occur. This must be taken into
consideration during the design. For plants with integral behaviour an order z = n− 1 for the controller
is sufficient; for proportional behaviour or when disturbances at the input of an integral plant are taken
into consideration, the gain must be influenced so that an integral behaviour of the controller can be
obtained. This happens if the order of the controller is increased by one, i.e. z = n, such that the system
of equations is of lower rank. This gives an additional degree of freedom and allows one to choose the
controller gain KC, which is usually introduced as a reciprocal gain factor:

1
KC

= cC =
a0

b0
. (10.4.4)

Indeed, the order of the closed loop will be increased; it is now double that of the plant order.

10.4.2 Zeros of the closed loop

In the method presented above, the zeros of the closed loop transfer function for command changes

KW(s) != GW(s) =
B(s)D(s)

A(s)C(s) +B(s)D(s)
(10.4.5)

are obtained automatically. In fact, the zeros of the plant, i.e. the roots of D(s), can be considered during
the choice of the pole distribution and may be compensated, but the polynomial B(s) arises not in the
design and must possibly be compensated after this step. This can be done by introducing a pre-filter in
the feed-forward path according to 10.4.1a with a transfer function

� � �)
�

� � � � 	 � 
 
 � 	

� � �)
�

� � �

� � �

� � � � 	 � 
 
 � 	

0 � � �

� � � �
1 � � �
� � � �

0 � � �

� � � �

1 � � �
� � � �
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0 H � � �

� H
0 H � � �

Figure 10.4.1: Compensation of the plant zeros (a) with a controller in the feed-forward path and (b)
in the feedback path

GK(s) =
cK

BK(s)
.

The zeros of the controller and plant are compensated in this way. For stability reasons, this is only
possible for left-half-plane zeros. If B+(s) and D+(s) are polynomials with only left-half-plane zeros and
B−(s) and D−(s) the corresponding polynomials with only right-half-plane zeros including the imaginary
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axis, the polynomials of B(s) and D(s) can be factorised as

B(s) = B−(s)B+(s) (10.4.6)

D(s) = D−(s)D−(s) (10.4.7)

with

B−(s) =
w−∑
i=0

b−i s
i (10.4.8a)

w = w+ + w−

B+(s) =
w+∑
i=0

b+i s
i (10.4.8b)

and

D−(s) =
m−∑
i=0

d−i s
i (10.4.9a)

m = m+ +m−

D+(s) =
m+∑
i=0

d+
i s

i . (10.4.9b)

For the case that B(s) and C(s), and A(s) and D(s) do not have common divisors, i.e. the controller does
not compensate plant poles and zeros, the denominator polynomial of the pre-filter can be determined as

BK(s) = B+(s)D+(s) . (10.4.10)

The transfer function for a command input is then

GW(s) =
cK

BK(s)
B(s)D(s)

A(s)C(s) +B(s)D(s)

=
cKB

−(s)D−(s)
A(s)C(s) +B(s)D(s)

.

(10.4.11)

If both, the controller and the plant, show minimum phase behaviour and their transfer functions do not
have zeros on the imaginary axis, all zeros of the closed loop can be compensated, such that one obtains
instead of Eq. (10.4.11)

GW(s) =
cK

A(s)C(s) + B(s)D(s)
. (10.4.12)

If the closed-loop transfer function also contains given zeros, the transfer function GK(s) should have a
corresponding numerator polynomial. The coefficient cK in the numerator is used to make the gain KW

of the closed-loop transfer function GW(s) equal to 1. From Eq. (10.4.11) it therefore follows that

KW = GW(0) = cK
b−0 d

−
0

a0c0 + b0d0
= 1 . (10.4.13)

The expression in the denominator is the first coefficient β0 of the characteristic polynomial β(s), and
therefore with Eq. (10.4.13)

cK =
β0

b−0 d
−
0

. (10.4.14)

For a controller with integral action the coefficient a0 is zero and according to Eq. (10.4.4) cK = 0. From
Eqs. (10.4.13) and (10.4.6) to (10.4.9) it follows directly that

cK = b+0 d
+
0 . (10.4.15)

When the controller is inserted into the feedback path according to Figure 10.4.1b the inherent closed-
loop dynamics will not be changed compared with the configuration according to Figure 10.4.1a, because
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the denominator polynomial of the transfer function, and therefore the characteristic equation of the
closed loop, are preserved. Indeed, the zeros of the controller transfer function do no longer arise, but
their poles as zeros in the closed-loop transfer function. Analogous considerations for AK(s) lead to

AK(s) = A+(s)D+(s) , (10.4.16)

whereby the polynomial A+(s) contains the poles of the controller and D+(s) the plant zeros in the
left-half plane. The transfer function

GW(s) =
cKA

−(s)D−(s)
A(s)C(s) +B(s)D(s)

(10.4.17)

is the same as for the case of a stable controller and a minimum-phase plant according to Eq. (10.4.12).

The constant cK for a proportional controller is

cK =
β0

a−0 d
−
0

. (10.4.18)

For an integral controller in the feedback loop a feed-forward path is not realisable.

10.4.3 The synthesis equations

The system of equations described by Eq. (10.4.2c) can be rewritten in matrix notation. Thus the required
controller parameters are combined into one parameter vector. The matrix of the plant parameters applies
for both the cases, controller order z = n− 1 and z = n.

For integral plants (c0 = 0) with controller order z = n− 1 and normalised cn = 1 the system is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 0
d1 d0 0 c1 0 0
d2 d1 d0 c2 c1 0
...

...
. . . . . .

...
...

. . . . . .

cn−2 cn−3 · · · c1 0
dn−1 dn−2 d1 d0 cn−1 cn−2 · · · c2 c1

0 dn−1 dn−2 · · · d1 1 cn−1 cn−2 · · · c2

dn−1 · · · d2 1 cn−1 · · · c3

...
. . .

...
. . . . . .

...

0 0
. . . cn−1

0 dn−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

...
bn−2

bn−1

a0

a1

...

an−3

an−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

...
βn−2

βn−1

βn

βn+1

...

β2n−3

β2n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
c1

c2

...

cn−2

cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.4.19a)

and

an−1 = βu . (10.4.19b)

For proportional plants or in the case of disturbances at the input of integral plants, where the order of
the controller is increased by one to z = n, with Eqs. (10.4.4) and (10.4.2a) it follows that

a0 = cRb0 (10.4.20)

b0 =
β0

d0 + cRc0
. (10.4.21)



10-12 MODULE 10. COMPENSATOR DESIGN METHODS

Here the system is:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 c0

d1 d0 0 c1 c0 0
d2 d1 d0 c2 c1 c0

...
...

. . .
. . .

...
...

. . .
. . .

c0

dn−1dn−2 · · · d1 d0 cn−1cn−2 · · · c2 c1

0 dn−1dn−2· · · d1 1 cn−1cn−2· · · c2
1 cn−1· · · c3

...
. . .

...
. . .

...
0 0 cn−1

0 dn−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

bn

a1

a2

...

an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1

β2

β3

...

βn

βn+1

...

β2n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− b0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 + cRc1

d2 + cRc2

...
dn−1 + cRcn−1

cR

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

...
0
c0

c1

...

cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.4.22a)

and
an = βu . (10.4.22b)

The (2n − 1) × (2n − 1) matrices on the left side of Eqs. (10.4.19a) and (10.4.22a) are equal for c = 0.
This matrix is always regular and therefore the solution is always unique.

10.4.4 Application of the method

Example 10.4.1
An integral plant has the transfer function

GP(s) = 0.25
1 + 5s

s(1 + 0.25s)
=

1 + 5s
4s+ s2

.

As we do not consider a disturbance at the input of the plant, the controller coefficients can be calculated
by Eqs. (10.4.19a) and (10.4.19b).

According to section 10.4.1 one obtains for this second-order plant the order z = n − 1 = 1 of the
controller. The closed loop has therefore order u = z + n = 3. The step response of this loop should
comply with the binomial form given in Table A.8.2, and tr,50 ≈ 2.5 s should be met. This corresponds
to a value of ω0 ≈ 1s−1. The associated characteristic polynomial is

β(s) = (1 + s)3 = 1 + 3s+ 3s2 + s3 ,

and Eqs. (10.4.19a) and (10.4.19b) provide the synthesis equation⎡
⎣ 1 0 0

5 1 4
0 5 1

⎤
⎦
⎡
⎣ b0b1
a0

⎤
⎦ =

⎡
⎣ 1

3
3

⎤
⎦−

⎡
⎣ 0

0
4

⎤
⎦

with
a1 = 1,

from which the controller coefficients follow as

a0 =− 9
19

, a1 = 1 ,

b0 = 1 , b1 =− 2
19

.

The transfer function of the controller is

GC(s) =
1 − 2

19
s

− 9
19

+ s
.
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It can be seen that this design leads to an unstable controller, which is in addition non-minimum phase.
The closed-loop transfer function is

GW1(s) =

(
1 − 2

19
s

)
(1 + 5s)

(1 + s)3
,

and it contains in the numerator polynomial, besides the zero of the plant, the right-half-plane zero of
the controller. According to the considerations in section 10.4.2 this zero cannot be compensated by a
pre-filter for stability reasons. Also this would not be necessary, as the plant zero is dominant and has
a stronger influence on the closed-loop step response (see Figure 10.4.2). The denominator polynomial
BK(s) for the transfer function GK(s) of the pre-filter is determined as

�3 � 4
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Figure 10.4.2: Step responses of the controlled variable y(t) for the case: (a) without pre-filter hW1(t),
(b) with pre-filter hW(t), and the associated manipulated variable u1(t) and u(t), and the step response
hK(t) of the given closed-loop transfer function KW(s).

BK(s) = D+(s)B+(s) = 1 + 5s ,

and the numerator is
cK = 1 .

The closed-loop transfer function including the pre-filter is thus

GW(s) =
1 − 2

19
s

(1 + s)3
.

This in fact still contains in the numerator polynomial the controller zero, but as can be seen from
Figure 10.4.2, the corresponding step response hW(t) does not show a large deviation from the step
response hK(t) of the given transfer function

KW(s) =
1

(1 + s)3
.

Conspicuous is the fact that the step response hW1(t) of the closed loop without pre-filter has a large
overshoot and does not show any similarity with the other step responses, though all three other systems
have the same inherent behaviour. Here, the dominant behaviour of the plant zero sN = −0.2 has a
noticeable effect. �
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Example 10.4.2
Given the third-order plant transfer function

GP(s) =
1

(1 + s)2 (1 + 5s)
=

0.2
0.2 + 1.4s+ 2.2s2 + s3

=
d0

C(s)
.

The step response hP(t) of this plant is shown in Figure 10.4.3. A controller should be designed such
that the step response hW(t) of the closed loop has a desired standard form chosen from Table A.8.1. In
the current case of a PTn plant the order m of the controller must be chosen equal to the order n of the
plant, that is

z = n .

Thus one obtains a sixth-order closed-loop transfer function GW(s). The desired transfer function ac-
cording to Eq. (10.2.4), which is the basis for Table A.8.1, has then exactly the total order z + n = 6,
if

k = 4

is chosen. For this case the step response with

κ = 4

(see Table A.8.1) will be desired. The last unspecified parameter of the transfer function KW(s) is the
relative frequency ω0. All step responses in Table A.8.1 are normalised by this value such that the
time scale can still be chosen. Consequently, by a proper choice of ω0 the normalised step response from
Table A.8.1 can be scaled to the desired time scale. E.g., for a value of ω0 = 0.4 s−1 a rise time tr,50 ≈ 1.6 s
would follow, for ω0 = 2 s−1 this would be tr,50 ≈ 0.32 s. If a large value is taken for ω0 to obtain a small
rise time, this would result in controller coefficients of very different order such that this controller would
not be realisable from a numerical point of view. Therefore here

ω0 = 0.4 s−1

is a good choice. For the determined values of k, κ and ω0 one obtains for the desired closed-loop transfer
function from Eq. (10.2.4)

KW(s) =
43.52

43.52 + 99.84s+ 106.88s2 + 72.96s3 + 33.12s4 + 8.9s5 + s6
=

β0

β(s)
.

The Eqs. (10.4.20) and (10.4.21) deliver at first the absolute coefficients of the controller transfer function
GC(s)

b0 =
β0

d0

(
1 + cC

c0
d0

) = 217.6
1

1 + cC

and
a0 = cCb0 = 217.6

cC
1 + cC

.

The remaining coefficients are obtained from Eq. (10.4.22a) by solving⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0 0 0., 2 0
0 0.2 0 1.4 0.2
0 0 0.2 2.2 1.4
0 0 0 1 2.2
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

a1

a2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

99.84
106.88
72.96
33.12
8.8

⎤
⎥⎥⎥⎥⎥⎥⎦− 217.6 · 1

1 + cC

⎡
⎢⎢⎢⎢⎢⎢⎣

1.4cC
2.2cC
cC

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

0.2
1.4
2.2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The solution is

b1 = 482 − 1523.2
cC

1 + cC

b2 = 407.4− 2393.6
cC

1 + cC

b3 = 128.4− 1088
cC

1 + cC
a1 = 17.2
a2 = 6.6 .
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If the reciprocal gain is chosen according to Eq. (10.4.4) as

cC = 0.2 for KC = 5 ,

then the controller coefficients have the same order of magnitude and the controller transfer function is

GC(s) =
181.33 + 228.13s+ 8.467s2 − 52.93s3

36.26 + 17.2s+ 6.6s2 + s3
=

=
−52.93(s− 2.468) (s+ 1.154 + j0.236) (s+ 1.154 − j0.236)

(s+ 4.573) (s+ 1.013 + j2.627) (s+ 1.013 − j2.627)
.

From Eq. (10.4.14) one obtains for the coefficient cK of the pre-filter

cK =
β0

b−0 d
−
0

=
43.52

2.468 · 52.93 · 1 = 0.33 .

The transfer function of the pre-filter is

GK =
0.33

0.2 (s+ 1.154 + j0.236) (s+ 1.154 − j0.236)
=

1.67
1.39 + 2.31s+ s2

.

The step response of the controlled variable hW1(t) of the closed loop is shown in Figure 10.4.3. For
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Figure 10.4.3: (a) Step responses of the controlled variable y(t) for the plant in the uncontrolled case
hP(t) and in the controlled case for the designed compensator hW1(t) and for the optimal PI controller
hW2(t); (b) Step responses of the associated manipulated variables u1(t) and u2(t)

comparison this figure also shows the corresponding step response hW2(t) of the closed loop using a PI
controller, which is optimal in the sense of the performance index JISE according to section 7.3.3. Both,
the maximum overshoot and the rise time of this control system with a PI controller are clearly worse
than for the controller designed here. From the behaviour of the manipulated variables u1(t) and u2(t),
respectively, it can be seen that in general a smaller rise time must be bought by a larger amplitude of
the controller output. Because of the always existing limitation on the value of the manipulated variable,
too demanding specifications for the transfer function KW(s) cannot be realised. �
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10.5 Compensator design for reference and disturbances

10.5.1 Structure of the closed loop

In the previous sections different design methods have been described for the design of controllers for a
given plant transfer function GP(s) and for a desired closed-loop transfer function GW(s) = KW(s). If
in addition a disturbance is considered, which always exists in real control systems, and if one wants to
exert an influence on the disturbance behaviour, the pre-filter GK(s) is often necessary. Figure 10.5.1
shows this structure. Furthermore, different entry points for the disturbances must be taken into account,
because disturbances at the plant input or output act differently on the controlled variable.
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Figure 10.5.1: Control system designed for reference and disturbance behaviour

For the design of the controller and pre-filter the following transfer functions are introduced:

GK(s) =
M(s)
N(s)

=
m0 +m1s+ . . .+mxs

x

n0 + n1s+ . . .+ nysy
, y ≥ x ; (10.5.1)

GC(s) =
B(s)
A(s)

=
b0 + b1s+ . . .+ bws

w

a0 + a1s+ . . .+ azsz
, z ≥ w ; (10.5.2)

GP(s) =
D(s)
C(s)

=
d0 + d1s+ . . .+ dms

m

c0 + c1s+ . . .+ cnsn
, n ≥ m . (10.5.3)

If for the control system the desired closed-loop transfer function for the command input

KW(s) =
α(s)
β(s)

=
α0 + α1s+ . . .+ αvs

v

1 + β1s+ . . .+ βusu
, u ≥ v (10.5.4)

and the desired disturbance transfer function

KZ(s) =
γ(s)
σ(s)

=
γ0 + γ1s+ . . .+ γqs

q

1 + σ1s+ . . .+ σpsp
, p ≥ q (10.5.5)

are given, then on step changes in the command variable and in the disturbance a steady-state error must
not occur. Therefore, the following must be valid:

KW(0) = lim
s→0

α(s)
β(s)

= 1, i.e. α0 = 1 (10.5.6)

and

KZ(0) = lim
s→0

γ(s)
σ(s)

= 0, i.e. γ0 = 0 . (10.5.7)

For the synthesis of the closed loop it is additionally required to choose the numerator and denominator
polynomials of KW(s) and KZ(s) of as minimum an order as possible and according to given criteria.
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10.5.2 The design procedure

The closed-loop transfer function is given by

GW(s) =
Y (s)
W (s)

=
GV(s)GC(s)GP(s)
1 +GC(s)GP(s)

!= KW(s) . (10.5.8)

and the disturbance transfer function can be obtained from

GZ(s) =
Y (s)
Z(s)

=
GPZ(s)

1 +GC(s)GP(s)
!= KZ(s) . (10.5.9)

Then from Eq. (10.5.9) it follows that the controller transfer function is

GC(s) =
GPZ(s) −KZ(s)
GP(s)KZ(s)

. (10.5.10)

For disturbances at the input of the plant, GPZ(s) = GP(s) is valid and therefore one obtains with
Eq. (10.5.10) the controller transfer function as

GC(s) =
D(s)σ(s) − γ(s)C(s)

D(s) γ(s)
. (10.5.11)

Disturbances at the plant output are taken into account by GPZ = 1 in Eq. (10.5.10). In this case the
controller transfer function is

GC(s) =
C(s) [σ(s) − γ(s)]

D(s) γ(s)
=

1
GP(s)

σ(s) − γ(s)
γ(s)

. (10.5.12)

Design for disturbances at the plant input

Contemplating Eq. (10.5.11), the degree w of the numerator polynomial is given either by m + p or by
q+n. The degree z of the denominator polynomial is fixed by m+q. Because of the realisability condition
z ≥ w of the controller

q ≥ p and m ≥ n

should be valid. But, as this realisability condition cannot hold because of Eqs. (10.5.3) and (10.5.5), the
higher-order terms in s of the numerator polynomial of Eq. (10.5.11)

D(s)σ(s) − γ(s)C(s)

must disappear. This is only possible with a choice of

m+ p = q + n or n−m = p− q . (10.5.13)

Eq. (10.5.13) tells us that the pole excess both of the plant and the disturbance transfer function must
be the same. Furthermore, it can be seen that in the numerator polynomial of Eq. (10.5.11) exactly

(m+ p) − (m+ q) = p− q = n−m

higher-order terms in s must disappear, i.e. they must be compensated (cancelled). From this it follows
that the degree of the plant numerator and denominator polynomials is

w = z = (m+ p) − (p− q) = m+ q .

As n −m higher-order terms in the numerator polynomial of Eq. (10.5.11) must be compensated, and
the degree of the polynomial γ(s) must be minimal, the degree of this polynomial must be chosen as

q = n−m . (10.5.14)

Therefore it follows with Eq. (10.5.13) that

p = q + n−m = 2(n−m) . (10.5.15)

The previous determined degree of the numerator and denominator polynomials of GC(s) can be finally
obtained using Eq. (10.5.14) as

w = z = m+ q = n . (10.5.16)

In the following the design will be demonstrated by some simple examples.
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Example 10.5.1
The plant transfer function

GP(s) =
D(s)
C(s)

=
d0 + d1s

c0 + c1s+ c2s2

with n = 2 and m = 1 is given. According to the Eqs. (10.5.14) and (10.5.15) both polynomials σ(s) and
γ(s) have the degrees

p = 2 (2 − 1) = 2

and

q = 2 − 1 = 1 .

For the disturbance transfer function one gets

KZ(s) =
γ1(s)

1 + σ1s+ σ2s2
=
γ(s)
σ(s)

.

If the polynomials γ(s) and σ(s) are now inserted into Eq. (10.5.11), the controller transfer function

GC(s) =
d0 + (d0σ1 + d1 − γ1c0)s+ (d0σ2 + d1σ1 − γ1c1)s2 + (d1σ2 − γ1c2)s3

d0γ1s+ d1γ1s2

follows. With γ1 = σ2d1/c2 the highest-order term in the numerator polynomial of GC(s) disappears,
and one obtains the realisable controller transfer function of

GC(s) =
b0 + b1s+ b2s

2

a1s+ a2s2

and the disturbance transfer function of

KZ(s) =

σ2d1

c2
s

1 + σ1s+ σ2s2
.

This example clearly shows that the disturbance behaviour cannot be freely designed, but the inherent
dynamics influences the disturbance response, i.e. the poles of the disturbance transfer function. In this
case the coefficients of the numerator polynomial γ(s) depend on those of the denominator polynomial
σ(s). �

Example 10.5.2
Similarly to the previous example a second-order plant is again considred, but with the pole excess
n−m = 2. The transfer function is

GP(s) =
D(s)
C(s)

=
d0

c0 + c1s+ c2s2
.

The degree of the numerator and denominator polynomials of the disturbance transfer function can be
obtained from Eqs. (10.5.14) and (10.5.15) as

q = n−m = 2 and p = 2(n−m) = 4 .

Therefore, the disturbance transfer function has the form

KZ(s) =
γ1s+ γ2s

2

1 + σ1s+ σ2s2 + σ3s3 + σ4s4
.

According to Eq. (10.5.16) the degree of the numerator and denominator polynomials of the controller
transfer function will be

w = z = m+ q = n = 2 .

On the other hand one obtains formally from Eq. (10.5.11) the controller transfer function as

GC(s) =
b0 + b1s+ b2s

2 + (d0σ3 − γ1c2 − γ2c1) s3 + (d0σ4 − γ2c2) s4

d0γ1s+ d0γ2s2
.
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However, for realisability reasons n−m = 2 higher-order terms in s in the numerator polynomial must
disappear. From this it follows for the disturbance transfer function that

γ2 =
d0σ4

c2

and

γ1 =
d0σ3c2 − d0σ4c1

c22
, .

�

Design for disturbances at the plant output

Starting from Eq. (10.5.12) similar results as in the previous section will be obtained. The degree of
the controller numerator polynomial in this case is given either by n + p or by q + n. For realisability
reasons a compensation of the supernumerary terms in the numerator of Eq. (10.5.12) is necessary. This
is possible if

p = q (10.5.17)

is valid. That p must equal q is also understandable from the fact that the disturbance acts directly at
the output of the plant and therefore the disturbance transfer function has always a feed-through term in
the transfer function. The (n+ p)− (m+ q) = n−m higher-order terms in the numerator polynomial of
Eq. (10.5.12) must be compensated. Therefore, the degree of the numerator and denominator polynomials
of GC(s) is given by

w = z = (q + n) − (n−m) = m+ q .

As in the numerator polynomial of Eq. (10.5.12) n −m terms must be compensated and the degree of
the the polynomial γ(s) must be minimal, its degree is chosen as

q = n−m . (10.5.18)

From this it follows with Eq. (10.5.17) that

p = n−m . (10.5.19)

The previous given degree of the polynomials of the controller transfer function GC(s) will now be with
Eq. (10.5.18)

w = z = m+ q = n . (10.5.20)

It can be seen from Eq. (10.5.12) that the poles of the plant transfer function are cancelled by the zeros
of the controller transfer function. If the plant parameters are varying slightly, in the case of an unstable
plant the closed loop will also be unstable. For unstable plants, γ(s) will therefore chosen such that it
contains the unstable terms C−(s) of degree n−, that is

γ(s) = C−(s)ψ(s) .

Consequently the controller transfer function GC(s) has the form

GC(s) =
C+(s) [σ(s) − C−(s)ψ(s)]

D(s)ψ(s)
,

whereby C+(s) is that part of the polynomial C(s) which has zeros in the left-half s plane.

The polynomial ψ(s) of degree λ must be chosen such that the polynomial σ(s) − C−(s)ψ(s) itself has
only zeros in the left-half s plane. The order of the disturbance transfer function is given by p = n− + λ,
as for realisability reasons in the numerator polynomial those n− n− + p−m− λ higher-order terms in
s must be compensated. The controller transfer function is then of order m+ λ.

A detailed example of the design for an unstable plant can be found in section 10.5.4. The procedure of
the design will be demonstrated now in the following using some simple examples with stable plants.
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Example 10.5.3
For the plant with the transfer function

GP(s) =
d0 + d1s

c0 + c1s+ c2s2

and the pole excess n−m = 1, the degree will be using Eqs. (10.5.18) and (10.5.19) q = p = 1. For the
disturbance transfer function KZ(s) follows according to Eqs. (10.5.5) and (10.5.7)

KZ(s) =
γ1s

1 + σ1s
.

Inserted in Eq. (10.5.12) the controller transfer function arises formally as

GC(s) =
c0 + [c1 + c0(σ1 − γ1)] s+ [c2 + c1(σ1 − γ1)] s2 + c2(σ1 − γ1)s3

d0γ1s+ d1γ1s2
.

With the realisability condition σ1 = γ1 one obtains the realisable controller transfer function as

GC(s) =
c0 + c1s+ c2s

2

d0σ1s+ d1σ1s2

and for the disturbance transfer function

KZ(s) =
σ1s

1 + σ1s
.

�

Example 10.5.4
For the plant transfer function

GP(s) =
d0

c0 + c1s+ c2s2

is n−m = 2 and therefore p = q = 2. From this it follows that the disturbance transfer function is

KZ(s) =
γ1s+ γ2s

2

1 + σ1s+ σ2s2
.

The realisability condition of the controller transfer function

GC(s) =
b0 + b1s+ b2s

2 + [c1(σ2 − γ2) + c2(σ1 − γ1)] s3 + (σ2 − γ2) s4

d0γ1s+ d0γ2s2

is
γ2 = σ2

and
γ1 = σ1 .

The realisable controller transfer function is

GC(s) =
b0 + b1s+ b2s

2

d0γ1s+ d0γ2s2
.

�

Recapitulating, we can ascertain that the order for the disturbance transfer function depends on the entry
point of the disturbance and on the pole excess (n −m) of the plant transfer function. If the inherent
dynamics of KZ(s) is chosen, the zeros of KZ(s) are given by the realisability conditions for the controller.
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10.5.3 Design of the pre-filter

The starting point for the synthesis of the pre-filter transfer function GK(s) are the Eqs. (10.5.8) and
(10.5.9). From these equations it follows directly that

GK(s) =
GPZ(s)KW(s)

GC(s)GP(s)KZ(s)
. (10.5.21)

If the disturbance acts at the input of the plant, GPZ(s) = GP(s) is valid and therefore the pre-filter
transfer function is

GK(s) =
KW(s)

GC(s)KZ(s)
. (10.5.22)

In the case of disturbances at the plant output the pre-filter will be, because GPZ(s) = 1, given by

GK(s) =
KW(s)

GC(s)GP(s)KZ(s)
. (10.5.23)

Design of the pre-filter for disturbances at the plant input

With Eq. (10.5.22) one obtains the pre-filter transfer function as

GK(s) = KW(s)
1

GC(s)
1

KZ(s)
=
α(s)A(s)σ(s)
β(s)B(s) γ(s)

.

Taking with Eqs. (10.5.2) and (10.5.11)

A(s) = D(s) γ(s)

into consideration, the pre-filter transfer function can also be written as

GK(s) =
α(s)D(s)σ(s)
β(s)B(s)

=
M(s)
N(s)

. (10.5.24)

For the determination of the degrees v and u of the polynomials α(s) and β(s), respectively, the realis-
ability condition for the pre-filter transfer function GK(s) will be investigated. Accordingly, one obtains
with the results from section 10.5.2 with p = 2(n−m) and w = n the condition u+n ≥ v+m+2(n−m)
or

u ≥ n−m+ v . (10.5.25)

According to Eq. (10.5.24) the degree of the numerator polynomial M(s) and of the denominator poly-
nomial N(s) is given by

x = m+ v + 2(n−m) = 2n−m+ v (10.5.26)

and

y = n+ u , (10.5.27)

as far as M(s) and N(s) have no common divisor. For example, if the degree of the numerator of the
closed-loop transfer function for command input is given by v = 0, the following is valid:

u ≥ n−m .

For v > 0 the polynomial α(s) can be used to cancel the unavoidable zeros of the controller transfer
function in the right-half s plane. Otherwise this would lead to an unstable pre-filter. But the non-
minimum-phase behaviour caused by the controller still remains.

Example 10.5.5
The transfer functions GP(s), KZ(s) and GC(s) are taken from example 10.5.1. According to Eq. (10.5.24)
the pre-filter can be obtained as

GK(s) =
α(s)D(s)
β(s)B(s)

σ(s) .
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With v = 0 and u = 1 the closed-loop transfer function is chosen as

KW(s) =
α(s)
β(s)

=
1

1 + β1s
.

Herewith, the degree of the pre-filter numerator and denominator polynomial is given by x = y = 3.
After substitution of the results from example 10.5.1 in Eq. (10.5.24) the pre-filter transfer function in
general form is

GK(s) =
m0 +m1s+m2s

2 +m3s
3

n0 + n1s+ n2s2 + n3s3
.

�

Example 10.5.6
If we have as in example 10.5.2 a pole excess of the plant transfer function of n−m = 2, and if the results
for KZ(s) and GC(s) are considered, then for v = 0 the closed-loop transfer function can be chosen as

KW(s) =
1

1 + β1s+ β2s2
.

From Eqs. (10.5.24), (10.5.26) and (10.5.27) the pre-filter transfer function

GK(s) =
m0 +m1s+m2s

2 +m3s
3 +m4s

4

n0 + n1s+ n2s2 + n3s3 + n4s4

follows. �

Design of the pre-filter for disturbances at the plant output

Similarly as in section 10.5.1 one obtains here from Eq. (10.5.23)

GK(s) =
A(s)C(s)σ(s)α(s)
B(s)D(s) γ(s)β(s)

=
M(s)
N(s)

.

If the Eqs. (10.5.2) and (10.5.11) are considered, one obtains with

A(s) = D(s) γ(s)

from the above equation

GK(s) =
C(s)σ(s)α(s)
B(s)β(s)

. (10.5.28)

The first task is again to specify the degrees u and v of the polynomials α(s) and β(s) such that the
pre-filter becomes realisable. For the polynomials M(s) and N(s) previous results from section 10.5.2
can be considered and from this follows

n+ u ≥ n+ n−m+ v

and
u ≥ n−m+ v . (10.5.29)

From Eq. (10.5.28) one obtains finally for the degree of the numerator and denominator polynomials
M(s) and N(s) of GK(s) that

x = 2n−m+ v (10.5.30a)

and

y = n+ u (10.5.30b)

as far as M(s) and N(s) have no common divisor. If during the design of N(s) unstable poles arise,
then one can proceed as in the case of disturbances at the plant input. The degree v of the numerator
polynomial of KW(s) will be increased by the number of compensated terms.
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For the case of unstable plants with C(s) = C+(s)C−(s) and the unstable part C−(s) and with the
denominator polynomial γ(s) = C−(s)ψ(s) of the disturbance transfer function KZ(s), the pre-filter
transfer function can be obtained from the previous section by using the controller transfer function

GC(s) =
C+(s) [σ(s) − C−(s)ψ(s)]

D(s)ψ(s)
=
B(s)
A(s)

as

GK(s) =
C+(s)σ(s) a(s)
B(s)β(s)

. (10.5.31)

Example 10.5.7
Again as in example 10.5.3 the plant transfer function

GP(s) =
D(s)
C(s)

=
d0 + d1s

c0 + c1s+ c2s2

is given. Considering earlier results

KZ(s) =
γ(s)
σ(s)

=
γ1s

1 + σ1s

and

GC(s) =
B(s)
A(s)

=
b0 + b1s+ b2s

2

a1s+ a2s2
,

one obtains for v = 0 the closed-loop transfer function for command input using Eq. (10.5.29) as

KW(s) =
α(s)
β(s)

=
1

1 + β1s
.

Substituted in Eq. (10.5.28) the pre-filter transfer function follows as

GK(s) =
m0 +m1s+m2s

2 +m3s
3

n0 + n1s+ n2s2 + n3s3
.

�

Example 10.5.8
Similarly as in example 10.5.4 the pole excess of the plant transfer function is given as n−m = 2. With

KZ(s) =
γ1s+ γ2s

2

1 + σ1s+ σ2s2

and

GC(s) =
b0 + b1s+ b2s

2

a1s+ a2s2

follows with the choice of v = 0 and applying Eq. (10.5.29) the pre-filter transfer function is

GV(s) =
m0 +m1s+m2s

2 +m3s
3 +m4s

4

n0 + n1s+ n2s2 + n3s3 + n4s4
.

�

10.5.4 Application of the design method

The design procedure for compensators described in the previous sections will be applied in this concluding
section to an example already introduced in section 10.3. It is the unstable plant with the transfer function

GP(s) =
D(s)
C(s)

=
1

1 − sT
, T = 1 s
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(see example 10.3.4).

Disturbance at the plant input

If a disturbance at the plant input is assumed, the degree of the numerator and denominator polynomial
of the free selectable disturbance transfer function according to Eqs. (10.5.14) and (10.5.15) is given by
q = 1 and p = 2. The disturbance transfer function will be obtained as

KZ(s) =
γ(s)
σ(s)

=
γ1s

1 + σ1s+ σ2s2

and the the controller transfer function formally according to Eq. (10.5.11) as

GC(s) =
B(s)
A(s)

=
1 + (σ1 − γ1) s+ (σ2 + γ1T ) s2

γ1s
.

For the realisability condition of the controller it follows that

γ1 = −σ2

T
.

The final realisable controller transfer function is then

GC(s) =
1 +
(
σ1 +

σ2

T

)
s

−σ2

T
s

.

Furthermore, the above equation for γ1 provides for the disturbance transfer function

KZ(s) =
−σ2

T
s

1 + σ1s+ σ2s2
.

The procedure for the design of the pre-filter for disturbances at the plant input starts with the given
order of the transfer function for command input according to Eq. (10.5.25). For the command behaviour
u = 2 and v = 0 is chosen. According to that the transfer function for command input is

KW(s) =
α(s)
β(s)

=
1

1 + β1s+ β2s2
.

The synthesis of the controller is required to be performed such that the behaviour for a command input
will be characterised by approximately 10% maximum overshoot and t3% ≈ 3 s settling time. In this case
of a second-order system these demands are met by a natural frequency ω0 = 2 s−1 and by a damping
ratio ζ = 0.6 according to Figures 9.1.3 and 9.1.5. From this the transfer function for command input
follows as

KW(s) =
1

1 + 0.6s+ 0.25s2
.

If for the inherent behaviour of the closed loop the same coefficients are taken for the disturbance case,
then

σ(s) = β(s) ,

and therefore the disturbance transfer function is

KZ(s) =
−0.25s

1 + 0.6s+ 0.25s2

and the controller transfer function is

GC(s) =
1 + 0.85s
−0.25s

.

The pre-filter design, which is given by

GK(s) =
D(s)α(s)σ(s)
B(s)β(s)

,
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Figure 10.5.2: Step responses for the design for a step disturbance z = σ(t) at the plant input:
(a) controlled variable hZY(t) and manipulated variable hZU(t) for z = σ(t)
(b) controlled variable hWY(t) and manipulated variable hWU(t) for w = σ(t)
(c) controlled variable hZWY(t) and manipulated variable hZWU(t) for the simultaneous application of
z = σ(t) and w = σ(t)

is simplified by β(s) = σ(s) to

GK(s) =
D(s)α(s)
B(s)

=
1

1 + 0.85s
.

Step responses for the disturbance and command inputs are shown in Figure 10.5.2.

Disturbance at the plant output

If the closed loop is designed for a disturbance at the plant output, for the unstable plant the controller
transfer function

GC(s) =
C+(s) [σ(s) − C−(s)ψ(s)]

D(s)ψ(s)
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from section 10.5.2 is significant. With

C+(s) = 1 , C−(s) = 1 − sT

and with the approach
ψ(s) = a+ bs

it follows – as in the previous case – for
σ(s) = β(s)

that

GC(s) =
1 − a+ (β1 − b+ aT ) s+ (β2 + bT ) s2

a+ bs
.

The realisability condition for the controller is thus

b = −β2

T
,

and if for simplicity a is set equal to zero, then the controller transfer function is

GC(s) =
1 +
(
β1 +

β2

T

)
s

−β2

T
s

=
1 + 0.85s
−0.25s

,

as before. The corresponding disturbance transfer function is

KZ(s) =
ψ(s)C−(s)

σ(s)
=

−β2

T
s+ β2s

2

1 + β1s+ β2s2
.

The transfer function of the pre-filter is calculated according to Eq. (10.5.23), that is

GK(s) =
A(s)C(s)σ(s)α(s)
B(s)D(s) γ(s)β(s)

.

With the assumptions

KW(s) =
α(s)
β(s)

=
1

1 + β1s+ β2s2
,

σ(s) = β(s) ,

γ(s) = C−(s)ψ(s) ,
A(s) = D(s)ψ(s)

the pre-filter is simplified to

GK(s) =
1

B(s)
=

1

1 +
(
β1 +

β2

T

)
s

=
1

1 + 0.85s
,

again as before. The step responses for this case are shown in Figure 10.5.3.

Problem 10.1
Compensator design - two questions

http://www.atp.rub.de/DynLAB/dynlabmodules/Problems/CompensatorDesignProblems.pdf
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Figure 10.5.3: Step responses for the design for a step disturbance z = σ(t) at the plant output:
(a) controlled variable hZY(t) and manipulated variable hZU(t) for z = σ(t)
(b) controlled variable hWY(t) and manipulated variable hWU(t) for w = σ(t)
(c) controlled variable hZWY(t) and manipulated variable hZWU(t) for the simultaneous application of
z = σ(t) and w = σ(t)
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Module 11

Improving the control behaviour by
more complex loop structures

Module units
11.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

11.2 Disturbance feed-forward control . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

11.2.1 Disturbance feed-forward on the controller . . . . . . . . . . . . . . . . . . . . . 11-2

11.2.2 Disturbance feed-forward on the manipulated variable . . . . . . . . . . . . . . 11-3

11.3 Control systems with an auxiliary manipulated variable . . . . . . . . . . . 11-4

11.4 Cascade control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5

11.5 Control system with auxiliary manipulated variable . . . . . . . . . . . . . 11-7

11.6 Control system with anti-windup measure . . . . . . . . . . . . . . . . . . . 11-9

Module overview. The simple closed-loop structure is not suitable for all applications. In those cases
where additional information, for example, about disturbances or additional system measurements are
available, the basic structure can be extended to improve the dynamical behaviour. Such cases are collected
in this module. The different feed-forward structures of disturbances and auxiliary variables with and
without a cascade control structure are introduced and demonstrated by examples. Finally, the windup
problem of controllers and anti-windup measures are discussed.

Module objectives. When you have completed this module you should be able to:

1. Know how to improve the control behaviour by disturbance feed-forward.

2. Understand the possibilities which are available for use of additional output signals from the plant
for performance improvement.

3. Know how to cope with the controller windup problem.

Module prerequisites. Transfer function, properties of closed-loop systems.

11.1 Problem

The control systems discussed hitherto are single-loop control systems. These control systems may not
meet extra high requirements even in an optimal design case for higher-order plants and plants with dead
time concerning the maximum overshoot Mp, rise time tr and settling time tε. This is apparent especially
in the case of large disturbances and when large delays occur between the actuator and measurement
device. An improvement of the control behaviour can be obtained if the signal paths between actuator

11-1
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and disturbance are shortened, or if disturbances are already compensated by a separate pre-controller
before they enter the plant. In this case the disturbance must be measurable and controllable via an
actuator. Shortening the signal paths within a control system leads to a structural expansion of the basic
control loop and therefore to more complex loop structures. In the following, the most important basic
structures of these complex control systems will be discussed.

11.2 Disturbance feed-forward control

The disturbance feed-forward control corresponds to the basic control loop, which is superimposed by an
open-loop control scheme with the goal to compensate the disturbance by a control element GFFi(s)(i =
1, 2, . . .) as far as possible before it fully acts on the controlled variable y. This configuration is of
course only realisable, if the disturbance is measurable at the plant input. With regard to a feed-forward
configuration, the following two different cases are distinguished, whereby the following transfer functions,
see Figure 11.2.1, will be used:

GC(s) =
B(s)
A(s)

; GFFi
(s)=

BFFi
(s)

AFFi
(s)

(i = 1, 2)

GP(s) =
D(s)
C(s)

; GPZ(s) =
DZ(s)
CZ(s)

.

11.2.1 Disturbance feed-forward on the controller

According to Figure 11.2.1 the disturbance z′ will feed via the transfer function GFF1(s) to the controller,
which will compensate the influence of the disturbance. From this diagram the controlled variable directly

� �
�

� 
 " � �

) * �

+ � � � . + � 	 � " 	 � � � 
 � � � � �

� � � � 	 � 
 
 � 	

( �

�
��

�
� � �

� � �

� J J � � � � ��

� ; �
� � �

� ; ? � � � �

Figure 11.2.1: Block diagram of the feed-forward on the controller

follows as
Y (s) = [W (s) − Y (s) − Z ′(s)GFF1(s)]GC(s)GP(s) + Z ′(s)GPZ(s) . (11.2.1)

With some manipulations one obtains from this

Y =
GPZ −GFF1GCGP

1 +GCGP
Z ′ +

GCGP

1 +GCGP
W , (11.2.2a)

which gives

Y =
AFF1AC DZ −BFF1BDCZ

AFF1CZ(AC +BD)
Z ′ +

BD

AC +BD
W , (11.2.2b)

where for brevity the argument s is omitted. From the transfer functions of Eq. (11.2.2b) one can see
that the characteristic equation is

AFF1CZ(AC +BD) = 0 (11.2.3a)

with regard to disturbance behaviour and

AC +BD = 0 (11.2.3b)
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with regard to the reference behaviour. The disturbance will be fully compensated if

GPZ = GFF1GCGP , (11.2.4)

from which the required transfer function for the feed-forward element is

GFF1 =
GPZ

GCGP
=
AC DZ

BDCZ
. (11.2.5)

This approach can only be realised by a controller if the pole excess of GP is not larger than that of GPZ.
Otherwise a total compensation is not possible. Moreover, the polynomial BDCZ must be Hurwitzian.

For the frequent case that the disturbance and control behaviour are equal, i.e. the case of GPZ = GP,
the transfer function of the feed-forward elements is

GFF1 =
1
GC

=
A

B
. (11.2.6)

As the total compensation of a disturbance in a plant with P behaviour is only possible by a controller
with I behaviour, the transfer function of the feed-forward element, according to Eq. (11.2.6), should
thus show ideal D behaviour. If there is a PI controller in the loop, the feed-forward element must be
designed as a DT1 element.

Often the feed-forward element cannot be realised as ideally designed according to Eqs. (11.2.5) or
(11.2.6), because GC, besides pure I behaviour, normally contains delay elements. Also in these cases a
DT1 element is recommended.

11.2.2 Disturbance feed-forward on the manipulated variable

The configuration with feed-forward on the manipulated variable or on the actuator, respectively, is
shown in Figure 11.2.2. From this for the controlled variable it follows that

Y = [(W − Y )GC − Z ′GFF2 ]GP + Z ′GPZ

and after rearranging

Y =
GPZ −GFF2GP

1 +GCGP
Z ′ +

GCGP

1 +GCGP
W (11.2.7a)

or

Y =
A(AFF2C DZ − BFF2DCZ)

AFF2CZ(AC +BD)
Z ′ +

BD

AC +BD
W . (11.2.7b)
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Figure 11.2.2: Block diagram of the feed-forward on the manipulated variable

The characteristic equations are the same as in the previous case with feed-forward to the controller. For
the ideal compensation of the disturbances it follows from Eq. (11.2.7) that

GPZ = GFF2GP , (11.2.8)
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from which the transfer function of the feed-forward element follows is

GFF2 =
GPZ

GP
=
C DZ

DCZ
. (11.2.9)

For the special case of GPZ = GP, where the disturbance z acts directly at the plant input, the compen-
sation is performed by GFF2 = 1 directly at the plant input..

Similarly as in the case of Eq. (11.2.5) the realisation of the feed-forward element according to Eq. (11.2.9)
is not possible if

degreeDZ + degreeC > degreeCZ + degreeD (11.2.10)

with GPZ = DZ/CZ and GP = D/C is valid, as GFF2 must be realised by PD elements. Also in the case of
a non-minimum phase behaviour of GP or of instability of GPZ the Eq. (11.2.9) cannot be realised, as the
required feed-forward element is unstable. In those cases in which a dynamical compensation according
to Eq. (11.2.9) is not possible one must be content with a static compensation using a P element

GFF2 =
KPZ

KP
, (11.2.11)

where KPZ and KP are the gains of the transfer functions GPZ and GP.

Figure 11.2.3 shows disturbance feed-forward configurations on (a) the controller and (b) the manipulated
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Figure 11.2.3: Examples of disturbance feed-forward configurations (a) on the controller and (b) on the
actuator of a steam superheater temperature control system

variable, for the case of a temperature control system of a steam superheater (SH) in a power station.
The steam temperature ϑ at the superheater outlet is the controlled variable. The manipulated variable
is the cooling water flow in the spray-water cooler (C). Fluctuations of the steam flow ṁ have an influence
on the steam temperature and are treated as disturbances. The steam flow (disturbance z) is measured
and fed via GFF1 or GFF2 to the controller or to the manipulated variable, respectively.

11.3 Control systems with an auxiliary manipulated variable

For plants with a distinctive delayed behaviour, besides the actual controlled variable y, a secondary
variable can often be measured and used as an auxiliary variable yA. The auxiliary control loop consists,
as shown in Figure 11.3.1, of the first part of the plant with the transfer function GP1(s) and the auxiliary
controller with the transfer function GCA(s). The controlled variable then follows directly as shown in
Figure 11.3.1. Now

Y =
{[

(W − Y )GC − Y

GP2

GCA

]
GP1 + Z ′GPZ

}
GP2 (11.3.1)

or on rearranging

Y =
GPZGP2

1 + (GCGP2 +GCA)GP1

Z ′ +
GCGP1GP2

1 + (GCGP2 +GCA)GP1

W (11.3.2a)
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Figure 11.3.1: Block diagram of a control system with auxiliary manipulated variable yA

giwing

Y =
AC1D2DZ

CZ[AC2(C1AA +D1BA) +D1D2BAA]
Z ′

+
BD1D2AA

AC2(C1AA +D1BA) +D1D2BAA
W (11.3.2b)

with
GCA =

BA

AA
; GP1 =

D1

C1
; GP2 =

D2

C2
.

The characteristic equation with regard to the disturbance behaviour is

CZ [AC2(C1AA +D1BA) +D1D2BAA] = 0 (11.3.3a)

and with regard to the reference behaviour is

AC2(C1AA +D1BA) +D1D2BAA = 0 . (11.3.3b)

From this it is obvious that the introduction of the auxiliary controlled variable has an influence on the
stability of the control system.

By a proper choice of GCA, on the one hand a reduction of the effects of the disturbance on the second
section of the plant (GP2) can be achieved and on the other an improvement of the behaviour of the main
control loop. The location where the auxiliary measurement yA is taken should be after the entry of the
disturbance but as close as possible to the plant input. If the first section of the plant contains only short
delays then a P controller is sufficient for GCA. Often the need for an auxiliary controller can be avoided
if the auxiliary variable is connected directly to the input of the main controller via a PT1 element.

Figure 11.3.2 again shows the example of the temperature control of a steam superheater system, where
here it is configured with an auxiliary controller that uses the steam temperature measurement ϑ1 at the
superheater inlet as an auxiliary controlled variable.

DYNAST study example 11.1
PID and PI-D control of a PT1Tt plant

DYNAST study example 11.2
PID and PI-D control of a 3rd-order plant

11.4 Cascade control systems

Cascade control systems are special cases of control systems with auxiliary controlled variables. Here,
as shown in Figure 11.4.1, the main controller with the transfer function GC2 does not directly effect

http://virtual.cvut.cz/dyn/examples/examples/control/ac6pi-d/index.html
http://virtual.cvut.cz/dyn/examples/examples/control/ac7pid/index.html
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Figure 11.3.2: Example of a of a steam superheater temperature control system with auxiliary controlled
variable yA

the actuator, but provides the reference value for the underlying auxiliary controller with the transfer
function GC1 . This auxiliary controller forms together with the first plant section GP1 the auxiliary
control loop, which is inside the main control loop. Disturbances in the first plant section will be already
controlled by the auxiliary controller such that they have less influence on the second section. The main
controller has then only to act slightly.
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Figure 11.4.1: Block diagram of a cascade control system

When multiple auxiliary variables are measured, multiple cascade control systems can be built. For the
cascade control system of Figure 11.4.1 the controlled variable y is given by

Y =
{[

(W − Y )GC2 −
Y

GC2

]
GC1GP1 + Z ′GPZ

}
GP2 , (11.4.1)

which gives

Y =
GPZGP2

1 +GC1 GP1(1 +GC2 GP2)
Z ′ +

GC1GC2GP1GP2

1 +GC1GP1(1 +GC2 GP2)
W (11.4.2a)

and can be written as

Y =
A1A2C1D2DZ

CZ[A1A2C1C2 +B1D1(A2C2 +B2D2)]
Z ′

+
B1B2D1D2

A1A2C1C2 + B1D1(A2C2 +B2D2)
W (11.4.2b)

with
GC1 =

B1

A1
; GC2 =

B2

A2
.
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The characteristic equation with regard to the disturbance behaviour is

CZ [A1A2C1C2 +B1D1(A2C2 +B2D2)] = 0 (11.4.3a)

and with regard to the reference behaviour

A1A2C1C2 +B1D1(A2C2 +B2D2) = 0 . (11.4.3b)

It is obvious that the stability is influenced by the underlying auxiliary control loop. If the reference
behaviour of the auxiliary control loop in Figure 11.4.1 is summarised as

GA =
GC1GP1

1 +GC1GP1

, (11.4.4)

then Eq. (11.4.2a) can be represented by

Y =
GP2

1 +GC2GAGP2

GPZ

1 +GC1GP1

Z ′ +
GC2GAGP2

1 +GC2GAGP2

W . (11.4.5)

From this equation the block diagram of a single-loop control system can be drawn as shown in Fig-
ure 11.4.2, which describes the same system as Figure 11.4.1. The auxiliary control system with the
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Figure 11.4.2: Rearranged block diagram of a cascade control system

transfer function GA is an element of the basic control loop. Therefore, it is possible to design a cascade
control system in the following steps:

1. Design of the auxiliary control system, i.e. parametrisation of the controller transfer function GC1

for the given section GP1 of the plant for disturbances. The auxiliary control system must be fast
(high bandwidth) and therefore mostly a P or PD controller is chosen for GC1 .

2. Design of the main controller transfer function GC2 for the plant transfer function GAGP2 . GC2

has the task to remove steady-state errors in the controlled variable. Therefore, it is expedient to
use a PI controller as long as the plant has PTn behaviour.

Figure 11.4.3 shows two examples of cascade control systems.

Demonstration Example 11.1
A virtual experiment using cascade control

11.5 Control system with auxiliary manipulated variable

Disturbances can also be counteracted by a configuration where an additional auxiliary control signal
uA is inserted between the actuator of the main control loop and the controlled variable. This auxiliary
manipulated variable will be generated by an additional auxiliary controller GCA. Figure 11.5.1 shows
the corresponding block diagram.

From this diagram it directly follows that the controlled variable is

Y = [(W − Y )GCGP1 + Z ′GPZ + (W − Y )GCA]GP2 (11.5.1)

http://virtual.cvut.cz/experiments/ballb.html
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Figure 11.4.3: Examples of cascade control systems: (a) temperature control of a stirred tank reactor,
(b) governor of a DC motor with motor current control
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Figure 11.5.1: Block diagram of a control system with an auxiliary manipulated variable uA

or rearranged

Y =
GPZGP2

1 + (GCGP1 +GCA)GP2

Z ′ +
GP2(GCA +GCGP1)

1 + (GCGP1 +GCA)GP2

W , (11.5.2a)

which becomes

Y =
AC1D2AADZ

CZ[AC1(C2AA +D2BA) +BD1D2AA]
Z ′

+
D2(BD1AA +AC1BA)

AC1(C2AA +D2BA) +BD1D2AA
W . (11.5.2b)

The characteristic equation with regard to the disturbance behaviour is

CZ[AC1(C2AA +D2BA) + BD1D2AA] = 0 (11.5.3a)

and with regard to the reference behaviour is

AC1(C2AA +D2BA) +BD1D2AA = 0 . (11.5.3b)
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The stability of the main control loop is influenced by adding the auxiliary manipulated variable uA.
During the choice of the auxiliary manipulated variable it must be observed that the second plant section
GP2 should have an as small as possible delay, because the auxiliary controller can cancel disturbances
faster. In the steady state uA must be zero, if the steady state must be influenced only by u. This is
possible when for GCA a DT1 element is used.

11.6 Control system with anti-windup measure

In practical applications the manipulated variable u must not exceed given extreme values. This is the
case due to either the bounded power of the actuator or to the physical constraints of the plant. In most
cases these hard limitations of the manipulated variable must be respected. This means that the modulus
of the manipulated variable must not exceed given bounds

|u(t)| � umax . (11.6.1)

For control system design using linear methods it is difficult to cope with this problem and to abide by
the bounds on the manipulated variable. When the design is performed such that the amplitudes of the
manipulated variable are small and do not reach the bounds, the actuator is not fully exploited and, thus,
the control response is slow. On the other hand, when the bounds are exceeded for a reasonable period
of time undesirable control behaviour may be obtained.

In order to discuss the problem, the bounds are described by a saturation element, as shown in Fig-
ure 11.6.1. The variable uC is the manipulated variable obtained from the controller and u the manipu-
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Figure 11.6.1: Block diagram of a control system with a bounded manipulated variable

lated variable acting on the plant, which is determined from

u(t) =

⎧⎪⎪⎨
⎪⎪⎩
−umax for uC(t) < −umax

uC(t) for |uC(t)| � umax

umax for uC(t) > umax

. (11.6.2)

When the bounds are exceeded the nonlinear saturation characteristic will take effect and influence
the dynamical behaviour. In some cases the closed-loop system may also become unstable or show an
oscillating behaviour.

This undesired phenomenon, called the windup effect, occurs in all control systems where an integrator is
used in the controller. This integrator is necessary to have a zero steady-state control error. In order to
demonstrate this effect, the example from section 9.3 is taken. The plant is given by Eq. (9.3.1) and the
controller by Eq. (9.3.7). The step response of the closed loop without saturation is shown in Figure 11.6.2,
where the response of the controlled variable is the same as in Figure 9.3.2. If the manipulated variable
is bounded by umax = 1.5 (with saturation) the rise time increases due to the smaller values of the
manipulated value in the period from 0.1 s to 2 s. The increased maximum overshoot and settling time
reflect a worse control behaviour. The reason for this is the following: From the beginning, the control
error decreases and changes sign at 1.6 s. As uC is very large at this time (≈ 2.1), the manipulated
variable u cannot be reduced despite the negative control error. This will only occur when uC falls below
umax at 2 s. The problem is obviously that the controller continues to integrate though the manipulated
variable has already reached its bound. As the controller output uC further grows unnecessarily, this is
called the windup effect.

The goal of an anti-windup measure is to counteract the integration of the controller. This can be
performed by feeding back the difference u−uC to the controller. Figure 11.6.3 shows a simple approach
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for an anti-windup measure, where the difference is weighted by the factor γ and fed into the controller.
Figure 11.6.2 shows the improvement of the behaviour for γ = 1. The settling time is close to the case
without saturation, but the maximum overshoot is half of that without saturation.

� / � &

� / � �

� / ( &

� / & �

� / � &

�
� � � � % & ' (

� � � ! � # � � � " � # 	 " � � � �

� � 3 � 4

� � � �

� / &

� / �

� / &

� / �

� / &

�
� � � � % & ' (� � 3 � 4

� � � � * # � � � � � � � ! � # � � � " � # 	 " � � � �

� � � ! � � " � # 	 " � � � �

� � � ! � � " � # 	 " � � � �

� � � ! � " � � � . � � � � # �

� � � ! � " � � � . � � � � # �

� � �

� � �

# � � � �

Figure 11.6.2: Step response of the closed loop system with and without anti-windup measure, (a)
manipulated variable u and controller output uC, (b) controlled variable y
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Figure 11.6.3: Block diagram of a control system with an anti-windup measure
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State-space representation

Module units
12.1 State-space representation of single-input-single-output systems . . . . . . 12-1

12.2 State-space representation of multi-input-multi-output systems . . . . . . 12-2

12.3 The relationship between transfer functions and the state-space representation12-3

12.4 State-space vs transfer function approach . . . . . . . . . . . . . . . . . . . . 12-4

12.5 Uniqueness of the state variables . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

12.6 Controllability and observability . . . . . . . . . . . . . . . . . . . . . . . . . 12-6

Module overview. This introductory module begins by considering the reasons and advantages for use
of a state-space description. The description is introduced using a specific example. The relationship to
the transfer-function form is outlined and discussed. Fundamentals, like transformations, controllability
and observability are briefly introduced.

Module objectives. When you have completed this module you should be able to:

1. Represent a system in state-space form.

2. Determine the transfer function from a description in state-space form.

3. Transform a system into other state-space forms.

Module prerequisites. Differential equations, transfer function.

12.1 State-space representation of single-input-single-output sys-

tems

In the following a short introduction into the representation of systems using state-variable techniques
is given. For this purpose, the example of the RLC network from Figure 4.4.10 is used. The dynamical
behaviour of this network is completely defined for t ≥ t0, if the

• initial conditions ua(t0), ie(t0)

and the

• input variable ue(t) for t ≥ t0

12-1
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are known. For these specifications the variables ie(t) and ua(t) can be determined for all t ≥ t0. The
variables ie(t) and ua(t) characterise the ’state’ of the network and are therefore called state variables of
the network.

The differential equations of Eqs. (4.4.29) and (4.4.30) describe the dynamical behaviour of this net-
work. Inserting Eq. (4.4.30) into Eq. (4.4.29) one obtains the 2nd-order differential equation according
to Eq. (4.4.31), which completely describes the system with respect to the input-output behaviour. But
one can also use the two original differential equations and can write them in vector notation so that the
1st-order vector differential equation⎡

⎢⎣
die(t)

dt
dua(t)

dt

⎤
⎥⎦ =

⎡
⎢⎣−

R

L
− 1
L

1
C

0

⎤
⎥⎦ [ ie(t)

ua(t)

]
+

[ 1
L
0

]
ue(t) (12.1.1)

with the initial condition [
ie(t0)
ua(t0)

]
is obtained. This linear 1st-order vector differential equation describes the connection between the input
variable and the state variables. To complete a state-space system, one needs an additional equation that
describes the dependence of the output variable on the state variables. In this example, it is the direct
relationship

y(t) = ua(t) .

Introducing the state vector

x(t) =
[
x1(t)
x2(t)

]
=
[
ie(t)
ua(t)

]
into Eq. (12.1.1), with the vectors

x0 = x(t0) =
[
ie(t0)
ua(t0)

]
,

b =

[ 1
L
0

]
and cT = [0 1] ,

with the matrix

A =

⎡
⎢⎣−

R

L
− 1
L

1
C

0

⎤
⎥⎦

and with the scalar variables
u(t) = ue(t) and d = 0

one obtains the general state-space representation of a linear time-invariant single-input-single-output
system:

ẋ(t) = Ax(t) + bu(t) x(t0) initial condition (12.1.2)

y(t) = cTx(t) + d u(t) . (12.1.3)

The Eq. (12.1.2) is the state equation, and in the general case it is a linear system of 1st-order differential
equations of n state variables x1, x2, . . . , xn, which are combined n the state vector x = [x1x2 . . . xn]T .
Eq. (12.1.3) is the output equation, which maps the states and inputs linearly to the output. This is an
algebraic equation, whereas the state equation is a differential equation.

12.2 State-space representation of multi-input-multi-output sys-
tems

The Eqs. (12.1.2) and (12.1.3) describe an nth-order linear time-invariant single-input-single-output sys-
tem. For linear multi-input-multi-output systems of order n with r inputs and m outputs these equations
become

ẋ(t) = A x(t) + B u(t) with the initial condition x(t0) (12.2.1)
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y(t) = C x(t) + D u(t) , (12.2.2)

where the following notation is used:

state vector x(t) =

⎡
⎢⎣x1(t)

...
xn(t)

⎤
⎥⎦ (n× 1) vector

input vector u(t) =

⎡
⎢⎣u1(t)

...
ur(t)

⎤
⎥⎦ (r × 1) vector

output vector y(t) =

⎡
⎢⎣ y1(t)...
ym(t)

⎤
⎥⎦ (m× 1) vector

system matrix A (n× n) matrix
input matrix B (n× r) matrix
output matrix C (m× n) matrix
feedthrough matrix D (m× r) matrix

It goes without saying that the general representation of Eqs. (12.2.1) and (12.2.2) also includes the single-
input-single-output case. The matrices A, B, C and D have constants elements. If these elements are
time-varying, the matrices of the corresponding time-varying system are substituted by matrix functions
of time, e.g. A(t).

12.3 The relationship between transfer functions and the state-
space representation

In the following, the Eqs. (12.2.1) and (12.2.2) will be transformed into the s domain using the Laplace
transform, which will be done analogously to the scalar case in section 2.5. For this, the operator notation

F (s) = � [f(t)]

from section 2.1 is adopted and when applying it to Eq. (12.2.1), one obtains

sX(s) − x(t0) = AX(s) + B U(s) ,

or rearranged
(sI − A)X(s) = x(t0) + B U(s) .

The solution of the state equation in the s domain is then given by

X(s) = Φ(s)x(t0) + Φ(s)B U(s) (12.3.1)

with
Φ(s) = (sI − A)−1 . (12.3.2)

Similarly, for Eq. (12.2.2) yields
Y (s) = C X(s) + D U(s) .

Substituting X(s) from Eq. (12.3.1), the system output in the s domain is

Y (s) = C Φ(s)x(t0) + [C Φ(s)B + D] U(s) .

To obtain the relationship with transfer functions, the initial condition x(t0) has to be set to zero. For
a single-input-single-output system according to Eqs. (12.1.2) and (12.1.3) the system output is

Y (s) =
[
cTΦ(s) b + d

]
U(s) .
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Comparing this equation with Eq. (3.1.3) the transfer function is given by

G(s) = cTΦ(s) b + d . (12.3.3)

The matrix Φ(s) from Eq. (12.3.2) is a matrix of rational functions of s, which can always be represented
by

Φ(s) =
1

det(sI − A)
Ψ(s) , (12.3.4)

where Ψ(s) is a matrix with polynomial elements in s. From Eq. (3.1.2) it is obvious that

N(s) = cTΨ(s) b + dD(s) (12.3.5)

and
D(s) = det(sI − A) , (12.3.6)

which is the characteristic polynomial of the system. The zeros of this polynomial are the poles of the
transfer function and at the same time eigenvalues of the system matrix A. If the system in the state-
space representation is fully controllable and observable (see section 12.6), then the number of poles are
equal to the number of eigenvalues.

12.4 State-space vs transfer function approach

The key advantage of transfer functions is in their compactness, which makes them suitable for frequency-
domain analysis and stability studies. However, the transfer function approach suffers from neglecting the
initial conditions. Not only does state-space representation serve as an alternative to transfer functions,
but also it is not limited to linear and time-invariant systems and it has the following advantages:

1. Single-input-single-output and multi-input-multi-output systems can be formally treated equal.

2. The state-space representation is best suited both for the theoretical treatment of control systems
(analytical solutions, optimisation) and for numerical calculations.

3. The determination of the system response in the homogeneous case with the initial condition x(t0)
is very simple.

4. This representation gives a better insight into the inner system behaviour. General system prop-
erties, for example, the system controllability or observability can be defined and determined, see
section 12.6.

12.5 Uniqueness of the state variables

Initially it sounds paradoxical that the choice of the state variables is not unique. This means that for
one and the same system with the input u, the output y and n state variables, there exist an infinite
number of state-space representations. For each value of time t one gets the state in the n-dimensional
state space. The n values are the cartesian coordinates of the state

x =

⎡
⎢⎢⎢⎣
x1

x2

...
xn

⎤
⎥⎥⎥⎦ = x1e1 + x2e2 + . . .+ xnen ,

where the unit vectors ei are n-dimensional linear independent vectors. Their elements are – besides the
ith element, which has the value of 1 – all zero. For describing the state also other basis vectors can
be used. Candidates are all n linear independent and n-dimensional vectors ti. Therefore, it is always
possible, to write the state as

x = z1t1 + z2t2 + . . .+ zntn . (12.5.1)
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After introducing the new state

z =

⎡
⎢⎢⎢⎣
z1
z2
...
zn

⎤
⎥⎥⎥⎦

and the quadratic matrix
T =

[
t1, t2, . . . , tn

]
one can rewrite Eq. (12.5.1) as

x = T z . (12.5.2)

The constant and regular matrix T is a so-called transformation matrix. Now, instead of the state x the
new state z can be used and its behaviour analysed. Describing the system in the new coordinates the
state x from Eq. (12.5.2) is inserted into Eqs. (12.2.1) and (12.2.2) and one obtains

ż(t) = (T−1AT )z(t) + (T−1B)u(t) (12.5.3)

y(t) = (C T )z(t) + D u(t) (12.5.4)

with the initial condition
z(t0) = T−1x(t0) .

The benefits of the transformation of systems into different state-space representations are:

• Most system properties do not depend on the choice of the state variables. They remain unchanged
after a regular transformation and may be analysed in an appropriate representation form.

• The computational determination and analysis of system properties can be tremendously simplified
if the representation form is specifically selected. In particular certain canonical forms are of interest.

Example 12.5.1
In order to demonstrate a transformation, the example from Eq. (12.1.1) is used with the system param-
eters R = 3, L = 1 and C = 0.5. The initial condition is assumed to be zero and therefore omitted. With
these values one obtains the state equation as

ẋ(t) =
[
−3 −1

2 0

]
x(t) +

[
1
0

]
u(t)

and the output equation as
y(t) =

[
0 1

]
x(t) .

For the regular transformation matrix

T =
[

1 −1
−1 2

]
one obtains the matrices for Eqs. (12.5.3) and (12.5.4) as

T−1AT =
[

1 −1
−1 2

]−1 [−3 −1
2 0

] [
1 −1

−1 2

]
=
[
−2 0

0 −1

]

T−1B =
[
2 1
1 1

] [
1
0

]
=
[
2
1

]

C T =
[
0 1

] [ 1 −1
−1 2

]
=
[
−1 2

]
.

The new representation

ż(t) =
[
−2 0

0 −1

]
z(t) +

[
2
1

]
u(t)

y(t) =
[
−1 2

]
z(t)

consists of two decoupled differential equations with respect to the state variables z1 and z2. �

The analysis and treatment of a system in such a structured representation form, as shown in the example
above, is doubtless more simple. As the representation form must be specifically selected depending on
the type of analysis or synthesis problem, the different representation forms, for example, the canonical
forms, are not discussed separately and are introduced in the following sections when they are needed.
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12.6 Controllability and observability

Controllability and observability are important structural properties of a dynamic system. Controllability
can be defined as follows:

The system of Eqn. (12.1.2) is controllable if there exists a control signal u(t) that will take
the state of the system from any initial state x(t0) to any desired final state xf in a finite
time interval.

This condition is equivalent to the following condition:

The system of Eqn. (12.1.2) is controllable if the controllability matrix

S =
[
b Ab . . . An−2b An−1b

]
(12.6.1)

has full rank n.

The concept of observability is parallel to that of controllability and all can be transformed to state-
ments about observability by invoking the property of duality, as discussed later in section 13.4.2. The
observability definition analogous to those for controllability are as follows:

The system of Eqs. (12.1.2) and (12.1.3) is observable if, for any x(t0), there is a finite time
τ such that x(t0) can be determined from u(t) and y(t) for 0 ≤ t ≤ τ.

This condition is equivalent to the following:

The system of Eqs. (12.1.2) and (12.1.3) is observable if the observability matrix

O =

⎡
⎢⎢⎢⎣

cT

cTA
...

cTAn−1

⎤
⎥⎥⎥⎦ (12.6.2)

has full rank n.
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Design of state-feedback control
systems

Module units
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13.1.0.1 State-feedback control in the frequency domain . . . . . . . . . . . . . 13-3

13.1.0.2 Steady state of the closed-loop system . . . . . . . . . . . . . . . . . . 13-3

13.2 State-feedback control with integrator . . . . . . . . . . . . . . . . . . . . . . 13-4

13.3 Design of state-feedback controllers by pole placement . . . . . . . . . . . . 13-5

13.3.1 Design of a system in controller canonical form . . . . . . . . . . . . . . . . . . 13-6

13.3.1.1 Design of a system not in a canonical form . . . . . . . . . . . . . . . 13-7

13.3.2 Design using Ackermann’s formula . . . . . . . . . . . . . . . . . . . . . . . . . 13-8

13.4 State reconstruction using observers . . . . . . . . . . . . . . . . . . . . . . . 13-9

13.4.1 Structure of an observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-10

13.4.2 Design of observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-10

13.5 Combined observer-controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 13-11

13.6 Example of a state-feedback control system . . . . . . . . . . . . . . . . . . 13-12

Module overview. The main design approach for systems described in state-space form is the use
of state feedback. One selects pole locations to achieve a satisfactory dynamic response and develops
the control law for the closed-loop system that corresponds to satisfactory dynamic response. One has
to design an estimator for the states, because these are generally not measurable. This estimator is an
observer that delivers the information about the states so that they can be used for control. The combined
observer-controller problem is discussed. Several pole-placement designs for controllers with proportional
and integral state feedback and observers based on controller canonical form are given. A comprehensive
example shows the overall design procedure.

Module objectives. When you have completed this module you should be able to:

1. Design control systems using state feedback for pole placement.

2. Design observers by pole placement.

3. Transform a state-space representation into controller canonical form.

Module prerequisites. State space representation, transfer function, poles and zeros.
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13.1 Structures and properties of state-feedback control sys-

tems

In the following, the design of state-feedback controllers for single-input-single-output systems described
by

ẋ(t) = Ax(t) + bu(t) x(t0) initial condition (13.1.1)

y(t) = cTx(t) (13.1.2)

is discussed in detail.

The dynamical characteristics, for example, stability, decay of oscillations or sensitivity to disturbances,
are determined by the distribution of the eigenvalues of the system matrix A in the s plane. The goal
is to influence the system specifically so that it shows a desired behaviour. In the sense of command
input regulation the control system is configured as shown in Figure 13.1.1. It is assumed, that all state
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Figure 13.1.1: Basic structure of a state-feedback control system

variables are measured. A linear combination of the state variables is fed back by

uf(t) = −fTx(t) (13.1.3)

with
f =

[
f1, f2, . . . , fn

]
. (13.1.4)

While this feedback determines the dynamical behaviour, the feedforward of the command variable w

uv(t) = v w(t) (13.1.5)

using the scalar gain v influences the static behaviour. The manipulated variable is obtained from

u(t) = uf(t) + uv(t) = −fTx(t) + v w(t) . (13.1.6)

After the substitution of the manipulated variable into Eq.(13.1.1) using Eq. (13.1.6), one obtains the
closed-loop system as

ẋ(t) =
[
A − b fT

]
x(t) + b v w(t) x(t0) initial condition (13.1.7)

y(t) = cTx(t) . (13.1.8)

For the dynamical and static behaviour the following specifications must be fulfilled:

• The dynamical behaviour of the closed loop should be specified by given poles. As these closed-loop
poles are the eigenvalues of the closed-loop system matrix (A − b fT), the desired distribution of
the eigenvalues in the s plane for this matrix is specified.

• In the steady state the control error must vanish so that the plant output follows

y∞ = lim
t→∞ y(t) = cT lim

t→∞x(t) = lim
t→∞w(t) = w∞ . (13.1.9)
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13.1.0.1 State-feedback control in the frequency domain

As the dynamical behaviour of the closed loop is specified in the s domain, it is appropriate to discuss
some properties in the frequency domain. The initial point of this discussion is the closed-loop transfer
function

Y (s)
W (s)

= GW(s) (13.1.10)

Applying the Laplace transform as shown in section 12.3 to Eqs. (13.1.7) and (13.1.8) one obtains the
closed-loop transfer function as

GW(s) = cT(sI − A + b fT)−1b v . (13.1.11)

The same procedure for the plant from Eqs. (13.1.1) and (13.1.2) gives

GP(s) = cT(sI − A)−1b . (13.1.12)

With Eq. (12.3.2) the closed-loop and plant transfer functions are rewritten as

GW(s) = cT(Φ−1(s) + b fT)−1b v (13.1.13)

and

GP(s) = cTΦ b =
N(s)
D(s)

. (13.1.14)

Applying the matrix inversion lemma to the inner part (Φ−1(s) + b fT)−1 of Eq. (13.1.13), one obtains

GW(s) = cT

{
Φ(s) − Φ(s) b

[
1 + fTΦ(s) b

]−1

fTΦ(s)
}

b v

=

{
cTΦ(s) b − cTΦ(s) bfTΦ(s) b

1 + fTΦ(s) b

}
v

=
cTΦ(s) b v

1 + fTΦ(s) b
. (13.1.15)

After inserting Eqs. (12.3.4), (12.3.6) and (13.1.14) into Eq. (13.1.15) the closed-loop transfer function is
given by

GW(s) =
cTΨ(s) b v

D(s) + fTΨ(s) b

=
N(s) v

D(s) + fTΨ(s) b
, (13.1.16)

where the denominator
[
D(s) + fTΨ(s) b

]
is the characteristic polynomial of the closed-loop system and

D(s) is that of the open-loop system. As only the plant numerator polynomial N(s) appears in the
closed-loop transfer function, the closed-loop zeros are the same as the open-loop zeros. This means that
the zeros cannot be influenced by a state-feedback controller; it only moves the poles.

13.1.0.2 Steady state of the closed-loop system

The steady state from Eq. (13.1.9) can only be reached if the state of the closed-loop system for t → ∞
approaches the final value

x∞ = lim
t→∞x(t) .

The condition
ẋ(t) = 0 = (A − b fT)x∞ + b v w∞

is obviously valid, from which the steady state can be obtained as

x∞ = −(A − b fT)−1b v w∞ ,
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which is always possible, because for an asymptotically stable closed-loop the matrix (A − b fT) has
always full rank. For the output, one obtains

y∞ = cTx∞ = −cT(A − b fT)−1b v w∞ , (13.1.17)

where it must be observed that this value must not vanish, i.e.

cT(A − b fT)−1b �= 0 .

This condition can be fulfilled, if the closed-loop transfer function GW(s) from Eq. (13.1.11) has no zero
at s = 0. From the discussion about the zeros in section 13.1.0.1 it is clear that the plant transfer function
from Eq. (13.1.12) must not have a zero at s = 0. This means that

cTA−1b �= 0 . (13.1.18)

With the condition given in Eq. (13.1.18) all given values y∞ are reachable with command input signals
that have a constant steady-state value of w∞.

From the conditions in Eqs. (13.1.17) and (13.1.9) the feed-forward gain of the controller is obtained as

v =
−1

cT(A − b fT)−1 b
. (13.1.19)

13.2 State-feedback control with integrator

For a given feedback vector f the feedforward gain v can be calculated according to Eq. (13.1.19) so that
the closed-loop system in Figure 13.1.1 shows the desired static behaviour with a vanishing control error.
The control structure used is not very robust with respect to the control error, because this error is not
fed back. Uncertainties in the plant model parameters or disturbances acting on the plant may cause
steady-state control errors. In order to reject such effects, one can use a similar approach to that shown
in section 11.4 for cascade control. The cascade control system of Figure 13.2.1 has the state-feedback
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Figure 13.2.1: Basic structure of a cascade state-feedback control system with integrator

configuration from Figure 13.1.1 as its inner loop. The controlled variable y is compared with the set-
point value w and the control error e is fed back to an integrator. The former feedforward gain v is now
the gain of the integrator. From the closed-loop point of view with this configuration the gain like f is a
feedback parameter. This will be shown in the following.

From Figure 13.2.1 the equations of the closed-loop system can be directly determined as follows:

ẋ(t) = Ax(t) + bu(t) x(t0) initial condition (13.2.1)

y(t) = cTx(t) (13.2.2)

ε̇(t) = y(t) − w(t) (13.2.3)

u(t) = uf(t) + uv(t) = −fTx(t) − v ε(t) . (13.2.4)
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Combining Eqs. (13.2.1) to (13.2.3) of the open-loop system in matrix notation, one obtains[
ẋ(t)
ε̇(t)

]
=
[
A 0
cT 0

] [
x(t)
ε(t)

]
+
[
b
0

]
u(t) +

[
0

−1

]
w(t) . (13.2.5)

Eq. (13.2.4) for the manipulated variable can be represented by

u(t) = −
[
f
v

]T [
x(t)
ε(t)

]
. (13.2.6)

With the abbreviations

A∗ =
[
A 0
cT 0

]
, b∗ =

[
b
0

]
, v∗ =

[
0

−1

]
, x∗(t) =

[
x(t)
ε(t)

]
Eqs. (13.2.5) and (13.2.6) are

ẋ∗(t) = A∗ x∗(t) + b∗ u(t) + v∗ w(t) x∗(t0) initial condition (13.2.7)

u(t) = −f∗Tx∗(t) (13.2.8)

and for the closed-loop system after inserting Eq. (13.2.8) into Eq. (13.2.7)

ẋ∗(t) =
[
A∗ − b∗ f∗T

]
x∗(t) + v∗ w(t) x∗(t0) initial condition , (13.2.9)

which is formally the same system as that with the simple state-feedback controller in Eq. (13.1.7). Here,
the controller parameters in f∗ instead of those in f must be determined for the desired specifications.
This extended problem is now reduced to the original problem, and for both cases the same design
procedure can be applied. It means, that for the state-feedback controller with integrator the same
design procedures for the controller parameters can be applied as for the original system. This simplifies
the design of the extended problem significantly.

13.3 Design of state-feedback controllers by pole placement

The difficulty of this design consists essentially in the determination of the feedback vector f so that the n
eigenvalues of the system matrix (A− b fT) have the desired distribution. After that, the determination
of the feedforward gain v in the control structure without integrator is very simple, see Eq. (13.1.19).

The characteristic polynomial Q(s) = det
[
s I − (A − b fT)

]
of the closed loop system from Eq. (13.1.7)

is a monic polynomial of order n. The coefficients qi of it are functions of the controller parameters hi:

det
[
s I − (A − b fT)

]
= q0(f) + q1(f)s+ q2(f )s2 + . . .+ qn−1(f )sn−1 + sn .

By a proper choice of the vector f this polynomial Q(s) should be made equal to the desired polynomial
P (s) with n zeros, which are the desired poles or eigenvalues si, respectively, of the closed-loop system:

P (s) =
n∏

i=1

(s− si) . (13.3.1)

Multiplying all factors on the right-hand side of Eq. (13.3.1) one obtains this polynomial as

P (s) = p0 + p1 s+ p2 s
2 + . . .+ pn−1 s

n−1 + sn . (13.3.2)

For all values of s, the condition Q(s) = P (s) must be fulfilled. A comparison of the corresponding terms
of both sides gives the coefficients as

q0(f ) = p0 , q1(f ) = p1 , q2(f) = p2 , . . . qn−1(f ) = pn−1 , (13.3.3)

from which the controller parameters fi can be obtained. This approach, however, has the following
drawbacks:
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• The Eqs. (13.3.3) for determining the controller parameters are complicated, in general nonlinear.

• For higher-oder systems the computational effort is large.

• There is no systematic way to solve the equations.

The determination of the feedback parameters can be significantly simplified when the invariance of the
eigenvalues of a system under a regular transformation is observed and used. The idea is to transform the
system into a form which is suitable for the determination of the controller parameters. In the sections
below this idea is used.

13.3.1 Design of a system in controller canonical form

A state-space system in controller canonical form has the following structure:

ż(t) = Ac z(t) + bc u(t) z(t0) initial condition (13.3.4)

y(t) = cT
c z(t) (13.3.5)

with

Ac =

⎡
⎢⎢⎢⎢⎣

0 1 0 . 0
0 0 1 . 0
. . . . .
0 0 0 . 1

−a0 −a1 −a2 . −an−1

⎤
⎥⎥⎥⎥⎦ , bc =

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦ , cc =

⎡
⎢⎢⎢⎣
c1
c2
...
cn

⎤
⎥⎥⎥⎦ . (13.3.6)

This canonical form has the following properties:

• The characteristic polynomial can be directly determined from the last line of Ac, which is

Pc(s) = det(s I − Ac) = a0 + a1 s+ a2 s
2 + . . .+ an−1 s

n−1 + sn . (13.3.7)

• A system of this structure is always controllable as its controllability matrix according to Eq. (12.6.1)
has always full rank.

• The transfer function of the system is immediately given by

G(s) =
c1 + c2 s+ c3 s

2 + . . .+ cn s
n−1

a0 + a1 s+ a2 s2 + . . .+ an−1 sn−1 + sn
.

The feedback is now defined as
u(t) = −fT

c z(t) (13.3.8)

with

fc =

⎡
⎢⎢⎢⎣
fc1
fc2
...
fcn

⎤
⎥⎥⎥⎦ .

For the closed-loop system the system matrix is

Ac − bc fT
c =

⎡
⎢⎢⎢⎢⎣

0 1 0 . 0
0 0 1 . 0
. . . . .
0 0 0 . 1

−a0 − fc1 −a1 − fc2 −a2 − fc3 . −an−1 − fcn

⎤
⎥⎥⎥⎥⎦ (13.3.9)

and its characteristic polynomial is

Q(s) = (a0 + fc1) + (q1 + fc2) s+ (a2 + fc3) s2 + . . .+ (an−1 + fcn) sn−1 + sn .
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Equating this polynomial with the polynomial with the desired poles from Eqs. (13.3.2) one obtains by
comparison of the corresponding terms of both polynomials the controller parameters as

fci = pi−1 − ai−1 for i = 1, 2, . . . , n . (13.3.10)

In the controller canonical form the calculation of the controller feedback parameters is reduced to the
calculation of a simple difference between the coefficients of two polynomials.

13.3.1.1 Design of a system not in a canonical form

In general, when a system is not given in the controller canonical form, one has to transform it by a
regular transformation

z(t) = T x(t) , (13.3.11)

which brings the system into the desired canonical form according to Eqs. (13.3.4) to (13.3.6). The
determination of the controller parameters in f c is performed according to Eq. 13.3.10. The feedback
law in the original state is, using Eq. (13.3.11) given by

u(t) = −(fT
c T )x(t) = −fTx(t) . (13.3.12)

Finally, the feedback vector is transformed back to

fT = fT
c T . (13.3.13)

The main task in the pole-placement design for systems that are not in controller canonical form, is the
determination of the transformation matrix T . When the original state equation from Eq. (13.1.1) is
transformed by Eq. (13.3.11), one obtains the transformed entities

Ac = T AT−1 (13.3.14)

and
bc = T b . (13.3.15)

Eq. (13.3.14) will be further analysed in the form by right-multiplying with T

Ac T = T A .

With the row vectors tTi of the matrix T this equation is⎡
⎢⎢⎢⎢⎣

0 1 0 . 0
0 0 1 . 0
. . . . .
0 0 0 . 1

−a0 −a1 −a2 . −an−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

tT
1

tT
2

.
tT
n−1

tT
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

tT
1

tT
2

.
tT
n−1

tT
n

⎤
⎥⎥⎥⎥⎦ A (13.3.16)

and after multiplication:⎡
⎢⎢⎢⎢⎣

tT
2

tT
3

.
tT
n

−a0t
T
1 − a1t

T
2 − . . .− an−2t

T
n−1 − an−1t

T
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

tT
1 A

tT
2 A
.

tTn−1 A
tT
n A

⎤
⎥⎥⎥⎥⎦ . (13.3.17)

From the first n− 1 rows of both sides one obtains the recursive relationship

tT
i+1 = tTi A for i = 1, 2, . . . , n− 1 ,

and when tT
1 is known the remaining rows of the matrix T are

tT
i+1 = tT

1 Ai for i = 1, 2, . . . , n− 1 . (13.3.18)
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The first row tT1 is obtained from Eq. (13.3.15), which is also valid. Using the results from Eq. (13.3.18),
the right-hand side of Eq. (13.3.15) has the form:

bc = T b =

⎡
⎢⎢⎢⎢⎣

tT1
tT2
.

tT
n−1

tTn

⎤
⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎣

tT
1 b

tT
1 Ab
.

tT
1 An−2b

tT
1 An−1b

⎤
⎥⎥⎥⎥⎦ (13.3.19)

or in transposed form:
bT
c = tT

1

[
b Ab . . . An−2b An−1b

]
= tT

1 S . (13.3.20)

The matrix S is the controllability matrix from Eq. (12.6.1), which has full rank if the system is completely
controllable. Under this condition one can obtain the first row by

tT
1 = bT

c S−1 , (13.3.21)

which is the last row of the inverse controllability matrix, because bc is the n-th unit vector.

Summarising the procedure of the pole-placement design for a system that is not in a canonical form,
the following steps are necessary:

1. Calculation of the controllability matrix S from Eq. (12.6.1), its inverse and extracting the last row
according to Eq. (13.3.21). This is the first row of the transformation matrix T .

2. Row-wise calculation of the remaining rows of the transformation matrix T using Eq. (13.3.18).

3. Choice of the n eigenvalues si.

4. Calculation of the coefficients pi of the desired polynomial according to Eqs. (13.3.1) and (13.3.2).

5. Transformation of the system matrix A according to Eq. (13.3.14) and extracting the coefficients
ai of the characteristic polynomial of the open-loop system from the last row of the transformed
matrix.

6. Calculation of the coefficients of the feedback vector fT
c according to Eq. (13.3.10).

7. Back transformation of the feedback vector according to Eq. (13.3.13).

13.3.2 Design using Ackermann’s formula

The method described in the previous section 13.3.1.1 needs the computation of the full transformation
matrix T . This is not necessary as shown by the simplified procedure of Ackermann.

Steps 5 and 6 from the end of the previous section 13.3.1.1 will be combined by using the relationship
for the transformation matrix T from Eqs. (13.3.13) and (13.3.18):

fT =
[
p0 − a0, p1 − a1, . . . pn−1 − an−1

]
⎡
⎢⎢⎢⎣

tT1
tT
1 A
...

tT
1 An−1

⎤
⎥⎥⎥⎦ .

After multiplying, the feedback vector can be represented by two sums as

fT = tT
1

n−1∑
i=0

pi Ai − tT
1

n−1∑
i=0

ai Ai .

Adding the term tT
1 An to both sums, one obtains

fT = tT
1 P (A) − tT

1 Pc(A) . (13.3.22)
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P (A) is the desired polynomial from Eq. (13.3.2), where the scalar variable s is substituted by the matrix
A. The same holds for the characteristic polynomial Pc(s) of the system matrix A from Eq. (13.3.7).
According to the Cayley-Hamilton theorem a quadratic matrix always satisfies its own characteristic
polynomial, i.e. Pc(A) = 0, Eq. (13.3.22) is simplified to

fT = tT1 P (A) . (13.3.23)

As tT
1 is the last row of the inverse controllability matrix S−1 the calculation of the feedback vector is

simpler than in the previous case of section 13.3.1.1. The following steps are necessary:

1. Calculation of the controllability matrix S from Eq. (12.6.1), its inverse and extracting the last
row.

2. Choice of the n eigenvalues si.

3. Calculation of the coefficients pi of the desired polynomial according to Eqs. (13.3.1) and (13.3.2).

4. Calculation of the term P (A).

5. Calculation of the coefficients of the feedback vector fT according to Eq. (13.3.23).

13.4 State reconstruction using observers

The state-feedback controllers designed in the previous sections assume that all state variables can be
measured. This may not be the case. That is, certain components of the state vector may correspond to
inaccessible internal variables, which may not be available for measurement. The theory of observers has
been proposed to reconstruct an approximation of the state vector based only on available measurements.
Being a dynamical system in itself, the observer is designed to track the n state variables of the original
system. The block diagram in Figure 13.4.1 shows the system structure. The observer has two inputs,
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Figure 13.4.1: Principle of an observer

u(t) and y(t), and it provides an estimate x̂(t) of the plant state x(t). The estimate should satisfy the
condition

lim
t→∞ x̂(t) = lim

t→∞x(t) .

Thus, the error between the plant state and the estimate

x̃(t) = x(t) − x̂(t)

should converge asymptotically to zero, i.e.

lim
t→∞ x̃(t) = 0 . (13.4.1)
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13.4.1 Structure of an observer

A candidate for a dynamical system in state space form which can fulfil the condition from Eq. (13.4.1),
may have the following form:

˙̂x(t) = Â x̂(t) + b̂u(t) + ĝ y(t) x̂(t0) initial condition . (13.4.2)

In order to show this, Eq. (13.4.2) is subtracted from Eq. (13.1.1) and using Eq. (13.1.2) the state equation

˙̃x(t) =
[
A − ĝ cT

]
x(t) − Â x̂(t) +

[
b − b̂

]
u(t) x̃(t0) initial condition (13.4.3)

is obtained. If the observing error x̃ is to be independent of the plant input u(t), one should make the
choice

b̂ = b, (13.4.4)

and to have a homogeneous error state equation, one has to set the observer system matrix to

Â = A − ĝ cT . (13.4.5)

Then the error state equation is

˙̃x(t) =
[
A − ĝ cT

]
x̃(t) x̃(t0) initial condition . (13.4.6)

The parameter ĝ is the only design parameter of the observer, which has to be specified so that the error
converges asymptotically to zero, independent of the unknown initial error x̃(t0). This is only the case if
all eigenvalues of the matrix (A − ĝ cT) have negative real parts.

In order to show how an observer works and to gain the interpretation of the observer equations, Â in
Eq. (13.4.2) is substituted by Eq. (13.4.5) and introducing the output error term

ỹ(t) = y(t) − cTx̂(t) ,

the observer state equation is

˙̂x(t) = A x̂(t) + bu(t) + ĝ ỹ(t) x̂(t0) initial condition .

From this equation one can see, that the observer consists of a copy of the plant model and of a feedback
of the error between the plant model output and the estimated plant output using the state estimates
from the observer. The feedback gains in ĝ are the design parameters of the observer.

13.4.2 Design of observers

The design parameter ĝ has to be specified so that the matrix

Â = A − ĝ cT

has n given eigenvalues ŝi in the left-half s plane. This means that the characteristic polynomial is given
by

det
[
s I − (A − ĝ cT)

]
=

n∏
i=1

(s− ŝi) .

The determination of the design parameter is solved in an elegant way by observing that the characteristic
polynomial of a matrix is invariant to transposition. Therefore, the above equations can be rewritten
with transposed matrices as:

Â
T

= AT − c ĝT

det
[
s I − (AT − c ĝT)

]
=

n∏
i=1

(s− ŝi) .
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A comparison of these equations with those of the state-feedback controller do not show structural
differences. Instead of A now AT, instead of b now c and instead of f now ĝ is used. Therefore, an
observer design is the same task as designing the feedback

uf(t) = −gTξ(t)

for the system
ξ̇(t) = AT ξ(t) + c y(t) .

Such a system is called a dual system. For this dual system the same design procedure as for the state-
feedback controller can be applied, i.e. the design of a state-feedback controller of a dual system is the
same as the design of an observer for the original system. Therefore, designing an observer, one takes
the dual system and designs a state-feedback controller according to section 13.3. The resulting feedback
vector is then the required parameter vector ĝ of the observer.

13.5 Combined observer-controllers

One is led to the observer problem because of the need to obtain the states for use in the controller.
Now, only the asymptotically correct estimates x̂(t) of the states x(t) rather than the states themselves
are available. A natural question is whether the previous result on pole placement via state feedback
will continue to hold when these estimates of the actual states are available. There is no other option
available than to see what happens with the observer and controller.

In the steady state there should clearly be no loss in using the asymptotic observer, since the error in
the estimates will be zero. The question for the present scheme is whether the incorporation of the
observer dynamical system into the feedback loop will affect the stability of the overall system. That is,
interconnections of stable subsystems may lead to unstable overall systems.

The following analysis on stability is performed by setting up the joint observer-controller system of
Figure 13.5.1. For this scheme the equations for the overall system can be written down by inspection as
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Figure 13.5.1: Basic structure of a combined observer-controller

ẋ(t) = Ax(t) − b fTx̂(t) + b v u(t) x(t0) initial condition

˙̂x(t) = ĝ cT x(t) +
[
A − ĝ cT − b fT

]
x̂(t) + b v u(t) x̂(t0) initial condition .

To study the overall system in terms of the state x(t) and its error x̃(t) the second equation is subtracted
from the first, and one obtains

ẋ(t) =
[
A − b fT

]
x(t) + b fTx̃ + b v u(t) x(t0) initial condition

˙̃x(t) =
[
A − ĝ cT

]
x̃(t) x̃(t0)initial condition
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which in matrix form can be written[
ẋ(t)
˙̃x(t)

]
=
[
A − b fT b fT

0 A − ĝ cT

] [
x(t)
x̃(t)

]
+
[
b v
0

]
w(t)

[
x(t0)
x̃(t0)

]
initial condition .

As the system matrix of the above overall system has a triangular block form, the characteristic polynomial
of the overall system

det
[
s I − (A − b fT) −b fT

0 s I − (A − ĝ cT)

]
is just the product of the characteristic polynomial of the observer and the characteristic polynomial of
the controlled system

det
[
s I − (A − b fT)

]
det
[
s I − (A − ĝ cT)

]
assuming perfect knowledge of the states.

This is nice, because it means that the natural frequencies or modes of the overall system can always be
arranged to be stable. In fact, they can be chosen completely arbitrarily.

Another useful consequence is that the controller and observer can be designed independently of each
other. Whether the true states are available, or only asymptotically correct estimates of the states, is
immaterial to the calculation of the feedback vector f . Similarly, the dynamics of the observer can be
calculated from knowledge of A and c without consideration of whether the observer is to be combined
with a feedback controller or not. This is the so-called separation property of the observer-controller
design procedure.

13.6 Example of a state-feedback control system

For a 2nd-order plant, described by[
ẋ1(t)
ẋ2(t)

]
=
[
1 0
0 −0.5

] [
x1(t)
x2(t)

]
+
[
8
8

]
u(t) +

[
8
8

]
z′(t)

and

y(t) =
[
2 −1

] [x1(t)
x2(t)

]
with the disturbance

z′(t) = σ(t− 6)

and the initial condition

x(0) =
[

5
−5

]
a state-feedback controller with and without observer is to be designed so that the poles of the closed-loop
system are s1 = s2 = −3. The eigenvalues of the observer are given as ŝ1 = ŝ2 = −8.

The plant is unstable and has the eigenvalues at 1.0 and -0.5. The desired characteristic polynomial with
the zeros s1 = s2 = −3 as the given poles is from Eq. (13.3.1)

P (s) = (s+ 3) (s+ 3) = 9 + 6 s+ s2 .

The controllability matrix is

S =
[
b Ab

]
=
[

8 8
8 −4

]
and its inverse

S−1 =
[
0.0417 0.0833
0.0833 −0.0833

]
.

The last row of the inverse is
tT
1 =

[
0.0833 −0.0833

]
.
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With this data, the feedback vector using Ackermann’s formula Eq. (13.3.23) is

fT =
[
0.0833 −0.0833

]{
9
[
1 0
0 −0.5

]
+ 6
[
1 0
0 −0.5

]
+
[
1 0
0 −0.5

] [
1 0
0 −0.5

]}

=
[
0.0833 −0.0833

] [16 0
0 6.25

]
=
[
1.3333 −0.5208

]
.

The feedforward gain according to Eq. (13.1.19) is

v =
−1[

2 −1
] ([1 0

0 −0.5

]
−
[
8
8

] [
1.3333 −0.5208

])−1 [8
8

]
=

−1[
2 −1

] ([ −9.6667 4.1667
−10.6667 3.6667

])−1 [8
8

]
=

−1[
2 −1

] [0.4074 −0.4630
1.1852 −1.0741

] [
8
8

]
= 0.5625 .

For the observer design the dual system[
ξ̇1(t)
ξ̇2(t)

]
=
[
1 0
0 −0.5

] [
ξ1(t)
ξ2(t)

]
+
[

2
−1

]
y(t)

is used. The desired characteristic polynomial with the zeros ŝ1 = ŝ2 = −8 as the given eigenvalues of
the observer is from Eq. (13.3.1)

P (s) = (s+ 8) (s+ 8) = 64 + 16 s+ s2 .

The controllability matrix of the dual system is

S =
[
c AT c

]
=
[

2 2
−1 0.5

]
and its inverse

S−1 =
[
0.1667 −0.6667
0.3333 0.6667

]
.

The last row of the inverse is
tT
1 =

[
0.3333 0.6667

]
.

With this data, the feedback vector using Ackermann’s formula Eq. (13.3.23) is

ĝT =
[
0.3333 0.6667

]{
64
[
1 0
0 −0.5

]
+ 16

[
1 0
0 −0.5

]
+
[
1 0
0 −0.5

] [
1 0
0 −0.5

]}

=
[
0.3333 0.6667

] [81 0
0 56.25

]
=
[
27 37.5

]
.

The observer system matrix is

Â = A − ĝ cT =
[
1 0
0 −0.5

]
−
[

27
37.5

] [
2 −1

]
=
[
−53 27
−75 37

]
and, finally, the following observer equation is obtained:[ ˙̂x1(t)

˙̂x2(t)

]
=
[
−53 27
−75 37

] [
x̂1(t)
x̂2(t)

]
+
[
8
8

]
u(t) +

[
27

37.5

]
y(t) .

Figure 13.6.1 shows the time responses of the state-feedback control system with and without observer.
The responses are divided into three periods. The control system is started at t = 0 s and until t = 3 s
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the decay of the observing error is demonstrated. At t = 3 s one can see the behaviour of the system
following the change in the set point w(t). Then from t = 6 s the disturbance z′(t) is active and one can
see the disturbance behaviour. The observer is started at t = 0 s with zero initial conditions, whereas the
plant state is not zero. The estimated states in Figure 13.6.1c and 13.6.1d converge asymptotically to the
real states and the value of w(t) = 1 is reached by the controlled variable y(t) as shown in Figure 13.6.1b.
The control system follows the set-point change from from 1 to 4 applied at t = 3 s. However, due to the
proportional behaviour of the open-loop system the controlled variable y(t) shows a large steady-state
error after the disturbance is applied at t = 6 s.

The control structure used does not show the desired static behaviour with a vanishing control error
under disturbances. Therefore, a state-feedback controller with an integrator is required to cope with the
disturbance problem. For the modified control structure according to Figure 13.2.1 one has to design a
state-feedback controller for the extended system according to Eqs. (13.2.5) and (13.2.6):⎡

⎣ẋ1(t)
ẋ2(t)
ε̇(t)

⎤
⎦ =

⎡
⎣1 0 0
0 −0.5 0
2 −1 0

⎤
⎦
⎡
⎣x1(t)
x2(t)
ε(t)

⎤
⎦+

⎡
⎣8

8
0

⎤
⎦u(t) +

⎡
⎣ 0

0
−1

⎤
⎦w(t) .

The initial condition is now

x(0) =

⎡
⎣ 5
−5

0

⎤
⎦ .

For the eigenvalues of the closed-loop system a third value must be given, as the additional state ε(t)
of the integrator is introduced. For simplicity the choice s1 = s2 = s3 = −3 is taken and the desired
characteristic polynomial is

P (s) = (s+ 3) (s+ 3) (s+ 3) = 27 + 27 s+ 9 s2 + s3 .

The controllability matrix is

S =
[
b∗ A∗ b∗ A∗2 b∗

]
=

⎡
⎣8 8 8

8 −4 2
0 8 20

⎤
⎦

and its inverse

S−1 =

⎡
⎣ 0.0625 0.0625 −0.0313

0.1042 −0.1042 −0.0313
−0.0417 0.0417 0.0625

⎤
⎦ .

The last row of the inverse is
tT
1 =

[
−0.0417 0.0417 0.0625

]
.

With this data, the feedback vector using Ackermann’s formula Eq. (13.3.23) is

f∗T =
[
−0.0417 0.0417 0.0625

] ⎡⎣64 0 0
0 15.625 0
74 −22.75 27

⎤
⎦

=
[
1.9583 −0.7708 1.6875

]
.

From this the feedback vector of the state-feedback is

fT =
[
1.9583 −0.7708

]
and the feedforward gain

v = 1.6875 .

As the state of the integrator is known, the same observer can be used as in the case without integrator.

Figure 13.6.2 shows the time responses of the same experiment as in Figure 13.6.1. The responses in
the first and second period are similar, the amplitudes are somewhat larger and due to the additional
integrator the response on set-point changes is slower, but there is no steady-state error on disturbances.
This is for the case with and without observer, though the observer shows a steady-state error when the
disturbance z′(t) is active.
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Figure 13.6.1: Time responses of the state-feedback control system without integrator,
(a) manipulated variable u(t),
(b) controlled value y(t), set point w(t) and disturbance z′(t),
(c) state x1(t) and its estimate x̂1(t),
(d) state x2(t) and its estimate x̂2(t)

Demonstration Example 13.1
A virtual experiment using state-feedback control of a tank system

Demonstration Example 13.2
A virtual experiment using state-feedback control of a VTOL

http://virtual.cvut.cz/experiments/tank.html
http://virtual.cvut.cz/experiments/vtol.html
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Figure 13.6.2: Time responses of the state-feedback control system with integrator,
(a) manipulated variable u(t),
(b) controlled value y(t), set point w(t) and disturbance z′(t),
(c) state x1(t) and its estimate x̂1(t),
(d) state x2(t) and its estimate x̂2(t)



Module 14

Introduction to fuzzy techniques

Module units
14.1 Crisp and fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

14.2 Why use fuzzy logic for control ? . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

14.3 Ideas of the fuzzy control methodology . . . . . . . . . . . . . . . . . . . . . 14-4

Module overview. This is an introductory module to explain what the term fuzzy is and why fuzzy
logic is used to solve control problems. First, the difference between the crisp binary valued logic and the
fuzzy logic is explained by introducing the grade of truth. This is deepened by considering control system
design with unknown information and with descriptions using rules and linguistic terms. The main ideas
of the fuzzy control methodology is sketched and summarised in five steps, which are followed in the other
modules.

Module objectives. When you have completed this module you should be able to:

1. Understand the basic ideas of fuzzy logic.

2. Understand the main objectives of control system design using fuzzy logic.

3. Understand the basic ideas of fuzzy control.

Module prerequisites. Boolean algebra.

14.1 Crisp and fuzzy logic

Fuzzy logic forms a bridge between the two areas of qualitative and quantitative modelling. Although
the input-output mapping of such a model is integrated into a system as a quantitative map, internally
it can be considered as a set of qualitative linguistic rules. Since the pioneering work of Zadeh in 1965
and Mamdani in 1975, the models formed by fuzzy logic have been applied to many varied types of
information processing including control systems.

The term Fuzzy Logic is a misnomer. It implies that in some way the methodology is vague or ill-defined.
This is in fact far from the case. Fuzzy logic just evolved from the need to model the type of of vague or
ill-defined systems that are difficult to handle using conventional binary valued logic, but the methodology
itself is based on mathematical theory.

We are all familiar with binary valued logic and set theory. An element belongs to a set of all possible
elements and given any specific subset, it can be said accurately, whether that element is or is not a
member of it. For example, a person belongs to the set of all human beings, and given a specific subset,

14-1
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such as all males, one can say whether or not each particular person (element) belongs to this set. This
is appealing since it seems to describe the way human reason. Collecting many elements into sets allows
to describe many occurrences with few rules. For example, the simple statement

IF person is male AND a parent THEN person is a father

applies to many people across the world with complete precision. The rules are formed using operators.
Here, the intersection operator AND is used, which manipulates the sets.

Unfortunately, not everything can be described using binary valued sets. The classifications of persons
into males and females is easy, but it is problematic to classify them as being tall or not tall. The set of
tall people is far more difficult to define, because there is no distinct cut-off point at which tall begins.
This is not a measurement problem, and measuring the height of all elements more precisely is not helpful.
Such a problem is often distorted so that it can be described using the well-known existing methodology.
Here, one could simply select a height, e.g. 1.80m, at which the set tall begins, see Figure 14.1.1a. The
output of a reasoning system using this definition would not be smooth with respect to the height of a
person. A person of height 1.79m would produce a different output than a person of 1.81m. In human
reasoning this property is not observed and it is also undesirable for reasoning systems that are part of
a control system.

Fuzzy logic was suggested by Zadeh as a method for mimicking the ability of human reasoning using
a small number of rules and still producing a smooth output via a process of interpolation. It forms
rules that are based upon multi-valued logic and so introduced the concept of set membership. With
fuzzy logic an element could partially belong to a set and this is represented by the set membership. For
example, a person of height 1.79m would belong to both tall and not tall sets with a particular degree
of membership. As the height of a person increases the membership grade within the tall set would
increase whilst the membership grade within the not tall set would decrease, see Figure 14.1.1b. The
output of a fuzzy reasoning system would produce similar results for similar inputs. Fuzzy logic is simply
the extension of conventional logic to the case where partial set membership can exist, rule conditions
can be satisfied partially and system outputs are calculated by interpolation and, therefore, have output
smoothness over the equivalent binary-valued rule base. This property is particularly relevant to control
systems.
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Figure 14.1.1: The difference between the grade of truth in (a) binary valued logic {0, 1} and (b) fuzzy
logic [0, 1]

A fuzzy logic control system is one that has at least one system component that uses fuzzy logic for its
internal knowledge representation. Although it is possible for fuzzy systems to communicate information
using fuzzy sets, most applications have a single fuzzy system component communicating with conven-
tional system components via deterministic values. In this case, and also in this chapter, fuzzy logic is
used purely for internal knowledge representation and, externally, can be considered as any other system
component.

Demonstration Example 14.1
Tumbler full or empty ?

Demonstration Example 14.2
The fuzzy set of full and empty tumblers

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsFuzzy/TumblerFullOrEmpty.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsFuzzy/TheTumblerFuzzySet.html
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14.2 Why use fuzzy logic for control ?

Controlling a system means that some characteristics of this system are monitored, and, depending on
the values of these characteristics, different controls are applied. An algorithm that transforms sensor
inputs into corresponding control values is called a control strategy. The previous chapters deal with the
traditional approach of control systems design that consists of the following:

• First, one tries to to describe the behaviour of the system in precise mathematical terms, i.e., one
comes up with the exact model of the system.

• Second, one tries to describe in precise terms what one wants to achieve. One wants the control
that is the best in the sense of some criterion.

• Now that the controlled system is described in precise mathematical terms, and the objective
function is described in the same manner, it can be determined for each control strategy and for
each initial state how exactly the system will change and what the resulting value of the control will
be. The main goal is then to find the control strategy for which the resulting value of the objective
function is the largest possible one. This is a well-defined mathematical optimisation problem, and
traditional control theory has developed many methods for solving this problem and designing the
corresponding control strategies.

Traditional control theory has many important applications. There are, however, practical cases when
this theory is not applicable. Indeed, to apply the traditional control theory, one must

• know the model of the controlled system,

• know the objective function formulated in precise terms, and

• be able to solve the corresponding mathematical design problem.

If one of these conditions is not satisfied, then traditional control methodology is not applicable, as in
the following cases:

• Sometimes, the model and the objective function is known, but the design problem cannot be
solved. This is when the design problem is very complicated, time consuming or when the problem
is new and algorithms for solving it have not yet been developed. For example, parking a car is an
example of a problem that traditional control theory has not considered until recently.

• Sometimes, the model is known, but the objective function is unknown. For example, if a control
system for a vehicle is designed, the intended goal is to make the ride most comfortable, but there
is no well-accepted formalism of what comfortable means.

• Sometimes, one does not even know the model of the controlled system. In many practical applica-
tions one can in principle measure all the possible variables and determine the model exactly, but
this will increase the cost drastically. In other practical situations, the main goal of the controlled
system is to explore the unknown, e.g., to control a rover over a terrain of unknown type, or to
control surgery instruments. In such situations, the entire objective of the control is to learn as
much about the system, and one cannot have a precise model of this system before the control is
over.

If traditional control methodology cannot be applied, how can one control? Often, there is an additional
expert knowledge available, for example, expert operators who successfully control the desired system.
Expert operators know how to operate a plant. Therefore it is desirable to extract the control rules from
the expert and use this knowledge in an automatic control system. At first glance, the problem seems
very simple. Since the person is a real expert, one simply ask her multiple questions like “suppose that
x1 is equal to 1.2, x2 is equal to -2.7, ..., what is u ?” After asking all these questions, one will get many
pattern, from which one will be able to extrapolate the function f(x1, ..., x2) using one of the known
methods. Alas, there are two problems with this idea:
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• There is a computational problem. Since one needs to ask a question for each combination of sensor
readings, one may end up having to ask too many questions that takes years.

• There is a more serious problem that makes it in most cases impossible to implement. If one asks
a car driver a question like “you are driving at 80 km/h when a car which is 20m in front of you
slows down to 50 km/h, for how many seconds do you hit the brakes?”, nobody will give a precise
number.

An expert cannot usually express his knowledge in precise numerical terms, like “hit the brakes for 1.27 s”,
but he can formulate his knowledge by using words from natural language. The knowledge, which one can
extract from an expert consists of statements like “if the velocity is a little bit smaller than maximum,
hit the breaks for a while”.

For the fuzzy control methodology one has to

• know the expert’s control rules formulated by words from natural language and

• one wants to produce a precise control strategy.

The methodology that transform the informal expert control rules into a precise control strategy is called
fuzzy control. The idea was first proposed by Zadeh, and the methodology itself was first proposed and
applied by Mamdani. In this chapter it is described exactly how this transformation is done.

14.3 Ideas of the fuzzy control methodology

Before coming to the details, the main ideas of fuzzy control methodology on the example of a situation
will be illustrated in which everyone feels himself an expert. One of the most widely used control systems
is the simplest rule-based system imaginable, a thermostatic temperature controller. This rule-based
system operates with two rules:

(1) IF temperature is below set point THEN heat is on
(2) IF temperature is above set point THEN heat is off

The success of this controller is due to the combination of the properties, that it is simple, robust and
does not require a complex process model. The model is: when the heat is on, the temperature rises
slowly, and when the heat is off, the temperature falls slowly.

The two IF-THEN clauses above can also be formally rewritten as

IF x is Ar THEN u is Br for r = 1, 2

In the thermostat example there is only one input variable (linguistic variable), the temperature x. In
the general case, there are several input variables x1, ..., xn, so, in addition to the logical connective
IF-THEN, another logical connective is needed, AND. Then the IF-THEN clauses are

IF x1 is Ar1 AND x2 is Ar2 ... AND xn is Arn THEN u is Br .

Here, r = 1, ..., R is the rule number, and Ari and Br are words from natural language (linguistic terms),
like “below set point”, “on”, “small”, “large”, “approximately 1.5”, etc. If the standard mathematical
notation for IF-THEN and AND is used, the above rules can be re-formulated as follows:

Ar1(x1) ∧Ar2(x2)... ∧Arn(xn) → Br(u) , (14.3.1)

where r = 1, ..., R. The set of rules is usually called a rule base. The left-hand side of a rule is called
premise, the right-hand side conclusion and the rule itself implication.

The general idea is to represent the rule base in a computer. It has a clear structure. A rule base consists
of rules and each rule, in its turn, is obtained from properties expressed by linguistic variables and terms
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and using logical connectives. In view of this structure, it is reasonable to represent the rule base by first
representing the basic elements of the rule base, premises and conclusions, and then by extending this
representation to the rule base as a whole. It makes sense to use the following steps in the methodology:

1. Representation of the basic properties Ari(xi) and Br(u).

2. Representation of the logical connectives.

3. The representations of the basic properties and of the logical connectives is used to get the repre-
sentations of all the rules.

4. Combination of the representations of different rules into a representation of a rule base.

As a result of these four steps, one obtains an expert system that can give advise for a specialist, who has
to make a decision. In control, a system to automatically make a decision based on its own conclusions
is wanted. Therefore, for control situations, a fifth follow-up step is needed:

5. Based on facts for xi and on the rule base a reasoning procedure makes a decision.

In the following section from the very beginning it is described how these five steps are implemented.
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Module 15

Basics of fuzzy sets

Module units
15.1 Fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

15.2 Membership functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2

15.3 Elementary operators for fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . 15-5

15.4 Fuzzy relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

15.5 Fuzzy composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8

Module overview. Fuzzy set theory is an extension of classical set theory. Under this aspect the term
of the membership function is introduced. The operations with fuzzy sets are introduced and explained
and illustrated using membership functions. Starting with elementary operators for fuzzy sets, more
complicated operators for modelling of rule bases and reasoning processes are introduced. Interactive
demonstration examples round off the module.

Module objectives. When you have completed this module you should be able to:

1. Describe fuzzy sets using membership functions.

2. Operate with fuzzy sets.

3. Model rules using fuzzy sets.

4. Reason using a rule and a fact.

Module prerequisites. Basics about fuzzy logic.

15.1 Fuzzy sets

In the classical set theory a set can be represented by enumerating all its elements using

A = {a1, a2, a3, · · · , an} .

If these elements ai(i = 1, · · · , n) of A are together a subset of the universal base set X , the set A can
be represented for all elements x ∈ X by its characteristic function

µA(x) =

{
1 if x ∈ A
0 otherwise .

(15.1.1)

In classical set theory µA(x) has only the values 0 (“false”) and 1 (“true”), so two values of truth. Such
sets are also called crisp sets.

15-1
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Non-crisp sets are called fuzzy sets, for which also a characteristic function can be defined. This function
is a generalisations of that in Eq.(15.1.1) and called a membership function. The membership of a fuzzy
set is described by this membership function µA(x) of A, which associates to each element x0 ∈ X a
grade of membership µA(x0). In contrast to classical set theory a membership function µA(x) of a fuzzy
set can have in the normalised closed interval [0, 1] an arbitrary grade of truth, see introductory section
14 and Figure 14.1.1. Therefore, each membership function maps elements of a given universal base set
X , which is itself a crisp set, into real numbers in [0, 1]. The notation for the membership function µA(x)
of a fuzzy set A

A : X → [0, 1] (15.1.2)

is used. Each fuzzy set is completely and uniquely defined by one particular membership function.
Consequently symbols of membership functions are also used as labels of the associated fuzzy sets. That
is, each fuzzy set and the associated membership function are denoted by the same capital letter. Since
crisp sets and the associated characteristic functions may be viewed, respectively, as special cases of fuzzy
sets and membership functions, the same notation is used for crisp sets as well, see Figure 15.1.1
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Figure 15.1.1: Membership functions of a crisp set C and a fuzzy set F

The base set X is introduced first above as a universal set. In practical applications, physical or similar
quantities are considered that are defined in some interval. When such quantities are described by sets,
a base sets can be generalised seamless to a crisp base set X that exists in a defined interval. This is a
generalisation of fuzzy sets.

Base sets are not always crisp sets. Another generalisation is that the base set is itself a fuzzy set. This
is necessary for multi-dimensional fuzzy sets, which are discussed later in this chapter.

15.2 Membership functions

The membership function µA(x) describes the membership of the elements x of the base set X in the
fuzzy set A, whereby for µA(x) a large class of functions can be taken. Reasonable functions are often
piecewise linear functions, such as triangular or trapezoidal functions.

The grade of membership µA(x0) of a membership function µA(x) describes for the special element x = x0,
to which grade it belongs to the fuzzy set A. This value is in the unit interval [0, 1]. Of course, x0 can
simultaneously belong to another fuzzy set B, such that µB(x0) characterises the grade of membership of
x0 to B. This case is shown in Figure 15.2.1.

Demonstration Example 15.1
Colour as a fuzzy set

Interactive Questions 15.1
Test yourself here

In the following, a set of important properties and characteristics of fuzzy sets will be described.

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsFuzzy/ColourAsFuzzySet.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsFuzzy/ColourQuestions.html
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Figure 15.2.1: Membership grades of x0 in the sets A and B: µA(x0) = 0.75 and µB(x0) = 0.25

• Having two fuzzy sets A and B based on X , then both are equal if their membership functions are
equal, i.e.

A = B ⇔ µA(x) = µB(x), x ∈ X . (15.2.1)

• The universal set U is defined as
µU(x) = 1, x ∈ X . (15.2.2)

• The height of a fuzzy set A is the largest membership grade obtained by any element in that set,
i.e.

hgt(A) = sup
x∈X

µA(x) . (15.2.3)

• A fuzzy set A is called normal when hgt(A) = 1, and it is subnormal when hgt(A) < 1.

• The support of a fuzzy set A is the crisp set that contains all the elements of X that have nonzero
membership grades in A, i.e.

supp(A) = {x ∈ X |µA(x) > 0} . (15.2.4)

An illustration is shown in Figure 15.2.2.
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Figure 15.2.2: Some characteristics of a membership function

• The core of a normal fuzzy set A is the crisp set that contains all the elements of X that have the
membership grades of one in A, i.e.

core(A) = {x ∈ X |µA(x) = 1} . (15.2.5)

• The boundary is the crisp set that contains all the elements of X that have the membership grades
of 0 < µA(x) < 1 in A, i.e.

bnd(A) = {x ∈ X | 0 < µA(x) < 1} . (15.2.6)



15-4 MODULE 15. BASICS OF FUZZY SETS

Having two fuzzy sets A and B based on X , then both are similar if

core(A) = core(B) and supp(A) = supp(B). (15.2.7)

• If the support of a normal fuzzy set consists of a single element x0 of X , which has the property

supp(A) = core(A) = {x0} , (15.2.8)

this set is called a singleton.

The type of representation of the membership function depends on the base set. If this set consists
of many values, or is the base set a continuum, then a parametric representation is appropriate. For
that functions are used that can be adapted by changing the parameters. Piecewise linear membership
functions are preferred, because of their simplicity and efficiency with respect to computability. Mostly
these are trapezoidal or triangular functions, which are defined by four and three parameters, respectively.
Figure 15.2.2 shows a trapezoidal function formally described by

µ(x, a, b, c, d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < a, x > d
x−a
b−a , a ≤ x ≤ b

1, b < x < c
d−x
d−c , c ≤ x ≤ d

, (15.2.9)

which migrates for the case b = c into a triangular membership function. For some applications the mod-
elling requires continuously differentiable curves and therefore smooth transitions, which the trapezoids
do not have. Here, for example, three of these functions are mentioned, which are shown in Figure 15.2.3.
These are
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Figure 15.2.3: Membership functions with smooth transitions (Eqs.(15.2.10) to (15.2.12))

• the normalised Gaussian function (Figure 15.2.3a)

µ(x, ζ, σ) = e−
(x−ζ)2

2σ2 , (15.2.10)

• the difference of two sigmoidal functions (Figure 15.2.3b)

µ(x, α1, ζ1, α2, ζ2) =
[
1 + e−α1(x−ζ1)

]−1

−
[
1 + e−α2(x−ζ2)

]−1

(15.2.11)

and

• the generalised bell function (Figure 15.2.3c)

µ(x, α, β, ζ) =

[
1 +
∣∣∣∣x− ζ

α

∣∣∣∣2β
]−1

. (15.2.12)

Interactive Questions 15.2
What are linguistic terms?

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/WhatIsFuzzy/TemperatureLinguisticTerms.html
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15.3 Elementary operators for fuzzy sets

The basic connective operations in classical set theory are those of intersection, union and complement.
These operations on characteristic functions can be generalised to fuzzy sets in more than one way.
However, one particular generalisation, which results in operations that are usually referred to us as
standard fuzzy set operations, has a special significance in fuzzy set theory. In the following, only the
standard operations are introduced. The following operations can be defined:

• The fuzzy intersection operator ∩ (fuzzy AND connective) applied to two fuzzy sets A and B with
the membership functions µA(x) and µB(x) is

µA∩B(x) = min{µA(x), µB(x)}, x ∈ X . (15.3.1)

• The fuzzy union operator ∪ (fuzzy OR connective) applied to two fuzzy sets A and B with the
membership functions µA(x) and µB(x) is

µA∪B(x) = max{µA(x), µB(x)}, x ∈ X . (15.3.2)

• The fuzzy complement (fuzzy NOT operation) applied to the fuzzy set A with the membership
function µA(x) is

µA(x) = 1 − µA(x), x ∈ X . (15.3.3)

Whilst the operations according to Eqs. (15.3.1) and (15.3.2) are based on min/max operations, the
complement is an algebraic one. Union and intersection can also be defined in an algebraic manner but
giving different results as:

• The fuzzy intersection operator ∩ (fuzzy AND connective) can be represented as the algebraic
product of two fuzzy sets A and B, which is defined as the multiplication of their membership
functions:

µA∩B(x) = µA(x)µB(x), x ∈ X . (15.3.4)

• The fuzzy union operator ∪ (fuzzy OR connective) can be represented as the algebraic sum of two
fuzzy sets A and B, which is defined as:

µA∪B(x) = µA(x) + µB(x) − µA(x)µB(x), x ∈ X . (15.3.5)

Demonstration Example 15.2
What is Fuzzy AND ?

Demonstration Example 15.3
What is Fuzzy OR ?

Demonstration Example 15.4
What is Fuzzy NOT ?

The standard connective operations for fuzzy sets are now defined. As one can easily see, these operations
perform precisely as the corresponding operations for crisp sets when the range of membership grades is
restricted to the set {0, 1}. That is, the standard fuzzy operations are generalisations of the corresponding
classical set operations. However, they are not the only possible generalisation. As shown above, the
fuzzy intersection, union and complement are not unique operations, contrary to their crisp counterparts.
Different functions may be appropriate to represent these operations in different contexts. The capability
to determine appropriate membership functions and meaningful fuzzy operations in the context of each
particular application is crucial for making fuzzy set theory practically useful.

When fuzzy operators are later applied within more complex fuzzy logic operations for rules and fuzzy
reasoning, one has to take care of the right combinations of fuzzy operations. For example, in classical

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyAnd.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyOr.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyNot.html
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set theory, the operations of intersection and union are dual with respect to the complement in the sense
that they satisfy the De Morgan laws

A∩ B = A ∪ B and A ∪ B = A∩ B .

It is desirable that this duality be satisfied for fuzzy sets as well. Other combinations need equivalences for
commutativity, associativity and distributivity. From Table 15.3 the type of operations can be determined
for which operations are valid. Only distributivity is not given in the arithmetic case. Therefore, one has
to be careful in applications where arithmetic operations are performed.

Table 15.3.1: Validity of fuzzy equivalences

max/min arithmetic

commutativity
A ∪ B = B ∪A
A ∩ B = B ∩A

* *

associativity
A ∪ (B ∪ C) = (A∪ B) ∪ C
A ∩ (B ∩ C) = (A∩ B) ∩ C

* *

distributivity
A ∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A∩ B) ∪ (A ∩ C)

*

De Morgan
(A ∪ B) = A∩ B
(A ∩ B) = A∪ B

* *

Interactive Questions 15.3
What do you know from fuzzy operators ?

Interactive Questions 15.4
The fuzzy NOT properties

15.4 Fuzzy relations

In the introduction to the fuzzy control methodology, section 14.3, rules have been introduced, which in
mathematical notation are connective operations over fuzzy sets. For example, the operations on premises
in Eq.(14.3.1) can be handled for each rule already by the elementary standard operators introduced in
section 15.3. The means are now available to handle steps 1 and 2 of the methodology. But to cope with
step 3 something more is needed to complete the modelling of rules. That is now added in this section.

First, relations are explained by a simple example from daily life using discrete fuzzy sets. Let us describe
the relationship between the colour of a fruit x and the grade of maturity y and characterise the linguistic
variable colour by a crisp set X with three linguistic terms as

X = { green, yellow, red } ,

and similarly the grade of maturity as

Y = { verdant, half-mature, mature } .

One knows that a crisp formulation of a relation X → Y between the two crisp sets would look like this
in tabular form:

verdant half-mature mature

green 1 0 0
yellow 0 1 0
red 0 0 1

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyOperators.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyNotProperties.html
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The zeros and ones describe the grade of membership to this relation. This relation is now a new kind
of crisp set that is built from the two crisp base sets X and Y. This new set is now called R and can be
expressed also by the rules:

(1) IF the colour is green THEN the fruit is verdant
(2) IF the colour is yellow THEN the fruit is half-mature
(3) IF the colour is red THEN the fruit is mature

As can be seen from this example, a relation, which is called a rule or rule base, can be used to provide
a model.

Demonstration Example 15.5
Test this with your own tomatoes

This crisp relation R represents the presence or absence of association, interaction or interconnection
between the elements of these two sets. This can be generalised to allow for various degrees of strength
of association or interaction between elements. Degrees of association can be represented by membership
grades in a fuzzy relation in the same way as degrees of the set membership are represented in a fuzzy
set. Applying this to the fruit example, the table can be modified to

verdant half-mature mature

green 1 0.5 0
yellow 0.3 1 0.4
red 0 0.2 1

where there are now real numbers in [0, 1]. This table represents a fuzzy relation and models the connec-
tives in a fuzzy rule base. It is a two-dimensional fuzzy set and the question now is, how can this set be
determined from its elements.

Demonstration Example 15.6
Test this with your own strawberries

In order to do this, the elements are generalised. In the above example, the linguistic terms where
treated as crisp terms. For example, when one represents the colours on a colour spectrum scale, the
colours would be described by their spectral distribution curves that can be interpreted as membership
functions and then a particular colour is a fuzzy term. Treating also the grades of maturity as fuzzy
terms, the above relation is a two-dimensional fuzzy set over two fuzzy sets. For example, taking from
the fruit example the relation between the linguistic terms red and mature, and represent them by the
membership functions as shown in Figure 15.4.1a, a fruit can be characterised by the property red AND
mature. This expression can be re-written in mathematical form using elementary connective operators
(see Eqs. (15.3.1) or (15.3.4)) for the membership functions by

µR(x, y) = min{µA(x), µB(y)} (15.4.1)

or
µR(x, y) = µA(x)µB(y) . (15.4.2)

Figure 15.4.1b shows a 3-dimensional view of these two fuzzy terms and Figure 15.4.1c the result of the
connective operation according to Eq.(15.4.1). This result combines the two fuzzy sets by an operation
that is a Cartesian product

R : X × Y → [0, 1] . (15.4.3)

From this example it is obvious that the connective operation in a rule for the → operation is simply per-
formed by a fuzzy intersection in two dimensions. For this, both intersection operators from Eqs. (15.3.1)
or (15.3.4) can be used.

Combining rules into a rule base the example from above may help when it is rewritten as

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyRelationsFruitCrisp.html
http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyRelationsFruitFuzzy.html
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Figure 15.4.1: Relation between two fuzzy sets: (a) membership functions, (b) 3-D view of the member-
ship functions, (c) membership function of the relation after applying the min operation to (b)

(1) IF the colour is green THEN the fruit is verdant
OR
(2) IF the colour is yellow THEN the fruit is half-mature
OR
(3) IF the colour is red THEN the fruit is mature

which describes in a linguistic way a union of three rules. For the complete rule base R one can combine
the relations formed for each individual rule with a fuzzy union operator, which is the fuzzy OR according
to Eqs. (15.3.2) or (15.4.1).

Now, step 4 of the methodology introduced in section 14.3 can be specified by taking the rule base from
Eq. (14.3.1) and applying the union operator by writing the rule base with max/min operators as follows:

µR(x1, x2, . . . , xn, u) = max
r

{min{µPr(x1, x2, . . . , xn), µBr (u)}} , (15.4.4)

where µPr(x1, x2, . . . , xn) is the premise of the rth rule. This representation is the standard max/min
representation of a rule base that will be later used for fuzzy controllers. Instead of the max/min
representation a so called max-prod representation is also usual, where the algebraic product

µR(x1, x2, . . . , xn, u) = max
r

{µPr(x1, x2, . . . , xn)µBr (u)} (15.4.5)

is used to build the relation between the premise and the conclusion.

15.5 Fuzzy composition

In order to make step 5 of the methodology introduced in section 14.3, a reasoning method is needed.
Explaining reasoning by the fruit example, it is assumed that one has a crisp fact: a green fruit. The
decision from the rule base is obvious: the fruit is verdant, and this is similar for the other facts: yellow
and red. But if one has a fact like: the fruit is orange, one does not know how to determine which rule
fires the decision and what the decision is. In the following, a new fuzzy operation type is introduced,
that allows to operate with a given fact and a fuzzy relation to produce an output that represents the
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decision in a fuzzy way. This operation is called fuzzy reasoning, which is a special case of the more
general operation called fuzzy composition.

Two relations of the form given in Eq. (15.4.3)

R : X × Y → [0, 1]
S : Y × Z → [0, 1] ,

(15.5.1)

can be composed to one relation
T : X × Z → [0, 1] . (15.5.2)

This process is known as composition and, using the max and min operators for union and intersection,
one can express the composition operation T = R ◦ S by the corresponding membership functions as
follows:

µT(x, z) = max
y∈Y

{min{µR(x, y), µS(y, z)}} . (15.5.3)

When one takes the above fruit example again with the colour-maturity relation R

R verdant half-mature mature

green 1 0.5 0
yellow 0.3 1 0.4
red 0 0.2 1

and define for S a maturity-taste relation

S sour tasteless sweet

verdant 1 0.2 0
half-mature 0.7 1 0.3

mature 0 0.7 1

then by applying Eq. (15.5.3) to the elements of these two tables, the following is obtained:

T = R ◦ S sour tasteless sweet

green 1 0.5 0.3
yellow 0.7 1 0.4
red 0.2 0.7 1

When the fuzzy set S is now interpreted as a rule base and the fuzzy set R as a fact obtained from some
measurement data, then the fuzzy set T is the result from the reasoning process, which is in this case a
relation.

Demonstration Example 15.7
Before you continue taste your fruits

In the following, first, a one-dimensional crisp fact is taken. Define the fruit colour green as a fact by the
singleton

C′ = { 1 0 0 } ,

where the numbers are the intensity grades of the colours green, yellow and red. When one calculates
the composition T ′ = C′ ◦ R by applying Eq. (15.5.3), where in this case the first operand has only one
dimension, the fuzzy set for the maturity

T ′ = { 1 0.5 0 }

is obtained. The result is obvious from the first rule of the rule base R. When a different colour is taken
than included in the rule base entries, say orange as

C′ = { 0 0.5 0.5 } ,

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzyLogic/FuzzyComposition.html
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then there is no problem to obtain the value for the maturity

T ′ = { 0.3 0.5 0.5 }

by applying the composition formula. The reasoning process is now solved.

In the same manner as relations can be composed, the one-dimensional facts can be composed with the
rule base to realise the reasoning operation. This can now be precisely re-formulated for the general case
of a rule base according to Eq. (14.3.1).

If for the rule base
R : X × Y → [0, 1]

its membership function is described by Eq. (15.4.4) or (15.4.5) and if there is a fact described by the
fuzzy set

A′ : X → [0, 1]

and its membership function µA′(x), the result

B′ = A′ ◦ R : Y → [0, 1]

of the fuzzy reasoning is represented by the membership function

µB′(y) = max
x∈X

{min{µA′(x), µR(x, y)}} . (15.5.4)
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Module overview. The idea of a fuzzy system is introduced in this module. Its main components are
described and discussed in detail using examples. The results from the fuzzification module drives the rule
base. The fuzzy inference machine is developed which solves the reasoning. The methods to transform the
fuzzy results of the reasoning process to crisp data is shown in detail. The mainstream in the fuzzy system
of this module is the Mamdani approach which needs the defuzzification step, but the Takagi-Sugeno-type
of fuzzy system is also introduced which avoids defuzzification.

Module objectives. When you have completed this module you should be able to:

1. Design a fuzzy system.

2. Fuzzify input information.

3. Describe a fuzzy inference machine using fuzzy sets.

4. Defuzzify results from the reasoning process.

Module prerequisites. Fuzzy sets.

In the previous section, elementary fuzzy terms and fuzzy logic operations have been introduced. In this
section, the application to the treatment of rule-based knowledge follows. For this a rule-based fuzzy
system is needed, containing a rule base and a reasoning algorithm, which is used to process crisp or
fuzzy input values xi, i = 1, . . . , n to a crisp or fuzzy output value y, see Figure 16.0.1. Using multiple
inputs and one output implies no restriction as a multi-input-multi-output fuzzy system can always
be decomposed into multiple systems according to Figure 16.0.1. Such systems are the basis for the
realisation of fuzzy controllers. As there are mostly crisp input values xi from measurements and for
controllers only a crisp output y, a fuzzy system must contain additional components, fuzzification and
defuzzification.

16-1
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Figure 16.0.1: Rule-based fuzzy system with n inputs and one output

16.1 Fuzzification

The fuzzification comprises the process of transforming crisp values into grades of membership for lin-
guistic terms of fuzzy sets. The membership function is used to associate a grade to each linguistic term.

Example 16.1.1
For the fuzzification of the car speed value x0 = 70 km/h the two membership functions µA and µB from
Figure 16.1.1 can be used, which characterise a low and a medium speed fuzzy set, respectively. The
given speed value of x0 = 70 km/h belongs with a grade of µA(x0) = 0.75 to the fuzzy set “low” and with
a grade of µB(x0) = 0.25 to the fuzzy set “medium”. �
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Figure 16.1.1: Fuzzification of a car speed

Demonstration Example 16.1
Fuzzification example

16.2 Fuzzy inference machine

The core section of a fuzzy system is that part, which combines the facts obtained from the fuzzification
with the rule base and conducts the fuzzy reasoning process. This is called a fuzzy inference machine.
Here rule and composition operations are applied from sections 15.4 and 15.5.

In the following, for simplicity it is assumed that there is only one input x1 = x and the rule base is
described with max/min operators from Eq. (15.4.4) by

µR(x, u) = max
r

{min{µPr(x), µBr (u)}} , (16.2.1)

then inserting Eq. (16.2.1) into Eq. (15.5.4) yields

µB′(u) = max
x∈X

{min{µA′(x),max
r

{min{µPr(x), µBr (u)}}}} .

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzySystems/Fuzzification.html
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The max operations can be reordered such that only the relevant operands are on the right-hand side.
Then

µB′(u) = max
r

{min{max
x∈X

{min{µA′(x), µPr (x)}}︸ ︷︷ ︸
Hr

, µBr (u)}}

= max
r

{min{Hr, µBr (u)}}
(16.2.2)

is obtained for the reasoning process. The inner term Hr, which combines the fact with the premise, is
a constant and is called degree of relevance of the rule r. It characterises the relevance of the fired rule r
and can be treated as a de-normalised universal fuzzy set. The following example will help to interpret
and provide understanding of this reasoning operation by applying graphical means.

Example 16.2.1
A simple fuzzy system is given, which models the brake behaviour of a car driver depending on the
car speed. The inference machine should determine the brake force for a given car speed. The speed
is specified by the two linguistic terms “low” and “medium”, and the brake force by “moderate” and
“strong”. The rule base includes the two rules

(1) IF the car speed is low THEN the brake force is moderate
(2) IF the car speed is medium THEN the brake force is strong

For the linguistic terms in the premises “speed is low” and “speed is medium” those from Figure 16.1.1 are
used. The terms “force is moderate” and “force is strong” are defined in Figure 16.2.1. For these two rules
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Figure 16.2.1: Fuzzy set of a car brake force

the membership functions for the premises are µP1 = µA, µP2 = µB, and for the conclusions µB1 = µC,
µB2 = µD. The car speed is x0 = 70 km/h, which is a crisp value and therefore can be represented in
fuzzy notation by the singleton µA′(x) = {70 km/h}. Inserting these values into Eq. (16.2.2), one obtains

µB′(u) = max{min{H1, µC(u)}, min{H2, µD(u)}}

with
H1 = max

x∈X
{min{µA′(x), µA(x)}}

and
H2 = max

x∈X
{min{µA′(x), µB(x)}} .

In rule 1, there is only a relation between µA and µC. The degree of relevance H1 for rule 1 is a horizontal
line of height 0.75, which is the value from the fuzzification as shown in Figure 16.2.2a. The reasoning
operation min{H1, µC(u)} with rule 1 cuts the membership function µC(u) by this line (yellow area).
The rule 2 is evaluated analogously, as shown in Figure 16.2.2b. Figure 16.2.2c shows the final result
from the union operation over all yellow areas from the inferences obtained with the individual rules. �

Demonstration Example 16.2
An inference example with one rule

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzySystems/FuzzyInference1.html
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Figure 16.2.2: Fuzzy inference example: (a) inference with rule 1, (b) with rule 2, and (c) final fuzzy set

Demonstration Example 16.3
An inference example with more rules

The inference shown above is based on the max/min representation of a rule base from Eq. (15.4.4).
Taking alternatively the max-prod representation from Eq. (15.4.5)

µB′(u) = max
r

{max
x∈X

{min{µA′(x), µPr (x)}}︸ ︷︷ ︸
Hr

µBr (u)}

= max
r

{Hr µBr (u)}
(16.2.3)

is obtained for the max-prod inference. The difference between the max/min and max-prod inference
is that in the first case the membership function of the conclusion is cut and in the second case scaled.
Figure 16.2.3 illustrates this.

Example 16.2.2
For a fuzzy system with the two inputs x1 and x2 and the output u the inference of the two fuzzy rules

(1) IF (x1 = P) AND (x2 = M) THEN (u = M)
(2) IF (x1 = N) OR (x2 = S) THEN (u = S) ,

should be evaluated. The linguistic term S stands for “small”, M for “medium”, L for “large”, N for
“negative” and P for “positive”.

Each rule contains two premises, which are differently connected. In rule 1 the connective operation is
the intersection, which can be performed by the min operation according to Eq. (15.3.1) for µA11(x1) and

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzySystems/FuzzyInference2.html
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Figure 16.2.3: Membership function of a conclusion using (a) max/min and (b) max-prod inference

µA12(x2), and in rule 2 the premise is a union of the two premises (x1 = N) and (x2 = S), which can be
performed by the max operation according to Eq. (15.3.2) for µA21(x1) and µA22(x2). In the first case the
degree of relevance is H1 = µA12(x2) and in the second case H2 = µA22(x2). The membership functions
of the conclusion of each rule will be determined using the degree of relevance of the corresponding rule
by applying either the max/min inference method according to Eq. (16.2.2) or the max-prod inference
method according to Eq. (16.2.3). The reasoning process using both inference methods is visualised in
Figure 16.2.4. �

16.3 Defuzzification

As a result of applying the previous steps, one obtains a fuzzy set µB′(u) from the reasoning process that
describes, for each possible value u, how reasonable it is to use this particular value. In other words,
for every possible value u, one gets a grade of membership that describes to what extent this value u is
reasonable to use. Using a fuzzy system as a controller, one wants to transform this fuzzy information
into a single value u′ that will actually be applied. This transformation from a fuzzy set to a crisp number
is called a defuzzification. It is not a unique operation as different approaches are possible. The most
important ones for control are described in the following.

16.3.1 Centre of gravity method (COG)

This approach has its origin in the idea to select a value u′ that, on average, would lead to the smallest
error in the sense of a criterion. If u′ is chosen, and the best value is u, then the error is u′−u. Thus, to
determine u′ the least squares method can be used. As weights for each square (u′ − u)2, one can take
the grade of membership µB′(u) with which u is a reasonable value. As a result one has to find

u′ = argmin
u′

∫
U
µB′(u) (u′ − u)2du . (16.3.1)

Differentiating with respect to the unknown u′ and equating the derivative to zero, the formula

u′ =

∫
U uµB′(u)du∫
U µB′(u)du

(16.3.2)

is obtained, which determines the value of the abscissa of the centre of gravity of the area below the
membership function µB′(u).

16.3.2 Centre of singleton method (COS)

The defuzzification can be strongly simplified if the membership functions µBr (u) of the conclusions are
singly defuzzified for each rule such that each function is reduced to a singleton that has the position u′r
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of the individual membership function’s centre of gravity. The centre of singletons is calculated by using
the degree of relevance as follows:

u′ =
∑

R u
′
r Hr∑

RHr
. (16.3.3)

The simplification consists in that the singletons can be determined already during the design of the fuzzy
system and that the membership function µB′(u) with its complicated geometry is no longer needed. The
defuzzification using this formula is an approximation of the defuzzification by Eq. (16.3.2). Experiences
from control show that there are slight differences between both approaches, which can be in most cases
neglected.

16.3.3 Maximum methods

This class of methods determines u′ by selecting the membership function with the maximum value. If
the maximum is a range, either the lower, upper or the middle value is taken for u′ depending on the
method. Using these methods, the rule with the maximum activity always determines the value, and
therefore they show discontinuous and step output on continuous input. This is the reason why these
types of method are not attractive for use in controllers.

16.3.4 Margin properties of the centroid methods

As the centre of gravity of the area below the membership functions cannot reach the margins of U ,
the membership functions, which are at the margins, must be symmetrically expanded when obtaining
the centre of gravity. This is necessary in order to have the full range of U available. This is shown in
Figure 16.3.1. The same expansion is also necessary for the COS method.

�

�
� � ��

7
� �

�

�

� � �� �

� � � � � �7
� �

� � � �

Figure 16.3.1: Margin of µB′(u) (a) original and (b) expanded

Demonstration Example 16.4
Properties of the defuzzification methods

16.4 The Takagi-Sugeno fuzzy system

In the rule bases described hitherto with the IF-THEN rules of this chapter fuzzy sets both in the premises
and in the conclusions are used. This kind of inference is called Mamdani inference. A modified inference
scheme, developed by Takagi and Sugeno, represents the conclusions by functions. A rule of this form
will be

IF x1 is Ar1 AND x2 is Ar2 ... AND xn is Arn THEN u = fr(x1 , x2, . . . , xn) .

The structure of the premises are the same as for the Mamdani inference. However, in the conclusion all
linguistic terms Br are substituted by the functions fr, and therefore it is not necessary to define a priori
linguistic terms Br(u) for the conclusions as in Eq. (14.3.1). The function fr represents a direct mapping
from the input space X1 ×X2 × . . .×Xn with the input values x1 , x2, . . . , xn to the output space U .

http://www.atp.rub.de/DynLAB/dynlabmodules/Examples/FuzzySystems/FuzzyDefuzzification.html
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The connective operation in a rule is in this case performed via the degree of relevance Hr of the premise
of the rule Rr and the function fr in the conclusion. The final output is determined as a weighted mean
value over all R rules according to

u′ =
∑

R Hr fr(x1 , x2, . . . , xn)∑
RHr

. (16.4.1)

The effort of performing a defuzzification is saved, as the crisp value u′ is directly determined by the
inference operation and this makes this method attractive.

The Takagi-Sugeno fuzzy system builds an overall combination of functions fr, which are valid in some
range. If the membership functions of the fuzzy sets in the premises are overlapping, the transition
between the functions is always continuous. For the special case of linear functions

fr(x1 , x2, . . . , xn) =
n∑

ν=1

crν xν (16.4.2)

the coefficients crν can be determined by some identification procedure.

16.5 The components of a fuzzy system

In the introduction to this fuzzy system section, in Figure 16.0.1 a fuzzy system is drawn as a black box
with some inputs and an output. Figure 16.5.1 shows the contents of a fuzzy system. Now it is clear,

+ # - - � + � � " � � � �

	 # 
 � �  " � �

� � + � 	 � � � � � � + # - - � + � � " � � � �
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Figure 16.5.1: Components of a fuzzy system

what is in this black box. The input signals combined to the vector x = [x1, x2, . . . , xq]T are crisp values,
which are transformed into fuzzy sets in the fuzzification block as discussed in section 16.1. The output
u comes out directly from the defuzzification block, which transforms an output fuzzy set back to a crisp
value using methods from section 16.3. The set of membership functions responsible for the transforming
part and the rule base as the relational part contain as a whole the modelling information about the
system, which is processed by the inference machine from section 16.2. This rule-based fuzzy system is
the basis of a fuzzy controller, which is described in the following section.
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Fuzzy control

Module units
17.1 Basic structure of a fuzzy controller . . . . . . . . . . . . . . . . . . . . . . . 17-1

17.2 Transfer behaviour of fuzzy controllers . . . . . . . . . . . . . . . . . . . . . 17-2

17.2.1 Representation using 2D characteristics . . . . . . . . . . . . . . . . . . . . . . 17-3

17.2.2 Influence of the membership functions and rule base on the characteristic . . . 17-3

17.2.3 Representation using 3D characteristics . . . . . . . . . . . . . . . . . . . . . . 17-7

17.3 Example of a fuzzy control system . . . . . . . . . . . . . . . . . . . . . . . . 17-8

17.3.1 Loading crane plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9

17.3.2 Fuzzy control system design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9

17.4 Contribution of fuzzy control . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-11

Module overview. A fuzzy controller is a special fuzzy system that can be used as a controller com-
ponent in a closed-loop system. The integration of a fuzzy system into a closed loop is shown. Special
emphasis is put onto the transfer behaviour of fuzzy controllers, which is analysed using different config-
urations of standard membership functions. An example for the design of a fuzzy controller for a loading
crane is given. Finally, the module series is closed by a general discussion about the contribution of fuzzy
control.

Module objectives. When you have completed this module you should be able to:

1. Design a fuzzy control system.

2. Know the transfer behaviour of a fuzzy control system.

3. Change the membership functions to influence the transfer behaviour of a fuzzy control system.

Module prerequisites. Fuzzy systems, fuzzy sets, PID control.

17.1 Basic structure of a fuzzy controller

A fuzzy controller can be handled as a system that transmits information like a conventional controller
with inputs containing information about the plant to be controlled and an output that is the manipulated
variable. From outside, there is no vague information visible, both, the input and output values are crisp
values. The input values of a fuzzy controller consist of measured values from the plant that are either
plant output values or plant states, or control errors derived from the set-point values and the controlled
variables.

17-1
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A control law represented in the form of a fuzzy system is a static control law. This means that the
fuzzy rule-based representation of a fuzzy controller does not include any dynamics, which makes a
fuzzy controller a static transfer element, like the standard state-feedback controller. In addition to
this, a fuzzy controller is in general a fixed nonlinear static transfer element, which is due to those
computational steps of its computational structure that have nonlinear properties. In what follows the
computational structure of a fuzzy controller will be described by presenting the computational steps
involved. The computational structure of a fuzzy controller consists of three main steps as illustrated by
the three blocks in Figure 17.1.1:
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Figure 17.1.1: Basic structure of a fuzzy controller

1. signal conditioning and filtering at the input (input filter),

2. fuzzy system according to Figure 16.5.1, and

3. signal conditioning and filtering at the output (output filter).

The input and output filters are for signal conditioning. The external input signals v must be scaled such
that they can be fed as signals x into the fuzzification part of the fuzzy system. In many cases, the signals
in v are the control error e and its derivative ė. In this case the input filter contains a differentiating
element. Also other dynamical elements can be in the input filter, e.g. integrators for the control error.
Additionally auxiliary signals from the plant measurements may be used that represent plant states or
disturbances acting on the plant. The design of this input filter depends on the application, which will
be illustrated later by an example.

The fuzzy system contains the control strategy and consists of those components already discussed in
section 16.5. For example, a linguistic formulation of a proportional control strategy would be expressed
by the following rules of the fuzzy system:

(1) IF (control error positive) THEN (manipulated variable positive),
(2) IF (control error zero) THEN (manipulated variable zero),
(3) IF (control error negative) THEN (manipulated variable negative).

A proper rule base can be found either by asking experts or by evaluation of measurement data using
data mining methods.

The output filter is for the adaptation of the crisp output c from the fuzzy system to the manipulated
variable u of the plant. In principle, there are many dynamical and static operations possible. Often, the
output c of the fuzzy system describes an increment of the manipulated variable, and thus an integration
of this increment must occur.

17.2 Transfer behaviour of fuzzy controllers

As already stated, fuzzy systems describe the static behaviour of a fuzzy control strategy. Therefore it is
obvious that the transfer behaviour of such a system can be represented by nonlinear characteristics. This
provides a fine opportunity to compare fuzzy control strategies amongst themselves and with conventional
nonlinear ones.
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17.2.1 Representation using 2D characteristics

To provide a first approach for the design of membership functions for a fuzzy controller component, some
prototype membership functions are introduced. For such prototypes, linguistic terms are introduced.
For example, the following seven terms

NL negative large PL positive large
NM negative medium PM positive medium
NS negative small PS positive small
AZ approximately zero

can be used to characterise the triangular shaped fuzzy sets according to Figure 17.2.1. It is important
to recognise that the fuzzy sets defined in this figure and the seven linguistic terms are only a reasonable

@ N @ � @ C � ? ; C ; � ; N
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. � � �

� � � �

Figure 17.2.1: Prototype membership functions for a fuzzy set with seven linguistic terms

example. For various reasons, emerging from specific applications, other shapes of membership functions
might be used over the given ranges. Moreover, different fuzzy sets may be defined for different variables.
The prototype membership functions are usually chosen only as a preliminary candidate. They may later
be modified by the designer.

For a fuzzy system using this kind of prototype with membership functions which overlaps, both for the
premise and the conclusion the transfer characteristic is nonlinear, as shown in the following example.

Example 17.2.1
For a proportional fuzzy controller with the control error e = w − y as input, with the manipulated
variable u as output, with the rule base

(1) IF e = NL THEN u = NL
(2) IF e = NM THEN u = NM
(3) IF e = NS THEN u = NS
(4) IF e = AZ THEN u = AZ
(5) IF e = PS THEN u = PS
(6) IF e = PM THEN u = PM
(7) IF e = PL THEN u = PL

and with both membership functions of the form shown in Figure 17.2.1, the static nonlinear characteristic
u = u(e) is as shown in Figure 17.2.2 using the assumptions given below. �

17.2.2 Influence of the membership functions and rule base on the charac-
teristic

The above example shows that a fuzzy controller is a nonlinear controller. The form of the characteristic
depends only on the rule base and the membership functions of e and u. In the following discussions
about the influence of membership functions the following assumptions for the fuzzy controller with the
input signal e and the output signal u will be used:
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Figure 17.2.2: Nonlinear characteristic of a fuzzy controller

• For the AND connectives the min and for the OR connectives the max operator will be used.

• The max/min inference will be used.

• The defuzzification will be performed by the COG method with symmetrical membership functions
at the margins.

Input and output values are normalised to the interval [−1, 1], and at first, only the three linguistic terms
NS (negative small), AZ (approximate zero) and PS (positive small) are considered. The rule base is that
of a proportional fuzzy controller

(1) IF e = NS THEN u = NS,
(2) IF e = AZ THEN u = AZ,
(3) IF e = PS THEN u = PS,

with the membership functions shown in Figure 17.2.3a and b. The static characteristic in Figure 17.2.3c
is odd symmetrical about the origin due to the symmetry of the membership functions. Because of the
different supports of the membership function for the fuzzy sets AZ of both functions, the characteristic
is approximately piecewise linear and has three distinct levels. The membership functions of the input
e have two overlaps in the intervals [−0.6,−0.4] and [0.4, 0.6] that correspond precisely with the ranges
with the positive slope of the curve. The reason for this is just that two rules in these ranges are
simultaneously active. On the other hand, in the non-overlapping ranges only one rule is active. The
membership function of the output depends in this case only on the degree of relevance and thus the
centre of gravity of the membership function remains constant.

If the number of linguistic terms for the input and output is increased, the characteristic is similar, but
with more sections. The number of sections depends only on the number of linguistic terms and the
width of the sections depends on the degree of overlapping. In the special case without overlapping in
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Figure 17.2.3: Membership functions and static characteristic of the fuzzy controller
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Figure 17.2.4: Influence of the (c) characteristic of a proportional fuzzy controller (a) without overlapping
in the input membership functions and (b) with full overlapping in the output membership functions

the input one obtains the characteristic of a three-level controller, as shown in Figure 17.2.4. In this case
only one rule is active such that only the three crisp values -1, 0 and 1 are generated. Now, consider
varying the degree of overlap of the output membership functions. Figure 17.2.5 shows the case with full
overlap on input and output, where the result is approximately a linear behaviour.

A modification of the output membership functions so that they do not overlap will cause the characteristic
to become close to that of Figure 17.2.5, compare Figure 17.2.6. Therefore one can establish the fact that
the degree of overlap in the input membership functions has a strong influence on the static characteristic
of a fuzzy controller. While small overlaps in the input membership functions generate step characteristics,
with a higher degree of overlap the curves become smoother. The influence of overlap in the output
membership functions has less effect on the characteristic. For a reduction of the support of the output
membership functions the characteristic of Figure 17.2.7 is obtained which does not differ significantly
from that of Figure 17.2.5.

The size of the individual output membership function has a strong influence on the characteristic.
Figure 17.2.8 shows the case for a very small support of the output membership function AZ, which
generates an S-type characteristic with a high gain at the origin. Widening the support of the membership
function AZ inverts the S-curve with a small gain at the origin, as shown in Figure 17.2.9. Thus the form
of the characteristic depends strongly on the support of the individual output membership function.
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Figure 17.2.5: Influence on the (c) characteristic of a proportional fuzzy controller with (a) full overlap
in the input membership functions and (b) full overlap in the output membership functions
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Figure 17.2.6: Influence on the (c) characteristic of a proportional fuzzy controller with (a) full overlap
in the input membership functions and (b) without overlap in the output membership functions
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Figure 17.2.7: Influence on the (c) characteristic of a proportional fuzzy controller with (a) full overlap
in the input membership functions and with (b) reduced support in the output membership functions

The effects of a modified rule base will be demonstrated by an example. The same full overlapping
membership functions are used as in Figure 17.2.5a and b. A modified rule base of the form

(1) IF e = NS THEN u = PS,
(2) IF e = AZ THEN u = AZ,
(3) IF e = PS THEN u = NS,

will give a modulus-type of characteristic, as shown in Figure 17.2.10.
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Figure 17.2.8: Influence on the (c) characteristic of a proportional fuzzy controller with (a) full overlap
in the input membership functions and with (b) a small support in the output membership function AZ
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Figure 17.2.9: Influence on the (c) characteristic of a proportional fuzzy controller with (a) full overlap
in the input membership functions and with (b) a large support in the output membership function AZ
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Figure 17.2.10: Influence on the rule base on the (c) characteristic of a proportional fuzzy controller
with (a) full overlap in the input membership functions and (b) full overlap in the output membership
functions

17.2.3 Representation using 3D characteristics

Up to now, fuzzy controllers with only one input and one output of the fuzzy system have been considered.
The same arguments with respect to the degrees of freedom of a fuzzy system are also valid in the case
of multiple inputs. A graphical representation of the characteristic is not as easy as in the 2D cases of
section 17.2.2. Moreover, for the case of two inputs, a 3D representation is possible. For a fuzzy controller
with a fuzzy system having two inputs e1 and e2 and one output u one gets a band of characteristics in
a 2D discrete representation, or a 3D representation with the output over the two inputs, as shown in
Figure 17.2.11 for a PD-type of fuzzy controller. For the case with more than two inputs, projections on
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Figure 17.2.11: Control system with PD-type fuzzy controller: (a) block diagram and (b) 3D represen-
tation of the characteristics of the fuzzy system with e1 = e and e2 = ė

the 3D space can be used to generate multiple 3D diagrams, but in general these representations have
only a limited usefulness.

A fuzzy controller is typically a classical controller using nonlinear characteristics. But the design and
parametrisation is entirely different.

17.3 Example of a fuzzy control system

In the following the design and functioning of a fuzzy control system will be presented using the example
of the portal-type loading crane shown in Figure 17.3.1

Figure 17.3.1: View of a portal-type loading crane
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17.3.1 Loading crane plant model

The schematic diagram in Figure 17.3.2 shows the principle of a loading crane, which consists of a crab
moving on rails. The load (freight) hangs on a rope from the crab such that the rope and load together

% 6 � �

� �

�
�

�
�

Figure 17.3.2: Schematic representation of the loading crane

can be treated as a pendulum. The load moves only in the plane that contains the direction of the
rails. The force of the electrical drive, which moves the crab, is proportional to the control signal, fed
into the drive system. The position of the crab and the rope (pendulum) angle are measured. The real
manipulated variable to control the drive is limited to ±10V .

The plant dynamical behaviour can be described by the two coupled nonlinear differential equations

ÿC =
1

M +m sin2 ϕ
[m sinϕ(g cosϕ+ lϕ̇2) + F u− S sgn(ẏC) −D ẏC], (17.3.1)

ϕ̈ =
−1

l (M +m sin2 ϕ)
(17.3.2)

· [m sinϕ (g + lϕ̇2 cosϕ) +Mg sinϕ+ cosϕ (F u− S sgn(ẏC) −D ẏC)]
y = yC + l sinϕ (17.3.3)

with the following parameters and variables of the crane:

position of the load: y,
position of the crab: yC,
pendulum angle: ϕ,
mass of the crab: M = 1000kg,
mass of the load: m = 20 . . .1250kg,
pendulum length: l = 10 . . . 20m,
acceleration due to gravity: g = 9.80665m/s2,
drive coefficient: F = 1000 N/V,
static friction force: S = 500 N ,
dynamical friction coefficient: D = 777kg/s,
experimental initial position: y0 = −9m,
experimental target position: yT = +9m .

The control task is to move the load from the initial position y0 to the target position yT such that
the load does not swing at the target position and the transition goes smoothly with a minimum of
oscillations and no overshoot.

17.3.2 Fuzzy control system design

In general, the design of a fuzzy controller is characterised by the fuzzy methodology as described above.
For designing a fuzzy control system from scratch more or less heuristic methods are available. If no
expert or operator is available, one cannot tackle the design problem without some information, typical
a mathematical model, of the plant. The controller of the crane has been designed and tested using
simulation studies by the following generic procedure:
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1. Identification of the relevant input and output variables of the controller, i.e. choice of the linguistic
variables,

2. setting of the possible ranges of the input and output values, i.e scaling of the linguistic variables,

3. definition of meaningful linguistic terms and their membership functions for each linguistic variable,

4. setting up the rule base, and

5. simulation of the closed loop if possible or testing at the plant site.

As the maximum number of rules R, considering all possible connective operations, increases strongly
with the number of inputs n and membership functions m according to

R = mn , (17.3.4)

one has to try to keep it low. Hence, as a first approach a control structure according to Figure 17.2.11a
is taken, and for the linguistic variables the control error e = w − y and its derivative ė are chosen, each
with the three membership functions N (negative), Z (zero) and P (positive) including the output. Thus
from Eq. (17.3.4) 9 rules for a full rule base have to be specified. The control error is directly calculated
as the difference between the set-point value w and the position of the load y, not of the crab. For
determining the derivative ė a differentiating filter may be used. As the set point is changed only in
steps when the pendulum has settled, the derivative ė is equal to the derivative −ẏ. Most crane systems
measure the speed of the crab for the internal drive control. Therefore it is reasonable to avoid the
differentiating filter and use the speed −ẏC of the crab instead. The input filter is now reduced to gains
for scaling signals such that they fit to the range of the linguistic variables. In order to compensate step
disturbances, e.g. caused by static friction S, the output filter is provided with an integrator in parallel
to the proportional channel.

This relatively simple fuzzy control system shows a reasonable behaviour, as shown in Figure 17.3.7a.
The maximum amplitude of the oscillations of the load is about 7 ◦, which is still relatively large. The
control performance can be improved when additional information about the angle ϕ and its speed ϕ̇
are exploited in the new structure shown in Figure 17.3.3. As ϕ̇ is not measured, an input filter (DT1

element) is necessary to generate this signal. Now due to the doubling of the number of inputs, the
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Figure 17.3.3: Structure of the loading crane fuzzy control system

problem of an efficient rule base arises. According to Eq. (17.3.4), 81 rules are now necessary if all inputs
enter into all premises. It is thus difficult to formulate such a large number of useful rules. Therefore
one can use a simpler approach of using two separate rule bases, the one for position control that has
already been used for the linguistic variables of e and −ẏC and the other for angle control for the linguistic
variables of ϕ and ϕ̇. Both rule bases are linked by the fuzzy union operation. The maximum number of
rules is now reduced to 18 and can be further reduced to 14 by removing all unfired rules. Figure 17.3.4
shows the membership functions for the five linguistic variables. The rules are illustrated in tabular form
in Figure 17.3.5. In Figure 17.3.6 two 3D characteristics of the fuzzy system are shown. The nonlinear
behaviour can be clearly recognised.
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Figure 17.3.4: Triangular membership functions of the five linguistic variables
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Figure 17.3.5: Rule bases for position and angle control
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Figure 17.3.6: 3D characteristics of the fuzzy system (a) u = u(e, ė), (b) u = u(e, ϕ)

Figure 17.3.7 shows the results of the fuzzy control system when moving the load from y0 to yT. The
input signals are scaled such that they use almost the full range of the linguistic variables. The scaling
factors from Figure 17.3.3 are K1 = 0.1, K2 = −0.5, K3 = 1 and K4 = 6. The parameters of the output
filter are KP = 2 and KI = 1.4. The additional angle feedback damps the oscillations to about a half
the number with pure position control, as shown in Figure 17.3.7b. The control system shows robustness
when the length of the rope is doubled as shown in Figure 17.3.7c.

17.4 Contribution of fuzzy control

In many real-life situations, there is a need to automatically control a system such as a car, a chemical
reactor or a crane. In some situations, a reasonable model of the controlled object and how it will react to
different controls are known. Also one can often describe precisely the objective of the control – usually,
to maximise or minimise a certain characteristic such as the plant’s output, say in response to a system
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Figure 17.3.7: Responses of the portal-type loading crane with fuzzy control from initial to target
position for load m = 1000kg: (a) without angle feedback, l = 10m, (b) with angle feedback, l = 10m,
(c) with angle feedback, l = 20m

disturbance can be defined. In such cases, the search for the optimal control strategy can be reformulated
as a precise mathematical problem. Thus, in many real-life cases one can explicitly solve the optimisation
problem and thus find the desired control.

In many other situations, however, one does not have a good description of the controlled system, or a
good model is available, but the corresponding optimisation problem is too difficult to solve. In such
situations, one may have the expertise of skilled operators who have the experience of controlling the
system. For example, the experience of drivers who control cars, the experience of chemical engineers who
successfully control chemical plants and the experience of crane operators who successfully operate their
cranes. It may be appropriate to transform this expert experience into an automatic control strategy.

It is often difficult to come up with such a transformation, because expert operators are often unable to
describe their experience in precise terms. Instead they describe their control by using words of natural
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language, which do not have a precise meaning and are, in this sense, fuzzy. There is thus a need for
a methodology that translates such fuzzy rules into a precise control strategy. Fuzzy control is such a
methodology.

Fuzzy control is successful in many real-life problems in which traditional control methods fails or at least
is not so successful. Does this mean that traditional control as shown in the other chapters is the thing
of the past and only fuzzy methods should be used? Of course not, fuzzy control has its limitations too.

The main limitation of fuzzy control is that it is applicable only in the situation of uncertainty, when
there is the complete knowledge about the controlled system not available. Fuzzy control is therefore
good but not optimal. Often, as one gains more and more experience of controlling the system, one gets
a better and better understanding of how the system works. Eventually, this understanding leads to a
precise description of the system, which allows to find an optimal control, which is better than any other
control and in particular, which is better than a fuzzy control strategy.

From this viewpoint, fuzzy control is a temporary phenomenon. This does not mean when our knowledge
grows that fuzzy control will be used less and less. As one obtains more and more knowledge about the
system that is controlled for a long time, new systems and objects attract our attention, and one needs
to be able to control them. For example, the car manufacturer finds a precise description of a certain
type of motor and the engineers learn how to optimally control the motor of this type, but when new
improved motors appear, for these new devices, the engineers do not have the exact model, and thus,
they have to use fuzzy control or similar techniques. As the progress intensifies, more and more new
objects and systems appear that have to be controlled, and therefore, the relative use of fuzzy control
increases. Fuzzy control methodology has its limitations, but it does not have limits.
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A.1 The Laplace transform

A.1.1 Convergence

With respect to the range of convergence of the Laplace integral

F (s) =

∞∫
0

f(t) e−stdt, (A.1.1)

now the following considerations are taken:

If the function to be transformed f(t) is stepwise continuous and if there are real numbers α and σ′ such
that for all t ≥ 0

|f(t)| < α eσ′t

is valid, then the Laplace integral will converge for all s with Re s > σ′. Particularly, if for σ′ the
smallest possible value σ0 is taken, the condition Re s > σ0 is the smallest possible convergence range.
Consequently the Laplace integral exists only within some part of the complex s plane. This part is called
convergence area, as shown in Figure A.1.1. The variable σ0 is called the abscissa of convergence. For
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Figure A.1.1: Convergence area of the Laplace integral

values of s with Re s > σ0 Eq. (A.1.1) makes no sense. Thus for σ > σ0 the limit value of f(t) e−σt for
t→ ∞ must go to zero, but not for σ < σ0.

Example A.1.1

f(t) = tn

The Laplace integral converges for all s with σ > 0, as e−σt for t → ∞ decreases faster than any power
of t increases. �

A.1.2 The inverse Laplace transform

The so called back transformation or inverse Laplace transformation, i.e. the determination of the original
function from the mapped function, is given by the inverse integral

f(t) =
1

2πj

c+j∞∫
c−j∞

F (s) estds t > 0, (A.1.2)

where f(t) = 0 for t < 0 is valid. The variable c must be chosen such that the path of integration is in
the convergence area along a line parallel to the imaginary axis at distance c from it, where c must be
larger than the real parts of all singular values of F (s).

It must be observed that Eq. (A.1.2) at a step location t = ts delivers the arithmetic mean value of the left
and right limits [f(ts+) +f(ts−)]/2, particularly for t = 0 at the origin, as [f(0+) +f(0−)]/2 = f(0+)/2.
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A.1.3 Main theorems of the Laplace transform

A.1.3.1 Derivative theorem

For a causal function of time f(t), for which the derivative for t > 0 exists, and take into account any
steps at t = 0, the value of 0+ will be chosen for the lower limit of integration for Eq. (A.1.1). This is
necessary to eliminate the case t = 0 from the integration interval. This has no influence on the value
of the integral as far as we restrict on classical functions (no distributions). So one obtains by partial
integration

�

{
d f(t)

dt

}
=

∞∫
0+

e−st d f(t)
dt

dt =
[
e−stf(t)

] ∣∣∣∣∞
0+

+ s

∞∫
0+

e−stf(t) dt

or

�

{
d f(t)

dt

}
= s F (s) − f(0+). (A.1.3)

In the case of multiple differentiation it follows that

�

{
dnf(t)
d tn

}
= snF (s) −

n∑
i=1

sn−i d
(i−1)f(t)
d t(i−1)

∣∣∣∣∣
t=0+

. (A.1.4)

A.1.3.2 Integral theorem

From

�

{ t∫
0

f(τ) dτ
}

=

∞∫
0

t∫
0

f(τ) dτ e−stdt

one obtains by partial integration

�

{ t∫
0

f(τ) dτ
}

= −1
s

[ t∫
0

f(τ) dτ e−st

]∞
0

+
1
s

∞∫
0

f(t) e−stdt

=
1
s

∞∫
0

f(t) e−stdt

�

{ t∫
0

f(τ) dτ
}

=
1
s
F (s). (A.1.5)

A.1.3.3 Convolution in the time domain

For the convolution of two functions of time f1(t) and f2(t)

f1(t) ∗ f2(t) =

t∫
0

f1(τ) f2(t− τ) dτ. (A.1.6)

I can easily be shown by permutation of the variables that the convolution is a symmetrical operation,
so that

f1(t) ∗ f2(t) = f2(t) ∗ f1(t)
or

t∫
0

f1(τ) f2(t− τ) dτ =

t∫
0

f2(τ) f1(t− τ) dτ.
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In the following it will be shown that the convolution of two original functions corresponds to multipli-
cation of the related mapped functions, that is

� {f1(t) ∗ f2(t)} = F1(s)F2(s). (A.1.7)

The Laplace transform of Eq. (A.1.6) is given by

� {f1(t) ∗ f2(t)} = �

{ t∫
0

f1(τ) f2(t− τ) dτ
}

=

∞∫
t=0

t∫
τ=0

e−stf1(τ) f2(t− τ) dτ dt.

Substituting σ = t − τ and dσ = dt, respectively and using the valid extension of the upper bounds of
integration to τ → ∞ yields

� {f1(t) ∗ f2(t)} =

∞∫
σ=−τ

∞∫
τ=0

e−s(τ+σ) f1(τ) f2(σ) dτ dσ.

As both functions f1(t) and f2(t) have zero values for t < 0, it follows with respect to the lower limit of
integration that

� {f1(t) ∗ f2(t)} =

∞∫
0

e−sτf1(τ) dτ

∞∫
0

e−sσf2(σ) dσ.

The right-hand side of this equation is just the product F1(s)F2(s).

A.1.3.4 Convolution in the frequency domain

Whereas in section A.1.3.3 the convolution of two functions of time was the focus of interest, here the
convolution of two functions in the frequency domain is of concern and it can be shown that

� {f1(t) f2(t)} =
1

2πj

c+j∞∫
c−j∞

F1(p)F2(s− p) dp. (A.1.8)

Here F1(s) •−−◦f1(t) and F2(s) •−−◦f2(t) is valid. Furthermore, p is the complex variable of integration.
According to this theorem the Laplace transform of the product of two functions of time is equal to the
convolution of F1(s) and F2(s) in the mapped domain.

For the product of two causal functions of time

f(t) = f1(t) f2(t) (A.1.9)

with Laplace transforms F1(s) and F2(s) and areas of convergence Re s > σ1 and Re s > σ2, respectively,
the expression

� {f(t)} = F (s) =

∞∫
0

f1(t) f2(t) e−stdt (A.1.10)

follows after taking the Laplace transform of f(t). Using the inverse integral according to Eq. (A.1.2)

f1(t) =
1

2πj

c+j∞∫
c−j∞

F1(p) eptdp c > σ1 (A.1.11)

and by substituting this relationship into Eq. (A.1.10) it follows that

F (s) =

∞∫
0

f2(t) e−st

⎡
⎣ 1

2πj

c+j∞∫
c−j∞

F1(p) eptdp

⎤
⎦ dt. (A.1.12)
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Permuting the sequence of integration (as far as the integrals fulfil the conditions of convergence) one
obtains

F (s) =
1

2πj

c+j∞∫
c−j∞

F1(p) dp

∞∫
0

f2(t) e−(s−p) tdt, (A.1.13)

where for the second integral one can make the substitution

F2(s− p) =

∞∫
0

f2(t) e−(s−p) tdt. (A.1.14)

This integral converges for Re(s− p) > σ2. By substituting Eq. (A.1.14) into Eq. (A.1.13) the validity of
Eq. (A.1.8) is shown.

A.1.3.5 Initial value theorem

It is required to show that
f(0+) = lim

t→0+
f(t) = lim

s→∞ s F (s). (A.1.15)

One has that

�

{
ḟ(t)
}

=

∞∫
0+

ḟ(t) e−stdt = s F (s) − f(0+)

which as s→ ∞ can be written

lim
s→∞

∞∫
0+

ḟ(t) e−stdt = lim
s→∞[s F (s) − f(0+)].

As the integration is independent of s, the calculation of the limit and the integration can be permuted
provided that the integral converges uniformly. If � [f(t)] exists, then

lim
s→∞ ḟ(t) e−st = 0

is valid. Therefore one gets
lim

s→∞ s F (s) = f(0+).

A.1.3.6 Final value theorem

The final value theorem states that

f(∞) = lim
t→∞ f(t) = lim

s→0
s F (s). (A.1.16)

To prove this one evaluates the limit

lim
s→0

∞∫
0+

ḟ(t) e−stdt = lim
s→0

[s F (s) − f(0+)].

Again one can permute the sequence of determining the limit and the integration provided the integral
converges. The result is

∞∫
0+

ḟ(t) dt = lim
s→0

[s F (s) − f(0+)],

and after integration it follows that

f(∞) − f(0+) = lim
s→0

[s F (s) − f(0+)]

f(∞) = lim
s→0

s F (s).
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A.2 The complex G-plane

The complex transfer function G(s) describes a local conformal mapping of the s plane to the G plane.
Because of the preservation of the angles in this transformation the orthogonal grid of lines parallel to
the axes σ = const and ω = const of the s plane will be mapped into an orthogonal, but warped net of
curves in the G plane, as shown in Figure A.2.1.

� � � 0 � � � � � �

$ �

�

� � 0 � � � � � �
� � 0 � � � � � �

� � 3 � 4

$ 2 � 3 � 4
� � � 
 " � � � � � � 
 " � �

� � 0 � � � � � �

Figure A.2.1: Local conformal mapping of the lines σ = const and ω = const of the s plane into the G
plane (generalised Nyquist plot)

This mapping property will be discussed in the following using the simple example of a 1st-order transfer
function

G(s) =
K

1 + sT
. (A.2.1)

For s = σ + jω one obtains from Eq. (A.2.1)

G(σ + jω) =
K

1 + σT + jωT
= K

1 + σT − jωT
(1 + σT )2 + ω2T 2

.

From this it follows that for the real and imaginary parts of G(s)

Re{G(s)} = K
1 + σT

(1 + σT )2 + ω2T 2
, (A.2.2a)

Im{G(s)} = K
ωT

(1 + σT )2 + ω2T 2
. (A.2.2b)

For mapping the following two cases are treated:

a) Mapping of the lines σ = const

From ω from Eqs. (A.2.2a) and (A.2.2b) one obtains

ωT = −(1 + σT )
Im{G(s)}
Re{G(s)} (A.2.3)

and substituting Eq. (A.2.3) in Eq. (A.2.2a) shows, after a simple rearrangement, that[
Re{G(s)} − K

2(1 + σT )

]2
+ Im2{G(s)} =

[
K

2(1 + σT )

]2
. (A.2.4)

This relationship represents for the variables Re{G(s)} and Im{G(s)} the equation of a band of
circles with the parameter σ. The centres of these circles are on the real axis of the G plane at
K/[2(1 + σT )]. The radii are K/[2(1 + σT )]. For ω ≥ 0, K > 0 and T > 0 the lines σ = const
map into semicircles in the lower G plane, as Figure A.2.2 shows. The semicircles for σ = const
are parameterised by the values of ω. The circles start with ω = 0 on the real G axis and end for
ω → ∞ at the origin of the G plane.
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Figure A.2.2: Conform mapping of the upper s plane (ω > 0) into the G plane for the example G(s) =
K/(1 + sT )

A very important case is the semicircle with the parameter σ = 0. It represents the conformal
mapping of the positive imaginary axis of the s plane and is called the frequency response locus,
G(jω), for the system. This semicircle starts for ω = 0 with a value of K on the positive real axis
of the G plane and it has for |Re{G(jω)}| = | Im{G(jω)}| the frequency ω = ωB = 1/T , which is
also called the breakpoint frequency.
From Eq. (A.2.4) it is obvious, that for σ > 0 the radius of the semicircle will decrease until it
becomes zero for σ → ∞ and the final semicircle will coincide with the origin of the G plane. For
σ < 0 , however, the radius will increase to infinity for σ = −1/T , and the semicircle will degenerate
to the negative imaginary axis of the G plane.

• Mapping of the lines ω = const
If Eq. (A.2.3) is solved for σT then

σT = −
(

1 + ωT
Re{G(s)}
Im{G(s)}

)
(A.2.5)

and using this in Eq. (A.2.2b), one obtains by elementary manipulations[
Im{G(s)} +

K

2ωT

]2
+ Re2{G(s)} =

[
K

2ωT

]2
. (A.2.6)

This relationship also represents a band of circles, but for the parameter ω. The centres of the
circles for ω ≥ 0 are on the negative imaginary axis at −K/(2ωT ) and because of the radii of size
K/(2ωT ) they pass to the origin of the G plane. For ω = 0 the radius will be infinite and the circle
degenerates to a line that is the real axis of the G plane. For ω → ∞ the radius shrinks to zero
and the circle degenerates to the origin of the G plane. It can be easily shown that both bands of
circles according to Eqs. (A.2.4) and (A.2.6) are orthogonal.
The transfer function G(s) = K/(1+sT ) belongs to a special class of local conformal mappings, the
so called linear mappings. A mapping, described by the equation G(s) = (As+B)/(Cs+D) always
maps the circles in the s plane to circles in the G plane. Here lines are treated as a special case of
circles. Introducing the complex G plane one gets for the special case σ = 0 of G(s) the frequency
response locus G(jω). The description of systems using frequency responses G(jω) in the G plane
is of high importance for practical applications as the frequency response is a directly measurable
description of a dynamical system.

A.3 Detailed analysis of 2nd-order lag elements

A.3.1 Determining resonances of 2nd-order lag elements

From Eq. (4.4.38) the maximum of the magnitude A(ω)max = A(ωp) = Mr and the resonant peak
frequency ωp can be simply determined. A(ω) is at a maximum, when the denominator of Eq. (4.4.38),
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i.e.

a(ω) =

[
1 −
(
ω

ω0

)2
]2

+
(

2ζ
ω

ω0

)2

,

is at minimum. Setting the derivative of 1st order to zero one obtains for ω = ωp

da(ω)
dω

∣∣∣∣
ωp

= 0 = −1 +
(
ωp

ω0

)2

+ 2ζ2.

From this the resonant peak frequency is

ωp = ω0

√
1 − 2ζ2

(
for ζ < 1√

2

)
, (A.3.1)

and the maximum of the amplitude for K = 1 is

Mr =
1

2ζ
√

1 − ζ2
. (A.3.2)

From Eq. (A.3.1) it follows that a maximum only exists for (1 − 2ζ2) > 0, which gives ζ < 1/
√

2. For
ζ = 1/

√
2 = 0.707, ωp = 0 is valid and Mr = 1 or Mr dB = 0. For ζ = 0, ωp = ω0 and Mr = ∞ is valid.

A.3.2 Poles and step responses of 2nd-order lag elements

From the characteristic equation of the 2nd-order lag element

P (s) ≡ D(s) = 1 +
2ζ
ω0
s+

1
ω2

0

s2 = 0 (A.3.3)

one obtains the poles of the transfer function

s1,2 = −ω0ζ ± ω0

√
ζ2 − 1. (A.3.4)

The oscillating behaviour of a 2nd-order lag element depends on the position of the poles in the s plane
and this is discussed in the following sections:

a) Case I: 0 < ζ < 1 (oscillating behaviour: PT2S element)

For this case Eq. (A.3.4) gives a conjugate complex pair of poles

s1,2 = −ω0ζ ± jω0

√
1 −D2. (A.3.5)

The corresponding step response is obtained from

H(s) =
K

1 + 2
ζ

ω0
s+

1
ω2

0

s2

1
s

(A.3.6)

which can be written

H(s) =
Kω2

0

(s− s1) (s− s2) s
. (A.3.7)

Writing in partial fractions and finding the inverse Laplace transform gives

h(t) = K

{
1 − e−tω0ζ

[
cos
(
ω0

√
1 − ζ2t

)
+

ζ√
1 − ζ2

sin
(
ω0

√
1 − ζ2t

)]}
σ(t). (A.3.8)

The decay of the oscillations is influenced by the quantity TA = 1/(ω0ζ), which is therefore called
the decay time constant. From the position of the poles s1 and s2 of G(s) the time constant TA can
be found. The ratio

ρ =
∣∣∣∣Re(si)
Im(si)

∣∣∣∣ for i = 1 or 2,
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or
ρ =

ζ√
1 − ζ2

= tanϕd. (A.3.9)

is defined as the relative damping ratio of the oscillation.

If a certain value of ζ is given then the angle ϕd between a line from the origin to a complex pole and
the imaginary axis in the s plane is fixed. Also, from the damped oscillation of the step response
h(t), which has the damped natural frequency of

ωd = ω0

√
1 − ζ2 < ω0, (A.3.10)

then from Eq. (A.3.8) the ratio of a consecutive overshoot to overshoot or vice versa (see Table 4.4.2)

h
n+ 1/2
hn

= e
−π

ζ√
1 − ζ2

can be determined, and from this one obtains the damping ratio as

ζ =
ln hn

h
n+1

2√
π2 +

[
ln hn

hn+1/2

]2 . (A.3.11)

b) Case 2: ζ = 1 (critical damping: PT2 element)

For Eq. (A.3.4) the two poles of G(s) are

s1,2 = −ω0.

This is a double pole on the negative real axis. If a time constant

T =
1
ω0

≥ 0,

is defined, one obtains the transfer function as

G(s) =
K

(1 + Ts) (1 + Ts)
, (A.3.12)

which is a series connection of two 1st-order lag elements with identical time constants. The step
response follows from Eq. (A.3.8) with ζ = 1 as

h(t) = K
[
1 − e−tω0(1 + ω0t)

]
σ(t). (A.3.13)

c) Case 3: ζ > 1 (aperiodic behaviour: PT2 element)

In this case from Eq. (A.3.4) G(s) has two negative real poles

s1,2 = −ω0ζ ± ω0

√
ζ2 − 1.

With the definition of the time constants

T1 = − 1
s1

and T2 = − 1
s2

one obtains the transfer function as

G(s) =
K

(1 + T1s) (1 + T2s)
. (A.3.14)

Here the system is composed of two PT1 elements with different time constants in series connection.
This element also shows typical PT2 behaviour. During the calculation of the step response h(t)
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according to Eq. (A.3.8) the arguments of sin and cos will be complex. By applying the hyperbolic
functions

cos jx = coshx and sin jx = j sinhx

one obtains directly using Eq. (A.3.8)

h(t) = K

{
1 − e−tω0ζ

[
cosh

(
ω0

√
ζ2 − 1t

)
+

ζ√
ζ2 − 1

sinh
(
ω0

√
ζ2 − 1t

)]}
σ(t). (A.3.15)

d) Case 4: ζ = 0 (undamped behaviour: oscillating element)

Eq. (A.3.4) gives for this case a pair of imaginary poles of G(s) at

s1,2 = ±jω0.

With Eq. (4.4.36) and ζ = 0 one obtains the transfer function

G(s) =
K

1 +
1
ω2

0

s2
= K

ω2
0

ω2
0 + s2

. (A.3.16)

The step response h(t) is an undamped oscillation

h(t) = K(1 − cosω0t)σ(t) (A.3.17)

of frequency ω0, which is usually called the natural frequency.

e) Case 5: ζ < 0 (unstable element)

In this case both poles of G(s) are in the right half s plane and may be real or conjugate complex:

s1,2 = ω0 |ζ| ± ω0

√
ζ2 − 1. (A.3.18)

Eq. (A.3.8) is also valid for this case, but the exponential term has now a positive sign. Therefore
the oscillations will not decay. The amplitudes of the oscillations in h(t) will increase exponentially
with time. This behaviour, for which h(t) for t→ ∞ increases indefinitely, is defined as unstable.

A.4 The law of Bode and the Hilbert transformation

For a given amplitude response A(ω) there exists only one minimum phase system that realises this
amplitude response. The phase ϕ(ω) of it can be determined for discrete frequencies ων according to the
law of Bode

ϕ(ων) =
2ων

π

∞∫
0

lnA(ω) − lnA(ων)
ω2 − ω2

ν

dω. (A.4.1)

The connection between the real part R(ω) = Re{G(jω)} and the imaginary part I(ω) = Im{G(jω)} of
the frequency response, which is valid both for minimum phase and non-minimum phase systems, is given
by the Hilbert transformation

R(ων) = R(∞) − 2
π

∞∫
0

ωI(ω)
ω2 − ω2

ν

dω (A.4.2a)

and

I(ων) =
2ων

π

∞∫
0

Rω(ω)
ω2 − ω2

ν

dω. (A.4.2b)

From this it is obvious that with knowledge of only the real or the imaginary part, the imaginary part
or the real part and therefore the frequency response G(jω) can always be completely reconstructed.
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A.5 Stability considerations using the weighting function

As a transfer function G(s) is the Laplace transformed weighting function g(t), the stability condition
according to Eq. (5.2.1) can also be reformulated in terms of G(s). In order to show this, the inverse
Laplace transform from section 2.4 is used. If G(s) is given as a rational fraction

G(s) =
N(s)
D(s)

=
N(s)

a0 + a1s+ . . .+ ansn
, (A.5.1)

and sk = σk +jωk are the poles of the transfer function G(s), i.e. the roots of the denominator polynomial

D(s) = an(s− s1) (s− s2) . . . (s− sn) =
n∑

i=0

ais
i, (A.5.2)

then according to Eq. (2.4.7) and Eq. (2.4.10) the weighting function

g(t) =
ν∑

j=1

gj(t) (A.5.3)

consists of ν ≥ n terms

gj(t) = cjt
µesit, µ = 0, 1, 2, . . . , j = 1, 2, . . . , ν, i = 1, 2, . . . , n.

In general cj is a complex constant, and for multiple poles si of multiplicity r the exponent is µ = r−1 > 0.
For the modulus of this function one obtains

|gj(t)| = |cjtµesit| = |cj | tµeσit.

For σi < 0 the exponential function decays to zero for t → ∞ , and therefore so also does |gj(t)|, even if
µ > 0, because the exponential function decays faster to zero than any other finite power of t increases.

By this consideration it is obvious, that Eq. (5.2.1) is only valid, if all poles of G(s) have a negative real
part. If the real part of only one pole is positive or of a multiple pole is zero, the weighting function
grows with t beyond all limits.

A.6 Equivalence of the Hurwitz and Routh criteria

The validity of the Routh criterion can be verified easily by the equivalence with the Hurwitz criterion.
From the coefficients of the first row of the Routh schema the connection with the Hurwitz determinants
can be seen directly:

D1 = an−1

D2 = an−1bn−1 = D1bn−1

D3 = an−1bn−1cn−1 = D2cn−1

...
Dn = an−1bn−1cn−1 . . . dn−1en−1fn−1gn−1 = Dn−1gn−1

The coefficients bn−1, cn−1 . . . in the first column of the Routh schema are just the quotients of consecutive
Hurwitz determinants. When all Hurwitz determinants are positive, then their quotients and therefore
also the coefficients in the first column of the Routh schema are positive. When the coefficients of the
Routh schema are positive, then also, as an−1 = D1, all Hurwitz determinants are positive. Thus, the
Routh criterion is equivalent to the Hurwitz criterion.
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A.7 Determination of JISE using determinants

Writing the quadratic performance indices in terms of determinants is a general algebraic approach that
is more suitable for a detailed analysis. Eq. (7.3.5) can be rewritten as

JISE =
(−1)n+1

2an

detCb
n

detCn
. (A.7.1)

For odd n the matrix Cn is

Codd
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an an−2 · · · a3 a1 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...
... · · · an an−2 · · · a3 a1 0
... · · · 0 an−1 an−3 . . . a2 a0

... · · · an−1 an−3 · · · a2 a0 0

0 . .
.

. .
.

. .
.

. .
.

. .
.

. .
. ...

an−1 an−3 . . . a2 a0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.7.2)

and for even n

Ceven
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−3 · · · a3 a1 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...
... 0 an−1 an−3 · · · a3 a1 0
... 0 an an−2 an−4 · · · a2 a0

0 . .
.

. .
.

. .
.

. .
.

. .
.

. .
. ...

an an−2 an−4 · · · a2 a0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.7.3)

Both matrices consist in the upper part of a Toeplitz matrix with the odd coefficients and in the lower
part of a Hankel matrix with the even coefficients of the denominator polynomial A(s) of the control
error in Eq. (7.3.4). The determinant of this matrix is nothing other than the Hurwitz determinant from
Eq. (5.3.4). The other determinant in the numerator of Eq. (A.7.1) is from the same matrix as Cn, but
the coefficients in the last row in Eq. (A.7.2) and in the first row in Eq. (A.7.3) are exchanged for those
of the polynomial

C(s) = B(s)B(−s) = c0 + c1s
2 + · · · + cn−1s

2(n−1). (A.7.4)

Example A.7.1
Example 7.3.1 of determining the best damping ratio ζ for a second-order system is rewritten using
determinants. For the control error from Eq. (7.3.9) we have the polynomial C(s) from Eq. (A.7.4) as

C(s) = 4ζ2ω2
0 − s2

and from Eqs. (7.3.9) and (A.7.3) follows

JISE =
−1
2

det
[
−1 4ζ2ω2

0

1 ω2
0

]
det
[
2ζω0 0

1 ω2
0

] =
1 + 4ζ2

4ζω0
.

As this function is a parabola in ζ, with minimum given by

dJISE

dζ
=

4ζ2 − 1
4ζ2ω0

= 0

the minimum square error to a step input occurs for ζ = 0.5 . �
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The procedure shown in this example can be generalised for all quadratic performance indices. If the
control error can be written as

E(s) =
N(s)

A(s) + kB(s)
, (A.7.5)

where k is a feedback gain to be chosen or for which the optimal value in the sense of a criterion according
to Eq. (7.3.3) must be found, the performance index can be represented as

JISE =
(−1)n+1

2(an + kbn)
det(C + kD)
det(A + kB)

. (A.7.6)

The matrices A and B correspond to the matrix given by Eq. (A.7.2) or (A.7.3), respectively, and C to
A where the coefficients in the upper or lower row are exchanged for those of the polynomial

C(s) = N(s)N(−s) = c0 + c1s
2 + · · · + cn−1s

2(n−1) (A.7.7)

and D to B where the coefficients in the upper or lower row are zeros. The determinants in Eq. (A.7.6)
are polynomials in k. Therefore the performance index can be rewritten as

JISE = −Q(k)
P (k)

(A.7.8)

or

1 +
1

JISE

Q(k)
P (k)

= 0. (A.7.9)

As Eq. (A.7.9) corresponds directly to the characteristic equation (6.1.5a), the root-locus method can be
applied for the analysis of the performance index in the k plane.

As we are interested in real values of k, only the behaviour on the real axis of the complex k plane is
needed. The branches are calibrated by the inverse of JISE. The denominator in Eq. (A.7.6) or (A.7.8)
is the highest Hurwitz determinant. Therefore the real poles (real zeros of P(k)) represent critical values
of k, where the closed loop has poles on the imaginary axis and where JISE → ∞. One can take the
stability margins directly from the branches on the real axis in the k plane.

Now inspecting real breakaway or break-in points. If we apply rule 7 from section 6.2 on Eq. (A.7.9),
from Eq. (6.2.7) we have the condition

d
dk

Q(k)
P (k)

= 0, (A.7.10)

which is the same as the condition d
dkJISE = 0 for an extremum of the performance index. Therefore real

breakaway or break-in points in the k plane represent a minimum or maximum in the performance index
and can be used to find optimal adjustments of parameters.

Example A.7.2
Consider the following plant transfer function:

GP(s) =
4 − 3s− 17s3 + s4

4 + 17s+ 28s2 + 21s3 + 7s4 + s5

and the controller transfer function

GC(s) = KC
1 + (1 + TI)s+ 2TIs

2

TIs(1 + s)
,

which contains two free parameters, the gain KC and the time constant TI. The control system should
be optimised on step changes in the command or in the plant input using the performance index JISE.

For both inputs the control error can by described by Eq. (A.7.5) for k = KC, where it differs only in
the numerator polynomial N(s). While determining the optimal gain by evaluation of the condition in
Eq. (A.7.10) the other parameter TI is held constant. In the same manner the stability margins can be
determined by using P (k) = 0. For constant values of JISE one gets the gains according to Eq. (A.7.9).

Scanning over a given range of TI and plotting the results will generate a combined stability and perfor-
mance diagram as shown in Figure A.7.1. From these diagrams one can see that the optimal controller
structure does not differ significantly for the two system inputs. �
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Figure A.7.1: Stability and performance diagram for step changes (a) in the command and (b) plant
input
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A.8 Tables

Table A.8.1: Step responses for a given pair of complex poles and a real pole with multiplicity k according
to Eq. (10.2.4)
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Index

absolute value of the frequency response, 4-5
Ackermann, 13-8
actual value, 1-4, 1-5
actuator, 1-4, 7-1, 7-2, 8-3, 11-1, 11-2, 11-6, 11-7
addition
– frequency response characteristic, 4-6
– using Nyquist plots, 4-5
algebraic
– equation, 2-9
algebraic product, 15-5
Algebraic stability criteria, 5-3
algebraic sum, 15-5
all-pass element, 4-21, 9-21
all-pass plant, 10-5
amplitude response, 4-5, 4-22
– definition, 4-2
– logarithmic, 4-22, 5-12
– of a minimum/non-minimum phase system, 4-20
angle condition
– root-locus method, 6-3, 6-6
angle of departure
– root-locus method, 6-7, 6-8, 6-11
angle of entry
– root-locus method, 6-7, 6-8
anti-windup, 11-9
aperiodic behaviour, A-9
approximation by a PT1Tt element, 8-6
approximation by lines, 4-7
asymptote
– deviation of the magnitude, 4-10
– final, 4-10, 4-15, 4-16
– initial, 4-10, 4-15
– point of intersection, 4-16
– slope, 4-10, 4-16
asymptotic stability, 5-2
auxiliary control loop, 11-4, 11-6
– underlying, 11-6
auxiliary controlled variable, 11-5
auxiliary controller, 11-4, 11-5
auxiliary manipulated variable, 11-7, 11-9
auxiliary variable, 11-4

bandwidth, 5-15
– closed loop, 9-2, 9-6, 9-10
– of a system, 4-17
basic control loop, 11-2
behaviour
– aperiodic, 4-14, 8-6, A-9
– dynamical, 7-8, 9-2

– inherent, 10-24
– minimum phase, 4-20
– non-minimum phase, 4-20, 10-5, 10-21, 11-4
– of a continuous-time system, 4-3
– of a minimum/non-minimum phase system, 4-20
– of an open loop, 7-6
– oscillating, 4-14
– oscillating PT2S element), A-8
– permanent oscillation, 8-6
– PT2, 4-14
– PT2S element, A-8
– set-point, 9-8
– static, 7-6, 7-8
– steady state, 9-9
– undamped, A-10
– unstable, 10-19
bell function, 15-4
binary valued logic, 14-1, 14-2
binomial form, 10-2
block diagram
– closed loop, 10-3
– closed-loop control, 1-3
– closed-loop control system, 1-5
– closed-loop system, 7-2
– combined observer-controller, 13-11
– compensator, 10-4
– control system, 1-4
– feedback loop, 3-7
– observer principle, 13-9
– of a series connection of transfer function ele-

ments, 3-6
– open-loop control, 1-3
– open-loop system, 7-3
– PID controller, 8-2
– state-feedback control system, 13-2
– state-feedback control system with integrator,

13-4
Bode diagram, 4-5, 4-19
– lag element, 9-14
– lead element, 9-12
– of a PT2S element, 4-16
Bode plot
– of the open loop, 9-7
breakaway point
– root-locus method, 6-4
breakpoint frequency, 4-10, 4-19
– PT1 element, 9-9
– lag element, 9-13, 9-15

A-22



INDEX A-23

– lead element, 9-11
– PT1 element, 4-9, A-7
Butterworth form, 10-2

calibration of the root-locus, 6-3
car brake, 16-3
cascade control, 13-4
cascade control systems, 11-5
causal function of time, 2-4, 2-5, A-3, A-4
causal system, 2-2
centre of gravity method, 16-5
centre of singleton method, 16-5
centroid methods
– margins, 16-7
characteristic equation, 3-4, 5-5, 5-6, 6-3
– coefficients, 5-6
– definition, 2-12
– of a cascade control system, 11-7
– of a system with auxiliary manipulated vari-

able, 11-8
– of a system with auxiliary variable, 11-5
– of the closed loop, 5-5, 6-3, 7-4
– position of roots, 5-2
– stability analysis, 5-2
– system with feed-forward on the controller, 11-2
– system with feed-forward on the manipulated

variable, 11-3
characteristic function, 15-1, 15-2
characteristics of the closed loop in the frequency

domain, 9-1
– bandwidth, 9-2, 9-6, 9-10
– damping ratio, 9-2
– natural frequency, 9-2
– phase angle, 9-2
– resonant peak, 9-2, 9-10
– resonant peak frequency, 9-2
characteristics of the open loop in frequency do-

main
– crossover frequency, 5-13
– gain margin, 5-13
– phase margin, 5-13
characteristics of the open loop in the frequency

domain
– crossover frequency, 9-6
– gain margin, 9-7, 9-8
– phase margin, 9-7, 9-8, 9-10
closed loop
– step response, 10-3
– transfer function, 10-2
– bandwidth, 9-2, 9-10
– basic structure, 1-4
– behaviour, 7-3, 10-2
– block diagram, 10-3
– characteristic equation, 6-3, 7-4
– characteristics in the frequency domain, 9-1
– command behaviour, 7-3
– compensator, 10-4

– disturbance behaviour, 7-3
– instability, 7-8, 10-19
– order, 10-9
– phase angle, 9-2
– pole-zero distribution, 10-2
– poles, 5-8, 10-7, 10-9
– resonant peak, 9-2
– resonant peak frequency, 9-2
– response to step disturbance, 7-10
– signals, 1-4
– single loop, 11-1
– stability, 5-7
– standard quantities in time domain, 7-9
– static behaviour, 7-6
– static property, 7-6
– structure, 10-16
– time response, 9-9, 9-10
– transfer function, 5-5, 7-3, 13-3, A-16, A-17
– with cumulative disturbance, 7-2
– zeros, 10-9, 13-3
closed-loop transfer function, 10-3, 10-16
closed-loop transfer function for command input,

10-17
– desired, 10-16
closed-loop control, 1-2
– definition, 1-3
closed-loop system, 13-3
COG, 16-5
command behaviour, 7-2, 7-7, 7-11
command input, 7-2, 7-6
– step, 7-10
command signal, 7-6
command variable
– step, 10-16
common divisor, 10-21, 10-22
comparison of the different types of controllers,

8-4
compensation, 10-19
– disturbance, 11-3
– of disturbances, 11-2
– of poles, 9-20, 10-5
– of zeros, 10-5
– plant, 10-4
– static, 11-4
compensator, 9-10, 10-5
– generalised design method, 10-7
compensator design methods, 10-2
complement, 15-5
complex differentiation theorem of the Laplace

transform, 2-4
complex shifting theorem of the Laplace trans-

form, 2-4
condition of properness
– of a transfer function, 3-3
condition of realisability
– controller, 10-3
conformal mapping, A-6, A-7
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continuous-time system, 3-1, 4-3
control
– cascade, 11-5
control behaviour, 11-1
control device, 1-2
control error, 1-3–1-5
– dynamical, 7-9
– steady-state, 7-10
– steady-state value, 7-6
control factor
– dynamical, 7-3
– static, 7-8
control loop
– auxiliary, 11-4
– bandwidth of the closed loop, 9-6
– block diagram, 1-4, 1-5
– Bode plot of an open, 9-7
– Bode plot of the open loop, 9-7
– closed, 1-4
– frequency response of the open, 9-6
– resonant peak frequency of the closed loop, 9-5
– step response of a closed, 9-8
control system, 10-16
– complex loop structures, 11-2
– single-loop, 11-7
– state-feedback, 13-2
– with auxiliary manipulated variable, 11-7
– with auxiliary variable, 11-5
controllability, 12-6
controllability matrix, 12-6, 13-8
controlled chain, 1-4
controlled value, 1-4
controlled variable, 1-3, 1-4, 7-3, 10-16, 11-4,

11-6, 11-7
controller, 1-4, 7-1–7-3, 7-8
– integral, 10-10
– state-feedback, 13-2
– tuning parameters, 8-2, 8-3
controller transfer function, 9-10, 10-3, 10-7, 10-17,

10-21, 10-23–10-26
controller canonical form, 13-6, 13-7
– transformation, 13-7
controller coefficients, 10-9
controller gain, 10-9
– critical, 8-6
controller order, 10-11
controller output, 8-2
controller parameter, 10-8, 10-9
controller transfer function, 8-1
convergence
– Laplace transform, 2-1, A-2
convolution, 3-2
convolution in the frequency domain, 2-4, A-4
convolution in the time domain, 2-4, A-3
convolution integral, 3-2
convolution of two functions in the frequency do-

main, 2-4

convolution of two functions of time, 2-4
correction elements, 9-10
correspondences of Laplace transform, 2-2
COS, 16-5
crisp set, 15-1
critical controller gain, 8-6
critical damping, A-9
critical period, 8-6
critical point, 5-9–5-11
critical stability, 5-2, 5-3
crossover frequency, 5-13, 9-6
cumulative disturbance, 7-2

D action, 8-3, 8-6
D behaviour, 8-2, 8-3, 11-3
D element, 4-8
D step, 8-3
damped natural frequency, A-9
damping ratio, 4-14, 9-2, 9-10, 10-24
– relative, A-9
dead time, 3-1, 8-6, 11-1
decay of the amplitude, 9-4
decay time constant, A-8
deforming the root locus, 9-18
defuzzification, 16-1, 16-5, 16-7, 16-8, 17-4
delay time, 8-6
delayed behaviour, 11-4
delta function, 2-12
demonstration example, 1-5, 2-9, 7-13, 8-8, 9-22,

11-7, 13-15, 14-2, 15-2, 15-5, 15-7, 15-9,
16-2–16-4, 16-7

derivative action time, 8-2
derivative element, 4-8
derivative theorem of the Laplace transform, 2-4,

A-3
design
– root-locus method, 10-2
– direct, 10-2
– for an unstable plant, 9-21, 10-23
– for reference and disturbances, 10-16
– frequency-domain characteristics, 10-2
– indirect, 10-2
– state-feedback, 13-5–13-8
design in controller canonical form, 13-6–13-8
design method
– root locus, 9-18
– compensator, 10-2
– complex loop structures, 11-1
– empirical, 8-6
– frequency domain characteristics method, 9-1
– pre-filter, 10-21
design of observer, 13-10
desired transfer function, 10-3
differential equation
– initial condition, 3-1
– of a RC lag, 4-9
– solving using the Laplace transform, 2-8
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distribution, 2-12, 2-13
distribution of poles, 10-2
disturbance, 1-2, 1-4, 7-2, 7-6, 11-1, 11-5, 11-7
– at the plant input, 10-16, 10-17, 10-21, 10-24
– at the plant output, 10-16, 10-17, 10-19, 10-21,

10-25
– compensation, 11-2, 11-3
– entry point, 10-16, 10-20
– feed-forward on the controller, 11-2
– feed-forward on the manipulated variable, 11-3
– high-frequency, 9-9
– step, 10-16
– transfer function, 7-3
disturbance behaviour, 7-2, 7-7, 7-9, 10-16
– closed loop, 7-3
disturbance control, 1-4, 7-3
disturbance feed-forward, 11-2
disturbance reduction, 11-5
disturbance rejection, 7-11
disturbance transfer function, 10-17, 10-20, 10-23,

10-24, 10-26
– desired, 10-16
dominant pair of poles, 9-2, 9-5, 9-7, 9-10, 9-15,

9-18
DT1 element, 4-12, 8-2, 11-3, 11-9
dual system, 13-11
dynamical behaviour, 13-2
– of the closed loop, 7-8, 9-2
dynamical control factor, 7-3
dynamical quality, 5-15
dynamics of the control behaviour, 7-10
DYNAST study example, 4-11, 4-22, 7-8, 8-8,

8-9, 11-5

eigenvalue, 2-12, 12-4, 13-2
empirical tuning rules, 8-6
equation
– algebraic, 2-9
– characteristic, 2-12, 3-4, 5-2, 5-5, 5-6, 6-3, 7-4,

11-2, 11-3
equivalence
– Hurwitz and Routh criteria, A-11
error
– steady state, 9-9, 10-16

feed-forward
– auxiliary manipulated variable, 11-4
feed-forward gain
– state-feedback control, 13-4
feedback, 3-7
– negative, 1-5, 3-7
feedback loop
– of transfer functions, 3-6, 3-7
feedback principle, 1-5
feedforward
– state-feedback controller, 13-2
feedforward gain, 13-4
feedthrough matrix, 12-3

final asymptote, 4-10, 4-15, 4-16
final value
– frequency response, 4-4
final value theorem of the Laplace transform, 2-5,

4-4, 7-6, A-5
fraction
– rational, A-11
frequency
– breakpoint, 9-9, 9-11, 9-13, 9-15
– crossover, 9-6
– damped natural, A-9
– resonant, 9-5, A-7
frequency domain, 2-2, 2-9, 4-4
– state-feedback controller, 13-3
frequency domain characteristics method
– application example, 9-15
– design method, 9-1
– synthesis of controllers, 9-10
frequency function, 2-2
frequency range, 9-9, 9-11, 9-13
frequency ratio
– lag element, 9-13
– lead element, 9-11, 9-12
frequency response, 4-22, 9-9
– absolute value, 4-5
– addition, 4-5
– all-pass element, 4-21
– amplitude response, 4-2, 4-20, 4-21, 5-11
– closed loop, piecewise determination fromGW(jω),

9-9
– dead time, 4-22
– final value, 4-4
– imaginary part, 4-2, A-10
– initial value, 4-4
– locus, A-7
– logarithmic amplitude response, 4-5, 4-22, 5-12
– magnitude, 4-3
– multiplication, 4-5
– Nyquist plot, 4-4, 4-5, 4-19, 4-22
– of the open loop, 9-6
– phase response, 4-2, 4-3, 4-5, 4-20, 4-21, 5-11,

5-12
– real part, 4-2, 4-3, A-10
frequency response characteristic
– addition, 4-6
– Bode diagram, 4-5
– calculation, 4-5
– definition, 4-5
– Nyquist criterion, 5-7, 5-10
– simple transfer function elements, 4-7
frequency response characteristics, 4-5
function
– bell, 15-4
– characteristic, 15-1, 15-2
– Gauss-, 15-4
– hyperbolic, A-10
– sigmoidal, 15-4
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function of time, 2-2
– causal, 2-4, 2-5, A-3, A-4
fuzzification, 16-1–16-3, 16-8, 17-2
fuzzy AND operator, 15-5
fuzzy composition, 15-8
fuzzy control, 14-1, 17-1, 17-8
fuzzy controller, 17-1
fuzzy controller design, 17-9
fuzzy inference machine, 16-2
fuzzy logic, 14-1, 14-2, 15-1
fuzzy NOT operator, 15-5
fuzzy OR operator, 15-5
fuzzy relations, 15-6
fuzzy set, 15-2
fuzzy system, 16-1
– components, 16-8

gain, 7-7, 8-2
– controller, 8-2, 8-6, 10-9
– of a PT1 element, 4-11
– of a transfer function element, 4-11
– of the controller, 7-7
– of the open loop, 6-2, 7-6, 7-7
– P element, 4-7
– PID controller, 8-2
– plant, 7-7, 8-6, 8-8, 11-4
gain margin, 5-13, 9-7, 9-8
Gaussian function, 2-13, 15-4
generalised design method
– compensator, 10-7
generalised integral of squared error, 7-11
GISE, 7-11
grade of membership, 15-2
grid
– orthogonal, A-6

Hilbert transformation, A-10
Hurwitz conditions, 5-5
Hurwitz criterion, 5-3, 5-5, A-11
– example, 5-5
Hurwitz determinant, 5-4
Hurwitz polynomial, 5-4, 5-7
hyperbolic function, A-10

I action, 8-3, 8-6
I behaviour, 7-6–7-9, 8-3, 8-6, 11-3
I controller, 8-3, 10-10
I element, 4-7, 4-8, 4-19
I2 behaviour, 7-6, 7-8, 7-9
IAE, 7-11
IE, 7-11
image function, 2-2
impulse
– Laplace transform, 2-12
inherent behaviour, 2-12, 3-4, 9-2, 10-24
inherent dynamics, 10-20
initial asymptote, 4-10, 4-15

initial condition, 12-1, 12-2, 12-5, 13-2, 13-4–
13-6, 13-10–13-12

– of a differential equation, 3-1
initial value
– frequency response, 4-4
initial value theorem of the Laplace transform,

2-5, 4-4, A-5
input
– Laplace transform, 3-2
input matrix, 12-3
input signal
– bounded, 5-2
– sinusoidal, 4-3
input variable, 12-1
input vector, 12-3
input-output behaviour, 12-2
inputs
– multi-input-multi-output system, 12-2
instability
– definition, 5-2, 5-3
– of the closed loop, 7-8
– proving, 5-7
integral action time, 8-2
integral of error, 7-11
integral of absolute value of error, 7-11
integral of squared error, 7-11
integral of squared error and squared control ef-

fort, 7-11
integral of time multiplied by the absolute value

of error, 7-11
integral performance index, 7-10
integral plant, 10-11
integral theorem of the Laplace transform, 2-4,

A-3
integral transformation, 2-1, 2-3
integrator
– state-feedback, 13-4
intersection operator, 15-5
intersections
– of the locus, 5-11
inverse frequency response, 4-6
inverse integral
– Laplace transform, 2-2, 2-5
inverse Laplace transform, 2-2, 2-5, A-2, A-11
inverse plant transfer function, 10-4
ISE, 7-11
ISESC, 7-11
ISTqE, 7-11
ITAE, 7-11

lag, 4-9
lag element, 9-13
Laplace integral, 2-2
Laplace transform, 2-1, 2-2, A-2
– abscissa of convergence, A-2
– complex differentiation theorem, 2-4
– complex shifting theorem, 2-4
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– convergence, 2-1, A-2
– convergency, A-2
– convergency area, A-2
– convolution in the frequency domain, 2-4, A-4
– convolution in the time domain, 2-4, A-3
– correspondences, 2-2
– derivative theorem, 2-4, A-3
– examples, A-2
– final value theorem, 2-5, 4-4, 7-6, A-5
– impulse, 2-12
– initial value theorem, 2-5, 4-4, A-5
– input, 3-2
– integral theorem, 2-4, A-3
– inverse, 2-2, 2-5, A-2, A-11
– inverse integral, 2-2, 2-5, A-2
– main theorems, 2-3, A-3
– operator notation, 2-2
– output, 3-2
– real shifting theorem, 2-4
– similarity theorem, 2-3
– solving linear differential equation, 2-8
– state-space representation, 12-3
– superposition theorem, 2-3
– weighting function, 3-2, 5-2, A-11
law of Bode, A-10
lead element, 9-11
left-hand rule of the Nyquist criterion, 5-10
– for Bode diagram, 5-13
linear mapping, A-7
linear plant, 7-2
linear system, 3-1, 3-3, 4-3, 4-4
linguistic term, 14-4, 15-4, 15-7, 16-2–16-4, 16-7,

17-3, 17-4, 17-10
linguistic variable, 14-4, 15-6, 17-10
loading crane, 17-9, 17-10
logarithmic amplitude response, 4-5
– logarithmic, 4-5
loop
– poles of the open loop, 9-18
– zeros of the open loop, 9-18
loop gain, 7-8, 9-9
low-pass property, 4-17
lumped parameters, 3-1

magnitude condition
– root-locus method, 6-3–6-5
magnitude of the frequency response, 4-3
magnitude response
– increase, 9-11
main control loop, 11-5–11-7
main controller, 11-5, 11-6
main theorems of the Laplace transform, 2-3, A-3
Mamdani fuzzy system, 16-7
manipulated variable, 1-3, 1-4
mapped function, 2-2, 2-4, A-2
mapped space, 2-9
mapping

– conformal, A-6, A-7
– linear, A-7
mathematical model, 8-6
maximum methods, 16-7
maximum overshoot, 8-5, 8-6, 10-24
– as function of the damping ratio, 9-3
– calculation, 9-3
– definition, 7-9
measurement device, 1-4, 7-2, 11-1
membership, 14-2
membership function, 15-2
– boundary, 15-3
– core, 15-3
– height, 15-3
– normal, 15-3
– singleton, 15-4, 15-9, 16-3
– subnormal, 15-3
– support, 15-3
method
– frequency domain characteristics, 9-10
– Truxal and Guillemin, 10-3
– Weber, 10-3, A-15
minimum phase behaviour, 4-20
minimum phase system, 4-20–4-22, A-10
mode, 9-2
modes, 2-11, 2-12, 3-4
multi-input-multi-output system
– inputs, 12-2
– outputs, 12-2
– state-space representation, 12-2
multiple pole
– real, 10-2
multiplication
– using Nyquist plots, 4-5

natural frequency, 4-15, 4-17, 9-2, 10-24, A-10
– damped, A-9
negative feedback, 1-5, 3-7
non-minimum phase behaviour, 4-20, 10-5, 10-21,

11-4
non-minimum phase system, 4-20, 4-22, A-10
nonlinear characteristics, 17-2, 17-3, 17-7, 17-11
numerator degree
– transfer function, 3-3
Nyquist criterion, 5-7
– frequency response characteristic, 5-7, 5-11
– general case, 5-9
– left-hand rule, 5-10
– left-hand rule for Bode diagram, 5-13
– simplified case, 5-10
– theory, 5-7
Nyquist criterion using Nyquist plots, 5-8
– of the open loop, 5-9
Nyquist plot
– lag element, 9-14
– lead element, 9-11

observability, 12-6
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observability matrix, 12-6
observer, 13-9, 13-10
– design, 13-10
– state reconstruction, 13-9
– state-feedback controller, 13-11
– structure, 13-10
observer-controller, 13-11
open control loop, 7-3
open loop, 7-3
– frequency response, 9-10
– characteristics, 9-10
– gain, 6-2, 7-6, 7-7
– pole and zero distribution, 6-8, 6-9
– poles, 5-8, 5-9
– transfer function, 5-5, 5-8, 6-2, 7-6
– zeros, 13-3
open-loop control, 1-2
– definition, 1-3, 1-4
operator
– complement, 15-5
– intersection, 15-5
– union, 15-5
operator notation
– Laplace transform, 2-2
operators
– for fuzzy sets, 15-5
optimal tuning
– PID controller, 8-3
order of controller, 10-9
original function, 2-1, 2-2, 2-4, 2-8
original space, 2-9
orthogonal grid, A-6
output
– Laplace transform, 3-2
output equation, 12-2
output matrix, 12-3
output signal
– bounded, 5-2
– sinusoidal, 4-3
output vector, 12-3
outputs
– multi-input-multi-output system, 12-2
overshoot, maximum, 11-1

P behaviour, 7-6–7-9, 8-3, 11-3
P controller, 8-4, 9-22, 10-11
P element, 4-7, 11-4
P step, 8-3
Padé table, A-21
pair of poles
– dominant, 9-2, 9-5, 9-7, 9-10, 9-15, 9-18
– imaginary, A-10
parabolic input signal, 7-6–7-8
parallel connection, 4-5
– of transfer function elements, 3-6, 4-5
parameter
– lumped, 3-1

Parseval’s theorem, 7-12
partial fraction decomposition, 2-6, 2-12, A-8
– conjugate complex poles, 2-7
– example, 2-7
– multiple poles, 2-6
PD controller, 8-4
PD element, 4-12, 4-19, 11-4
PDT1 controller, 8-4, 8-5, 9-12
peak time
– definition, 7-9
performance diagram, 8-5
performance index, 7-10, 7-11
– quadratic, 7-11
performance index in time domain
– delay time, 8-6
– generalised integral of squared error, 7-11
– integral of absolute value of error, 7-11
– integral of error, 7-11
– integral of squared error, 7-11
– integral of squared error and squared control

effort, 7-11
– integral of time multiplied by the absolute value

of error, 7-11
– maximum overshoot, 7-9, 8-5, 9-3
– peak time, 7-9
– rise time, 7-9, 8-6, 9-3, 11-1
– settling time, 7-9, 9-3, 9-4, 11-1
period
– critical, 8-6
permanent oscillations, 2-12
phase
– non-minimum, 10-5
phase angle
– maximum, of a lead element, 9-11
– of the closed loop, 9-2
phase behaviour
– minimum, 4-20, 4-21
– non-minimum, 4-20
– of a minimum/non-minimum phase system, 4-20
phase margin, 5-13, 9-7–9-10
phase response, 4-5, 4-22, 5-12
– definition, 4-2
– lead element, 9-13
– logarithmic representation, 4-6
– Nyquist criterion, 5-12
– of a minimum/non-minimum phase system, 4-20
– of a non-minimum phases system, 4-20
phase shift, 4-3
– continuous, 5-9
– lag element, 9-13
– lead element, 9-11
– step, 5-9
PI controller, 8-4, 11-3
PID controller, 8-1, 9-22
– block diagram, 8-2
– ideal, 8-2
– optimal tuning, 8-3
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– real, 8-2
plane, complex
– s plane, 9-18, 9-21, 10-19, 10-21
– G plane, 4-4, 5-9, A-6, A-7
– left-half s plane, 2-12, 5-3, 5-9, 7-6
– right-half s plane, 5-3, 5-9
– s plane, 2-8, 2-12, 4-20, 4-21, 5-3, 5-8, 5-9, 6-3,

A-2, A-6, A-7
plant, 1-4, 7-1, 7-2
– all-pass, 10-5
– gain, 8-8, 11-4
– integral, 10-9, 10-11
– linear, 7-2
– parameter, 9-20, 10-8, 10-19
– proportional, 10-9, 10-11
– step response, 8-6
– unstable, 9-21, 9-22, 10-5, 10-19, 10-23, 10-25
– zeros, 10-9
plant transfer function, 10-16, 10-23
– inverse, 10-4
plant output, 7-6
point of intersection
– asymptote, 4-16
pole
– conjugate complex, 2-6
– double, 7-7
– multiple, 2-6, 5-3
– of the closed loop, 9-18
– plant, 10-19
– single, 2-6, 5-3
– unstable, 10-22
pole and zero distribution
– of a minimum/non-minimum phase system, 4-20
– of a rational transfer function, 3-4, 6-2
– of an all-pass element, 4-20, 4-22
– of an open loop, 6-8, 6-9
pole assignment, 9-18
pole distribution, 5-2, 5-3
– of a PT2 element, 4-18
pole excess, 10-3, 10-17, 10-20, 11-3
pole placement, 13-5
– state-feedback, 13-5
pole-zero distribution
– of a closed loop, 10-2
poles, 2-6, 12-4
– of the closed loop, 5-8
– of the open loop, 5-8, 5-9, 9-18
– of the transfer function, 3-3, 3-4
positive feedback, 3-7
pre-controller, 11-2
pre-filter, 10-9, 10-16
– design, 10-21, 10-24
– unstable, 10-21
preservation of angles, A-6
problem, 4-22, 5-15, 10-26
product, algebraic, 15-5
properness

– of a transfer function, 3-3
PT1 element, 4-9–4-11, 4-17, 4-19, 9-9, 11-5
PT1Tt element, 8-6
PT2 element, 4-13, 4-17
PT2S element, 4-17, A-8
PTn element, 4-17
PTt element, 4-22

quadratic performance index, 7-11, 7-12
– calculation, 8-3, A-12
quality
– dynamical, 5-15
questionnaire, 3-2, 3-7, 4-5, 4-14, 5-3, 5-15, 15-2,

15-4, 15-6

ramp input signal, 7-6–7-8
rational fraction, 2-5, 2-6, A-11
rational transfer function, 3-3
RC high pass element, 4-12, 4-13
RC lag, 4-9
real part
– negative, A-11
real shifting theorem of the Laplace transform,

2-4
realisability, 10-19
realisability condition, 10-20, 10-24
– controller, 10-17, 10-19, 10-26
– of a transfer function, 3-3, 5-8
– pre-filter, 10-21, 10-22
reference behaviour, 7-6
reference value, 11-6
relative damping ratio, A-9
residual, 2-6–2-8
– theorem, 2-6
resonant peak, 9-2, 9-5, 9-10
– of the closed loop, 9-2
resonant peak frequency, A-8
– of a PT2S element, 4-16
– of the closed loop, 9-2, 9-5
rise time, 8-6, 11-1
– calculation, 9-3
– definition, 7-9
RLC lag, 4-14–4-17, 12-1
root-locus, 6-4
– definition, 6-2
root-locus method
– angle condition, 6-3, 6-6
– angle of departure, 6-7, 6-8, 6-11
– angle of entry, 6-7, 6-8
– application for controller design, 9-18
– breakaway point, 6-4
– examples, 6-10
– magnitude condition, 6-3–6-5
– rules for constructing, 6-5
Routh criterion, 5-6, 5-7, A-11
– example, 5-7
Routh schema, 5-6
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rule base, 14-4, 14-5, 15-7–15-10, 16-1–16-4, 17-2,
17-4, 17-6, 17-7, 17-10, 17-11

s domain, 9-2
– state equation, 12-3
scales
– double logarithmic, 4-7
– single logarithmic, 4-7
separation property, 13-12
series connection, 4-5
– of transfer function elements, 3-5, 3-6, 4-5, 4-6,

4-21
set
– crisp, 15-1
– fuzzy, 15-2
set point, 1-4, 1-5, 13-4
– constant/not constant, 1-4
set theory, 15-1
set-point value, 1-2
settling time, 10-24
– as function of the damping ratio, 9-5
– calculation, 9-4
– definition, 7-9
sigmoidal function, 15-4
signal path, 1-5
signals in the closed loop, 1-4
similarity theorem of the Laplace transform, 2-3
single-input-single-output system
– state-space representation, 12-1–12-3
– time-invariant, 12-2
singleton, 15-4, 16-5
singularity, 2-12
specification
– time response, 7-9
spray-water cooler, 11-4
stabilising of an unstable plant, 9-21
stability, 5-2
– asymptotic, 5-2
– closed loop, 5-7
– conditions, 5-2
– critical, 5-2, 5-3
– fefinition, 5-2
stability analysis, 5-2, 5-7
stability criteria
– algebraic, 5-3
stability criterion, 5-3, 5-6
– Nyquist, 5-7
stability diagram, 8-5
stable system, 5-2
standard form of the transfer function, 10-2
standard forms
– Butterworth form, 10-2
– ITAE form, 10-2
– settling time form, 10-3
state, 12-2
state equation, 12-2
– s domain, 12-3

state reconstruction using observers, 13-9
state variables, 12-2
– uniqueness, 12-4
state vector, 12-3
state-feedback, 13-2
– with integrator, 13-4
– design, 13-5
– pole placement, 13-5
state-feedback control
– feed-forward gain, 13-4
– steady state, 13-3
– zeros, 13-3
state-feedback control system, 13-2
state-feedback control with integrator, 13-4
state-feedback controller, 13-2, 13-5
– frequency domain, 13-3
– observer, 13-11
– structure, 13-2
state-space transformation, 12-5
– example, 12-5
state-space representation, 12-1
– controllability, 12-6
– Laplace transform, 12-3
– multi-input-multi-output system, 12-2
– observability, 12-6
– single-input-single-output system, 12-1–12-3
– transfer function, 12-3
– transformation, 12-5
static behaviour, 7-6
– of the closed loop, 7-6, 7-8
static control factor, 7-8
statical behaviour, 13-2
steady state, 8-5, 11-9, 13-2
– state-feedback control, 13-3
steady state behaviour, 9-9
steady-state error, 10-9
steam flow, 11-4
steam superheater, 11-4, 11-5
steam temperature, 11-4, 11-5
step command input, 7-10
step disturbance, 8-5
step input signal, 7-6–7-9
step response, 10-25
– lag element, 9-14
– lead element, 9-12
– normalised, 10-2
– of a closed loop with PT2S behaviour, 9-8
– of a PT2 element, 4-18, A-9
– of a PT2S element, A-8, A-10
– of standard forms, A-16, A-17
– PD controller, 8-3
– PDT1 controller, 8-3
– PI controller, 8-3
– PID controller, 8-2, 8-3
– PIDT1 controller, 8-3
– PT1Tt element, 8-8
Stodola criterion, 5-5
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structure
– state-feedback controller, 13-2
structure of an observer, 13-10
sum, algebraic, 15-5
summing point, 1-5
superposition theorem of the Laplace transform,

2-3
synthesis
– for an unstable plant, 10-19
synthesis equation, 10-9
synthesis method
– for an unstable plant, 10-25
– frequency domain characteristics, 9-10
– pre-filter design, 10-24
system
– causal, 2-2
– continuous-time, 3-1, 4-3
– invariant, 3-3
– linear, 3-1, 3-3, 4-3, 4-4
– minimum phase, 4-20
– multi-input-multi-output, 12-2
– non-minimum phase, 10-5, 11-4
– output signal, 4-3
– realisable, 5-8
– single-input-single-output, 12-1, 12-2
– stable, 4-20, 5-2
– time-invariant, 3-1, 12-2
– unstable, 5-2
– with dead time, 5-7
– with lumped parameters, 3-1
– without dead time, 3-3, 4-20
system matrix, 12-3
system of differential equations, 12-2
system property, 5-2

Takagi-Sugeno fuzzy system, 16-7
tangent at the turning point, 8-6
temperature control, 11-4, 11-5
test signals, 7-6
theorem
– Parseval, 7-12
theorem of residuals, 2-6, 2-7
time constant
– of a PT1 element, 4-9, 4-11
– of a PT2 element, 5-5, A-9
– of an I element, 4-7
time domain, 2-2, 2-5, 4-4
time response
– of the closed loop, 9-9, 9-10
time-invariant system, 3-1, 3-3
time-response specifications, 7-9
time-varying system, 12-3
transcendental transfer function, 3-3
transfer function
– all-pass element, 4-21
– combinations, 3-5
– dead time, 3-3, 4-22

– definition, 3-2
– desired, 10-2
– disturbance, 10-16, 10-17, 10-23, 10-24
– feedback loop, 3-6, 3-7
– for calculations, 3-5
– I controller, 8-3
– I element, 4-7
– improper, 3-3
– inverse, 10-4
– lag element, 9-13
– lead element, 9-11
– numerator degree, 3-3
– of a cascade control system, 11-5
– of the closed loop, 5-5
– of the open loop, 5-5, 5-8, 6-2, 7-3, 7-6
– P controller, 8-3
– P element, 4-7
– parallel connection, 3-6, 4-5
– PD controller, 8-3
– PD element, 4-12
– PDT1 controller, 8-3
– PI controller, 8-3
– PID controller, 8-1
– PIDT1 controller, 8-3
– poles and zeros, 3-3, 3-4
– pre-filter, 10-16, 10-21, 10-26
– proper, 3-3
– properness, 3-3
– PT1 element, 4-9
– PT2 element, 4-14, A-9
– PT2S element, 4-15, A-10
– PTt element, 4-22
– rational, 3-3, 3-4, 4-19, 4-22
– realisability, 3-3
– realisable, 10-24
– series connection, 3-5, 3-6, 4-5
– standard forms, 10-2
– state-space representation, 12-3
– stricly proper, 3-3
– transcendental, 3-3
transfer function elements, 4-7
– series connection, 4-6
transfer function for command input, 10-24
transformation
– controller canonical form, 13-7
– state-space representation, 12-5
transformation matrix, 12-5, 13-7
tuning parameters of the controller, 8-2, 8-3
tuning rules
– empirical, 8-6
turning point
– tangent, 8-6

unambiguously reversible mapping, 2-2
undamped behaviour, A-10
union operator, 15-5
universal set, 15-3
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unstable
– PT2S element, A-10
unstable behaviour, 10-19
unstable plant, 9-21, 9-22, 10-5, 10-19, 10-23,

10-25
unstable system, 5-2

value of truth, 15-1, 15-2
variation of the plant parameters, 10-19

weighting function, 3-2, A-11
– Laplace transform, 5-2, A-11
windup, 11-9
windup effect, 11-9

zeros
– controller transfer function, 10-19, 10-21
– of the closed loop, 10-9
– of the open loop, 9-18
– of the plant, 10-9
– of the transfer function, 3-3, 3-4
– plant, 10-19
– state-feedback control, 13-3
Ziegler-Nichols tuning rules, 8-6
– method of the stability margin, 8-6
– method of the step response, 8-6
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