
1 DYNAST Language reference

DYN, Nad lesíkem 27, CZ-160 00 Prague 6, dyn@virtual.cvut.cz

DYNAST

User s Guide

Heřman Mann, Michal Ševčenko

Version 3.7.21

Release Date: November 29, 2004

© DYN 1995-2004

Table of contents

Chapter 1 About DYNAST 6

1.1 What DYNAST can do for you 6

1.2 Solving equations 6

1.3 Analyzing block diagrams 7

1.4 Modeling real systems 8

1.5 Designing control 9

Chapter 2 DYNAST simulation system 10

2.1 DYNAST Solver 10
2.1.1 Sections of DYNAST Solver 10

2.1.2 Input language of DYNAST Solver 11

2.1.3 Data-files of DYNAST Solver 11

2.2 DYNAST for MS Windows 13
2.2.1 DynShell working environment 13

2.2.2 Working with DynShell 13

2.2.3 Browsing files 14

2.2.4 Saving and restoring the state of the application 14

2

2.3 Access to DYNAST across the Internet 14

2.4 Communication with MATLAB 16

Chapter 3 Submitting systems of equations 17

3.1 Systems of equations 17

3.2 Implicit equations 17
3.2.1 Implicit algebro-differential equations 17

3.2.2 Implicit algebraic equations 17

3.2.3 Equation singularity 18

3.3 Explicit equations 18

3.4 Specification of equations using the wizard 18

3.5 Specification of equations using the text editor 19

3.6 Examples 20

Chapter 4 Entering symbolic expressions 24

4.1 Symbolic expressions 24

4.2 Numeric constants 24

4.3 Variables and parameters 25

4.4 Operators 26
4.4.1 Arithmetic operators 26

4.4.2 Logical operators 27

4.5 Functions 27
4.5.1 Standard functions 28

4.5.2 User-defined functions 29

4.5.3 Polynomial function 30

4.5.4 Impulse function 31

4.5.5 Tabular function 32

4.5.6 Tabular function with two arguments 33

4.5.7 Altered functions 33

4.5.8 Composed function 34

4.5.9 Trimmed function 35

4.5.10 Periodic function 36

4.5.11 Random number generator 37

4.5.12 Events 37

4.5.13 Intervals 38

4.6 Specification of expressions using the wizards 39

Chapter 5 Submitting basic blocks 40

5.1 Basic blocks 40

5.2 Variety of basic blocks 40

5.3 Basic blocks in block diagrams 41

5.4 Variables of basic blocks 42

5.5 Specification of blocks in a diagram 42

3 DYNAST Language reference

5.6 Specification of blocks in a text file 42

Chapter 6 Creating and editing diagrams 48

6.1 Block and multipole diagrams 48

6.2 Creating diagrams 48
6.2.1 Placing parts into a diagram 48

6.2.2 Interconnecting parts 49

6.3 Editing a diagram 50

6.4 Synchronization of a diagram with its netlist 50

Chapter 7 Submitting physical elements 52

7.1 Physical elements 52
7.1.1 Variety of physical elements 52

7.1.2 Element physical variables 53

7.1.3 Parameters of physical elements 55

7.1.4 Element and variable orientation 56

7.1.5 Arrow convention for non-mechanical variables 56

7.1.6 Arrow convention for mechanical variables 58

7.1.7 Interaction of physical elements 59

7.1.8 Node interactions 59

7.1.9 Series configuration 60

7.1.10 Inductive coupling 60

7.1.11 Parameter control 61

7.2 Specification of physical elements in a diagram 61

7.3 Specification of physical elements in a text file 61
7.3.1 Node-to-node element interaction 61

7.3.2 In-series element interaction 62

7.3.3 Inductive couplings 63

Chapter 8 Submitting and creating submodels 64

8.1 Multipole and superblock submodels 64

8.2 Submitting ready-made submodels 64
8.2.1 Specification of submodels in a diagram 64

8.2.2 Specification of submodels in a text file 64

8.3 Submitting new submodels 66
8.3.1 Specification of submodel properties using the diagram editor 66

8.3.2 Specification of a new submodel using the text editor 66

8.3.3 Specification of a new submodel using the diagram editor 68

8.3.4 Designing graphical symbols for submodels 69

Chapter 9 Invoking nonlinear analysis 72

9.1 Nonlinear analysis 72

9.2 Modes of nonlinear analysis 72

9.3 Initial conditions of nonlinear analysis 73

4

9.4 Output of nonlinear analysis results 73

9.5 Specification of nonlinear analysis using the wizard 74

9.6 Specification of nonlinear analysis using the text editor 74
9.6.1 Modes of the analysis 74

9.6.2 Transient analysis 75

9.6.3 Transient analysis starting from quiescent steady-state 75

9.6.4 Static or quiescent steady-state analysis 75

9.6.5 Static or quiescent steady-state parameter-sweep analysis 75

9.6.6 Fourier analysis 75

9.6.7 Initial conditions of nonlinear analysis 76

9.6.8 User-specified initial conditions 76

9.6.9 Residual initial conditions 77

9.6.10 Loaded initial conditions 77

9.6.11 Output variables 77

9.6.12 Computational control 78

9.6.13 Saving the residual solution 78

9.6.14 Modification of system parameters 78

9.6.15 Erasing the residual solution and statements 79

9.7 Plotting simulation results 79

Chapter 10 Invoking numerical frequency analysis 82

10.1 Numerical frequency analysis 82

10.2 Specification of numerical frequency analysis using the wizard 82

10.3 Specification of numerical frequency analysis using the text editor 82
10.3.1 Specification of the system excitation 82

10.3.2 Specification of the analysis 83

10.3.3 Output of the analysis 84

Chapter 11 Invoking semisymbolic analysis 85

11.1 Semisymbolic analysis 85

11.2 Specification of semisymbolic analysis using the wizard 86

11.3 Specification of semisymbolic analysis using the text editor 86
11.3.1 Operator functions 86

11.3.2 Operator-function time-responses 88

11.3.3 Frequency analysis of transfer functions 89

Chapter 12 Documenting problems and submodels 91

12.1 The documentation system 91

12.2 The documentation statements 91
12.2.1 Special statements 91

12.2.2 Simple statements 92

12.3 Documenting subsystems 100

12.4 Processing the documents 100

5 DYNAST Language reference

Chapter 13 Inside DYNAST 101

13.1 Formulation methods 101

13.2 Computational methods 103

13.3 Computational hints 104

13.4 Computation control 104

Chapter 14 DYNAST as a modeling toolbox for MATLAB 106

14.1 DYNAST & MATLAB in control design 106

14.2 Exporting transfer functions from DYNAST to MATLAB 106

14.3 Controlling a plant model in DYNAST from SIMULINK 106
14.3.1 Preparing the plant model in DYNAST 107

14.3.2 Preparing the control diagram in SIMULINK 107

14.4 Installing support files 107

Chapter 15 Installing and configuring DYNAST 109

15.1 Installing DYNAST on Windows 109
15.1.1 System requirements 109

15.1.2 Installation procedure 109

15.1.3 Uninstalling DYNAST 110

15.2 Configuring DynShell 110
15.2.1 The text editor 110

15.2.2 The plot viewer 110

15.2.3 The external tools 111

15.2.4 The documentation system 112

15.2.5 The folders 112

15.2.6 Exporting transfer functions from DYNAST to MATLAB 112

15.2.7 Controlling a plant model in DYNAST from SIMULINK 112
15.2.7.1 Preparing the plant model in DYNAST 113

15.2.7.2 Preparing the control diagram in SIMULINK 113

15.2.7.3 Installing support files 113

6

Chapter 1
About DYNAST

1.1 What DYNAST can do for you

DYNAST is a versatile computer program for efficient solving of nonlinear algebro-differential equations
as well as for modeling, simulation and analysis of general nonlinear dynamic systems. For linear
systems, DYNAST provides also semisymbolic analysis both in time and frequency domains.

DYNAST input language permits for describing the dynamic systems under consideration in the
following ways:

by a set of equations submitted in a natural textual form without converting them into a block diagram

by a block diagram without any restrictions like algebraic loops

by a multipole diagram portraying directly the configuration of the analyzed real dynamic system

The three above approaches can be freely combined.

DYNAST users are not required to have any knowledge of computer programming. Its input language
is strongly problem as well as object oriented, and it is very versatile yet simple to use. The input data
is directly interpreted by the program, so there is no compilation delay. DYNAST is accompanied by
a graphical user s environments for easier program control, for plotting the output results, and even for
submitting the analyzed diagrams in a graphical form.

The computational procedures built-in DYNAST belongs to the most effective ones and, at the same time,
they are robust enough not to require much of user s knowledge of numerical mathematics when solving
prevailing class of problems. Despite the fact that DYNAST uses numerical solution procedures only, for
linear problems it can yield results in a closed semisymbolic form. Many operations are automated, which
helps to make DYNAST a user-friendly tool.

DYNAST is easily transportable to a wide variety of computers as it is coded in the C++ language.

1.2 Solving equations

DYNAST is capable of solving systems of ordinary nonlinear and nonstationary first-order
algebro-differential equations in the implicit form

f x t x t t 0 (1.1)

where f is the vector of functions, x t is the vector of the solved variables and x t is the vector of
their derivatives with respect to the independent variable t.

DYNAST also solves systems of nonlinear algebraic equations

7 Chapter 1 About DYNAST

f x t t 0 (1.2)

just as a special case of (1.1). As the DYNAST input language permits for submitting the equations into
the program directly in the textual form, there is no need to represent them first by a block diagram.
The equations can be specified by means of a wide variety of functions including boolean functions
and functions defined by a table. The expressions can be branched taking into account user specified
conditions put on the solution.

To solve 1.1 in the interval t t0 t1 for given initial conditions x t0 DYNAST uses a stiff-stable
integration method. During the integration, DYNAST continuously optimizes both the integration step
length as well as the order of the method to minimize the computational time while respecting the
specified admissible computational error. DYNAST is robust enough even for sharply nonlinear and/or
nonstationary equations the number of which changes during their solution.

The solution can start either from initial conditions specified by the user, or from the initial conditions
corresponding to a steady-state of the system either static or periodic, both of which can be computed
automatically. In the the former case the fast Fourier spectral analysis can then be applied to the resulting
periodic-steady state responses.

When the transient solution is interrupted, the last solution vector is automatically stored and than it can
be used anytime later as a starting point for further computations. The solution can also be interrupted
automatically after the occurrence of a specific event.

In case of quasistatic analysis, during which some of the system or ambient parameters is supposed
to vary slowly in a specified range, the independent variable t represents the varied parameter. The
integration procedure built-in DYNAST is then used to control the independent parameter variations.

1.3 Analyzing block diagrams

Block diagrams represent graphically nothing but sets of equations. The DYNAST variety of blocks is
very narrow comparing to other simulation programs. Yet DYNAST permits for very versatile block
diagram modeling thanks to the possibility to specify the function of the individual blocks by flexible
mathematical expressions.

DYNAST also offers the possibility to set up the analyzed block diagrams not only from its built-in block
elements, but also from much more sophisticated multiinput multioutput macroblocks specified by the
user and stored in independent data files. These macroblocks can be nested in a hierarchical way.

As DYNAST formulates the block diagram equations simultaneously, it has no problems with the fast
or algebraic loops as it is common to most of the other simulation programs. The block diagrams may
be combined with equations as well as with multipole diagram elements.

In case of the nonlinear block diagram analysis, DYNAST can carry out similar operation as in the case
of the algebro-differential equation solution described above. Besides that, DYNAST is able to linearize
automatically the equations of nonlinear block diagrams for their small-excitation analysis in the vicinity
of a computed or user specified operating point.

In case of linear or linearized block diagrams, DYNAST makes possible to compute numerically their
rational transfer functions and transforms of initial-condition responses semisymbolic form, i.e. with
symbolic Laplace s operator and numerical polynomial roots and coefficients. For the semisymbolic

1.3 Analyzing block diagrams 8

transfer functions the program than can compute semisymbolic frequency and time characteristics. The
frequency characteristics of distributed-parameter systems DYNAST computes directly without resorting
to any transfer functions.

1.4 Modeling real systems

Modeling of real systems is easy when using DYNAST, as it is based on the multipole modeling
approach. The multipole models can be submitted to DYNAST in a graphical form isomorphic with the
geometric configuration of the modeled real system. Therefore, a multipole model can be set up in a
kit-like fashion based on mere inspection of the real system in the same way in which the system has been
assembled from its real components.

Multipole models are represented graphically by multipole diagrams consisting of symbols for the
individual multipoles. The symbols are interconnected by line segments representing energy interactions
between the real components in a system. The variety of the multipole models can range from pure
two-pole elements like resistors, capacitors, inductors, dampers, inertors and springs up to sophisticated
models of complex real components and subsystems.

Figure 1.1 (a) Rolling mill for metal strips. Multipole models of (b) DC motor, (c) strip coiler, (d) rolling stand.

Fig. 1.1a shows a multipole model of a cold-rolling mill. Multipole models of the individual mill
subsystems are shown in Fig. 1.1b through d. The DC motors driving the coilers with metal-strip coils are
controlled for a constant tension in the strip. The DC motor driving the milling rollers is controlled for
a constant strip velocity. The gap between the rollers can be adjusted continuously by a hydraulic ram.
The DC motor field windings are supplied by sources of voltage and the armature windings by controlled
sources of current.

The multipoles in Fig. 1.1a are combined with block diagrams modeling the controllers forming a
dynamic diagram. Note the difference between the line segments interconnecting the blocks and the

9 Chapter 1 About DYNAST

multipoles. The latter line segments represent in Figure 1.1a bidirectional energy transfers between
components via idealized electrical conductors, shafts and the metal strip. Each of the line segments is
associated with a pair of conjugate variables the product of which represents the transferred power. The
segment interconnections respect physical laws governing the energy interactions.

The line segments interconnecting the blocks are associated with one mathematical variable only
propagating just in one direction only. The interactions respect algebraic rules, but ignore any
physical laws. Obviously, while the block diagrams are nothing but graphical representations of
equations, the multipole diagrams are mappings of real system geometric configurations onto their
topological representations.

1.5 Designing control

DYNAST can be easily used as a modeling toolbox for MATLAB. While MATLAB is well suited to
control design, DYNAST is capable of automated equation formulation even for very realistic models of
real systems. You can combine these two programs to exploit advantages of both.

Notably, you can implement and analyze a nonlinear model of the plant to be controlled in DYNAST.
Then, for example, you may ask DYNAST to linearize the model, compute transfer-function poles and
zeros of the plant model, and export them for the plant-control synthesis to MATLAB. Finally, to verify
the complete controlled system you can use DYNAST again after augmenting the plant model by the
resulting control configuration. During this design phase, you may use DYNAST to consider also plant
nonlinearities as well as the non-ideal features of the controllers and sensors in various operation regimes
of the control system. If the designed control is digital, you may verify it by interconnecting DYNAST
with SIMULINK so that these two packages can communicate with each other at each time step.

For example, also the cold-rolling mill shown in Figure 1.1a has been controlled in a similar way. The
hydraulic ram adjusting the roller gap can be controlled digitally across the Internet by a sophisticated
adaptive controller implemented in Simulink and respecting the data coming across the Internet from the
modeled gages and motors. During the simulation, the thickness of the incoming metal strip was varied
randomly while a considerable transportation lag between the gage measurement and the rolling process
was taken into account.

10

Chapter 2
DYNAST simulation system

2.1 DYNAST Solver

2.1.1 Sections of DYNAST Solver

The DYNAST simulation system consists of two separate parts DYNAST Solver and a DYNAST
working environment. DYNAST Solver is composed of several sections sharing common data as shown
in Fig. 2.1. The section SYSTEM reads in the system-model description in the form of a set of
algebro-differential equations, a block diagram, a multipole diagram, or in a form combining freely these
approaches.

Figure 2.1 DYNAST solver

SYSTEM
input data

preprocessing

TR
formulation
and solution

PZ
operator function,
poles and zeros

TRA
semisymbolic
time- domain

analysis

FRE
semisymbolic

frequency
analysis

AC
numerical
frequency
analysis

linearized
systems

operator
function

linear systems

nonlinear
equations

or a system

Nonlinear systems of equations can be solved, and nonlinear diagrams analyzed, in the TR section.
This section computes system transient responses and system steady states, either static or periodic. In
the former case, DYNAST automatically sets the time derivatives of all variables to zero. The static
steady-states can be computed also for a system- or ambient-parameter sweeped through an interval. The
transient responses can start either from initial conditions specified by the user, or from initial conditions
corresponding to a static or periodic steady-state of the system. Fourier spectral analysis can be than
applied to the periodic steady-state responses.

The TR section provides also automatic linearization of the analyzed nonlinear system. The resulting
linearized system model can be subjected to small-excitation analysis in the vicinity of its user-specified
or computed quiescent operating point. This analysis, yielding operator functions representing either
system transfer functions or the transform of system initial-state responses, can be provided by the
PZ section. The resulting operator functions are available in a semisymbolic form with the Laplace
operator s as a symbol, and with the polynomial roots and coefficients as numbers. For such operator
functions, DYNAST can than compute semisymbolic- and numeric-form time-domain characteristics

11 Chapter 2 DYNAST simulation system

using the TRA section, the FRE evaluates frequency characteristics numerically. For linear systems,
DYNAST provides also an option for their direct numerical frequency analysis in the AC section. This
approach allows for the analysis of distributed-parameter dynamic systems (using hyperbolic and other
frequency-dependent functions).

2.1.2 Input language of DYNAST Solver

DYNAST input-language syntax is described in detail in the following chapters. Here only the general
structure of the language is given.

DYNAST input-language is composed of statements coded in ASCII characters and both upper and
lower case letters may be used in them. DYNAST, however, is not case sensitive and converts all the
letters into the upper-case ones. Each of the statements is terminated by the semicolon character ; . A
statement may continue on several lines, and there may be several statements placed in one line. The
maximum number of characters in one line including spaces is 80.

The statements consist of items like DYNAST input-language keywords and identifiers, user-defined
identifiers and other user-specified items separated by delimiters made by characters which are neither
letters nor numbers, i.e., by characters like / , - , = , , and . or by spaces. The underscore character
_ , however, is treated as a letter. It is fully insignificant if only one or more subsequent spaces are used

as a delimiter.

The user-defined identifiers denoting variables and other items of the analyzed systems can be up to 8
alphabetical characters long. Any additional characters are ignored. The identifiers may not contain any
non-numerical characters or spaces.

If there is a colon : in a line, the part of the line to the right of this character will be considered
as a comment and ignored as such by the program. (This feature may be used for deactivating some
statements during the input data debugging procedure.) When the colon : is preceded by the asterisk * ,
the comment will be used by DYNAST as a problem title in the resulting tables and graphs.

2.1.3 Data-fi les of DYNAST Solver

When solving a problem, DYNAST communicates with the data-files of the following type:

input data problem file specifying the system model to be analyzed as well as the required mode
of analysis

file-name extension: prb

input-data submodel files specifying component or subsystem models in the form of superblocks
or multipoles

file-name extension: mod

an output-data file containing a copy of the input data, the computed results, and any eventual
error messages

file-name extension: O

an input/output data file storing the last-solution vector, which can be used as an initial-condition
vector for subsequent analysis

default file-name extension: inc

2.1 DYNAST Solver 12

All the files are text files.

The overall structure of the input problem-file is following:

*SYSTEM

data for the section SYSTEM

*section;

data for the next section

*section;

Table 2.1 DYNAST sections

Section
Purpose

SYSTEM

Reading in the description of the system to be analyzed in the form of

a set of algebro-differential equations

a block diagram

a multipole diagram

any combination of the above

Library models may be used for superblocks and multipoles.

TR

Transient analysis and its special cases like

transient analysis with the initial conditions determined by the static equilibrium analysis

static analysis with a parameter being varied

periodic steady-state and subsequent fourier spectral analysis

determination of events and intervals between them

linearization of the analyzed system

PZ

Semisymbolic analysis in the Laplace transform domain, i.e. the computation of poles, zeros
and polynomial coefficients of rational

transfer functions

transforms of initial-state responses

for linear or linearized systems.
TRA Semisymbolic and numerical analysis of time characteristics and responses.

FRE
Numerical evaluation of frequency-characteristics components for semisymbolic transfer
functions.

AC
Direct numerical point-by-point frequency analysis of linear or linearized block or multipole
diagrams.

13 Chapter 2 DYNAST simulation system

*END;

Each of the input-data sections is introduced by the statement *section; where section is a section
identifier preceded by the asterisk * without any space. The section identifiers are listed in Table 2.1.
The statement *END; terminates the input data. Any data behind this statement is ignored by DYNAST.

During one DYNAST execution, several systems can be submitted, and each system can be analyzed
repeatedly with its parameters modified.

2.2 DYNAST for MS Windows

2.2.1 DynShell working environment

The DYNAST Shell or DynShell has been designed for MS Windows to provide a user-friendly
support for a wide variety of tasks. It suits to users of different levels of qualification and experience.
All operations are supported by a context sensitive help system. There is a built-in syntax analyzer
continuously checking the submitted data. Dialog windows (wizards) allow for submitting data without
knowledge of the input language. Multipole and block diagrams can be submitted in a graphical form
using a built-in schematic editor. The same tool can be used to create submodel symbols. The diagrams
can be imported also from the OrCAD schematic editor and converted to the DYNAST language.

Resulting data can be plotted in various arrangements and the plots can be exported in the Encapsulated
PostScript format. DynShell can communicate with a server-based automated LaTeX documentation
system generating reports for simulation experiments in the PostScript, PDF and HTML formats.
DynShell has also the capability to act as a modeling toolbox for MATLAB and Simulink. The simulation
results can be used for animation of 3D models formed using VRML- and Java-based visualization tools.

2.2.2 Working with DynShell

You can start DynShell by simple clicking the DynShell icon on the Windows desktop. Unless some
open work windows have been stored in your DynShell main window from the previous session, the main
window will be empty and the number of menus in will be very small. The reason is that there are several
different views of the DynShell main window, each of them with its own set of tools specialized for work
activity with a particular type of document. Table 2.2 gives a survey of DynShell views and related work
windows, documents and file extensions.

There are different pulldown menus, toolbar buttons, or key shortcuts for different types of document. To
get help about a menu entry or a tool, press Shift-F1 and click on the menu entry or toolbar button. Note
that the toolset changes as you switch between documents.

If you are new to DYNAST, we strongly recommend to you to open the Help menu first and to
examine all the items available there to support your work with DYNAST. We also recommend
you to pay attention to the Options chosen in the Preferences menu. In this menu, you can also select the
toolbars that you want to use for different tasks.

2.2 DYNAST for MS Windows 14

2.2.3 Browsing fi les

From the View menu, choose Problem List to open the list of al the problem files stored in the Input
data directory chosen in the Preferences menu. It allows you browsing through the files in this directory
as well as in its subdirectories. The green OK mark denotes the files without any syntax error. The red
cross indicates a syntax error in the problem file, or in any of the submodels called from the problem file.
Clicking a file name in the list opens the work window with the file. The erroneous statements are red
underlined there, and pointing the cursor at such a statement activates an error message.

If the column Diagram is not empty, there is a diagram file in the current directory with the same file
name as the problem file. The OK characters indicate that the diagram corresponds exactly to the problem
file netlist, the "out-of-date" statement indicates differences. Clicking the nonempty diagram box in the
list opens a work window with the diagram. In a similar way, from the View menu you can open the list
of all the submodel files. From there, you can access all the submodel files and symbol libraries stored in
the chosen directory and its subdirectories.

2.2.4 Saving and restoring the state of the application

The Save Screen Layout and Load Screen Layouts allow you to save the state of the DynShell to a file,
and to restore it later. The state means the position of the main frame, positions and properties of opened
documents (such as cursor and scroller positions), variables displayed in the plot viewer, etc. If you close
DynShell the layout is saved, and then it is restored when you start DynShell again.

2.3 Access to DYNAST across the Internet

DYNAST Solver has been installed on a Linux computer connected to the Czech Technical University
server. It can be accessed via http://virtual.cvut.cz/dyn/ in a Web-based, on-line and e-mail modes.

Web-based access. DYNCAD - a special Web-based working environment has been developed in the
form of a Java applet. It allows for setting up multipole and block diagrams directly on the Web. A wide
variety of symbols of twopoles from different physical domains as well as symbols of energy transducers
and blocks are available there. For more complex system components, models stored in the DYNCAD

Table 2.2 DynShell work windows

Work activity Work window shows File extension
Problem browsing list of problem files
Submodel browsing list of submodel specification

Problem editing text of problem specification .prb

Submodel editing text of submodel specification .mod

Diagram creating diagram of system model .dia

Symbol designing symbol library .lbr

Output examining text of output data .o

Output plotting plot of output data .o

Document processing text of Latex source .tex

15 Chapter 2 DYNAST simulation system

libraries can be utilized, and also, users can define their own models and symbols. DYNCAD converts
diagrams into the DYNAST input language and sends the data to DYNAST across the Internet. Users can
open their free private accounts in DYNCAD and store there their simulation problems. DYNCAD is able
to export the set-up diagrams into PostScript and to send them to the users by e-mail.

After the computational results are sent back to a client computer by the DYNAST server, there are two
options for a graphical display of the computed responses on the client s screen. The plots generated on
the DYNAST server in HTML are sent to the client computer as a Web-page. Or, the output data from
DYNAST can be visualized on the client computer by means of a Java applet. The Web-based mode
function is illustrated by Fig. 2.2.

Figure 2.2 DYNAST Web-based

DYNCAD
schematic editor

(Java applet)

DYNPLOT
output data plotter

(Java applet)

Web browser

MATLAB
environment

DYNAST
solver

HTML
plotter

Internet server

Internet

On-line access. DYNAST can be utilized in an even more comfortable and user-friendly way using the
on-line access mode illustrated in Fig. 2.3. This mode requires, however, downloading and installing the
DynShell software package forming DYNAST user s environment for PC computers with MS Windows.

Figure 2.3 DYNAST on-line

DYNAST
Shell

MATLAB
environment

DYNAST
solver

LaTeX
processor

Internet server

Internet

2.3 Access to DYNAST across the Internet 16

E-mail access. The e-mail access was designed for those with a limited access to the Internet. The users
can send a file with the input data for DYNAST containing equations or the netlist of a dynamic diagram
to the e-mail address: DYNAST@icosym.cvut.cz with the subject: compute. They then receive the results
sent them back to their e-mail address automatically.

2.4 Communication with MATLAB

Using either DYNCAD or DynShell, the plant model can be easily set up in a graphical form. DYNAST
can be then used to simulate the plant and to validate its open-loop model. If the model is nonlinear,
DYNAST is capable of linearizing it. DYNAST then can compute the required plant transfer-function
poles and zeros, and export them to MATLAB in an M-file. After designing an analog control within
the MATLAB environment, the DYNAST model of the plant to be controlled can be augmented by the
designed control structure and thoroughly verified by DYNAST.

In the case of a digital control design, there is another option for the design verification. After designing
the digital control in the MATLAB environment, the resulting control structure can be implemented
in Simulink while the controlled plant model remains in DYNAST. Simulink installed on the client
computer can then communicate with the remote DYNAST at each time step across the Internet
exploiting the Simulink S-function.

17 Chapter 3 Submitting systems of equations

Chapter 3
Submitting systems of equations

3.1 Systems of equations

You can use DYNAST to solve simultaneously systems of ordinary algebro-differential implicit-form
equations within a given interval of an independent variable for given or computed initial conditions.
DYNAST is also capable of evaluating variables specified by explicit-form equations.

The equations may be nonlinear as well as nonstationary. All the equations solved simultaneously may
be purely algebraic, purely differential, or a mixture of both. The differential equations are assumed to
be of the first order. (Note that any differential equation of the n-th order can be easily converted into n
first-order equivalent equations using a simple substitution.)

Equations are submitted to DYNAST in a natural textual form without the necessity to convert them
into a block diagram. In a problem specification, equations can be mixed with blocks, physical elements
or library submodels. Utilizing the integrator block also integro-differential equations can be solved
by DYNAST.

3.2 Implicit equations

3.2.1 Implicit algebro-differential equations

An implicit algebro-differential equation submitted to DYNAST is assumed to be in the form

f x1 x2 xn x1 x2 xn p1 p2 t 0

where f is a known function, x1 t x2 t xn t are the solved variables, x1 t x2 t xn t are
their derivatives with respect to t, and p1 t p2 t are some variables or parameters which have been
evaluated already. The independent variable t should be denoted by the identifier TIME , which stands
indeed in most cases for the physical quantity called time, but it may also represent some other known
independent variable of any physical dimension.

As DYNAST solves the implicit equations shown above for the given initial conditions
x1 t0 x2 t0 xn t0 simultaneously, the equations can be arranged in any order. The equations cannot
be solved, however, if they are singular.

3.2.2 Implicit algebraic equations

DYNAST can solve the implicit algebro-differential equations even if the time derivatives of all the solved
variables xi t are zero, i.e., if these are purely algebraic equations

3.2 Implicit equations 18

1.

2.

3.

f x1 x2 xn p1 p2 t 0

In this case, the option to specify initial conditions can be used instead for submitting initial estimates of
the solved variables x1

0 i0 x2
0 t0 xn

0 t0 at t t0. This allows for

speeding up the iterative solution process

determining which of the solutions is going to be computed in case of multiple-solution equations

avoiding the equation singularity at the start of the computation

If no initial estimate to the solution is submitted, DYNAST takes it as zero by default.

3.2.3 Equation singularity

If the solved problem is specified by a set of equations exclusively (i.e., without blocks or physical
elements), the number of the submitted implicit algebro-differential equations must be equal to the
number of the unknown solved variables. If these numbers are different, or if the equations are linearly
dependent, DYNAST indicates this situation by the error message SYSTEM IS SINGULAR .

It may happen that the algebraic equations are singular just for the initial estimate of the solution applied
at the start of the computation. If this is the case, the initial condition option can be utilised for submitting
an initial-solution estimate removing the equation singularity.

3.3 Explicit equations

An explicit equation is assumed to be of the form

y g x1 x2 xn x1 x2 xn p1 p2 t

where y t is an evaluated variable or an evaluated parameter, g is a known function, t is an
independent variable, x1 t x2 t xn t are variables acting as solved variables in a preceding set of
implicit equations or dynamic diagram, x1 t x2 t xn t are derivatives of the solved variables with
respect to t, and p1 t p2 t are some variables or parameters which have been evaluated already in a
preceding explicit equation.

DYNAST does not solve the explicit equations simultaneously with implicit equations, it evaluates them
only. This means, that a value for the variable or parameter defined by an explicit equation is computed
after substituting values for the equation arguments resulting from the last (but not current) iteration.

3.4 Specification of equations using the wizard

From the File menu, choose New and open a Problem File.

From the System menu, choose Insert Equation.

Choose either the Explicit or Implicit equation option.

Specification of an explicit equation

19 Chapter 3 Submitting systems of equations

1.

2.

3.

4.

1.

2.

3.

Enter an identifier for the evaluated variable in the Left-Hand-Side box.

Enter the rest of the equation in the Right-Hand-Side box. To do this, you can choose Expressions as
well as the suffix buttons. For details see the next chapter.

Choose Insert.

Specification of an implicit equation

Enter the equation using the Right-Hand-Side box. As in the former case, you can choose Expressions
as well as the suffix buttons.

Choose Insert.

If DYNAST indicates an Unknown identifier for a variable, you should specify it either as a solved or
evaluated variable. If this is the latter case, you should specify it by an explicit equation after choosing
the second radio button. In the former case, choose the OK button.

Choose Insert again.

3.5 Specification of equations using the text editor

Equation specification should be included into the SYSTEM section of the DYNAST input data.
Specification of implicit equations should be preceded by a declaration list of all the solved variables by a
statement of the form:

SYSVAR solved [, solved];

solved

is a user-defined identifier of a solved variable

Each of the implicit equations can be entered into DYNAST using the statement

0 = expression;

0 =

is the key-string introducing the implicit-equation statement

expression

is a symbolic expression specifying the relation set to zero by the implicit equation. Any evaluated
variable or parameter must be specified before it is used as an argument in the expression.

In the expressions, a solved-variable derivative with respect to t is denoted

VD.solved

solved is the identifier of the solved variable

Each of the explicit equations can be entered into DYNAST using the statement

evaluated = expression ;

evaluated

3.5 Specification of equations using the text editor 20

is a user-defined identifier of the evaluated parameter

expression

is a numeric constant or symbolic expression. Any evaluated variable or parameter must be specified
before it is used as an argument in the expression.

3.6 Examples

Linear constant-coefficient algebraic equations

2x1 7x2 4x3 9

x1 9x2 6x3 1

3x1 8x2 5x3 6

converted into the implicit form and solved for the unknown variables x1 x2 and x3:

*SYSTEM;
SYSVAR x1, x2, x3;
0 = 2*x1 - 7*x2 + 4*x3 - 9;
0 = x1 + 9*x2 - 6*x3 - 1;
0 = - 3*x1 + 8*x2 + 5*x3 - 6;
*TR; DC; PRINT x1, x2, x3; RUN; *END;

Nonlinear algebraic equations

0 5 u vsin
v

4
0 5u 0

1
1

4
e2u e e

3v
2u 0

solved for the variables u and v:

*SYSTEM;
SYSVAR u, v;
0 = .5*sin(u*v) - v/4pi - .5*u;
0 = (1 - 1/4pi)*(exp(2*u) - exp(1)) +

exp(1)*(3*v/1pi - 2*u);
*TR; DC; PRINT u, v; RUN; *END;

21 Chapter 3 Submitting systems of equations

An oscillating variable f A t 2 tsin evaluated at 201 points for 0 5 t 0 5: for the decaying
amplitude A t 200 e t, where 5 and 4 46:

*SYSTEM;
zeta = -4.46; A = 200*exp(zeta*time); omega = 5;
f = A*sin(2pi*omega*time);
*TR; tr -.5 .5; PRINT (201) A, f; RUN; *END;

Time-variable algebraic equations

0 3 2 0 55cos 3 0 4cos 4cos 0 6

0 3 2 0 55sin 3 0 4sin 4sin 0

solved for the variables 3 and 4 in the interval 0 t 1, assuming that 2 2 t:

*SYSTEM;
SYSVAR phi3, phi4;
0 = .3*cos(2pi*time) + .55*cos(phi3) +

.4*cos(phi4) - .6;
0 = .3*sin(2pi*time) + .55*sin(phi3) +

.4*sin(phi4);
*TR; TR 0 1; PRINT phi3, phi4; RUN; *END;

Explicit, or normal-form, nonlinear differential equations

r 0 1r mf

m 0 1r m 0 1 f 2 mf

f 0 1r 2m mf 0 2 f 2 1000 f

converted into the implicit form and solved for the variables r m and f in the interval 0 t 12:

*SYSTEM; SYSVAR r, m, f;
0 = - VD.r - .1*r + m*f;
0 = - VD.m + .1*r - m + .1*f**2 - m*f;
0 = - VD.f + .1*r + 2*m - m*f - .2*f**2 - 1000*f;
*TR;TR 0 12; INIT f = 9.975, m = 1.674, r = 84.99;
PRINT r, m, f; RUN; *END;

Here, f 0 9 975 m 0 1 674 r 0 84 99 are initial conditions of the solution.

3.6 Examples 22

The second-order time-dependent Bessel s differential equation

t2y ty t2 n2 y 0

can be easily converted into two first-order differential equations:

yD y

t2yD tyD t2 n2 y 0

and submitted for n 1, assuming that y 0 0 and y 0 0 5:

*SYSTEM; n = 1; SYSVAR y, yD;
0 = yD - VD.y;
0 = time**2*VD.yD + time*yD + (time**2 - n**2)*y;
*TR; TR 0 10; INIT yD=.5; PRINT y; RUN;
*END;

The third-order differential equation

x
3

a1x a2x a3x b0 b1u b2u b3u

where u 5 41exp , x 0 10 x 0 25 and x 0 80, solved for x in the interval 0 t 0 6:

*SYSTEM; *: Third-order differential equation
:Third-order equation coefficients:
a1 = 6; a2 = 11; a3 = 6; b0 = 0; b1 = 3;

b2 = 2; b3 = 1;
u = 5*exp(-4*time); :excitation
:Coefficients of three equivalent first-order
:equations:
c0 = b0;
c1 = b1 - a1*c0;
c2 = b2 - a1*c1 - a2*c0;
c3 = b3 - a1*c2 - a2*c1 - a3*c0;
:Three first-order equivalent equations:
SYSVAR x1, x2, x3;
0 = VD.x1 - x2 - c1*u;
0 = VD.x2 - x3 - c2*u;
0 = VD.x3 + a3*x1 + a2*x2 + a1*x3 - c3*u;
x = x1 + c0*u; :third-order equation solution
*TR; TR 0 .6; INIT x1 = 10, x2 = 10; PRINT u, x;
RUN; *END;

23 Chapter 3 Submitting systems of equations

Here, the initial conditions of the substituted variables:

x1 0 x 0 c0u 0

x2 0 x 0 c0u 0 c1u 0

x3 0 x 0 c0u 0 c1u 0 c2u 0

24

Chapter 4
Entering symbolic expressions

4.1 Symbolic expressions

DYNAST language allows you to specify problems, either in the form of equations, block diagrams or
physical diagrams, using symbolic expressions made up of

numeric constants

variables and parameters

operators, arithmetic and logical

functions, standard and user-defined

4.2 Numeric constants

Numeric constants can be specified either in the common format

fraction [E exponent]

or, in a more user-friendly way, as

fraction [suffix_unit]

fraction

is a fractional portion of the numeric constant. The decimal point can be placed in any position in it. If
the value of this portion is integer, the decimal point may be omitted.

exponent

specifies an integer number n such that 10n is within the range of the computer arithmetics

suffix

can be a scale suffix the variety of which is shown in Table 4.1. There must not be any space between
the number fractional portion and its scale suffix.

unit

can be a unit suffix i.e., an arbitrary string of up to 8 alphanumeric characters which is separated from
the preceeding scale suffix or fractional portion by the underscore character _ without any space. The
unit suffix is ignored by DYNAST.

Examples:

25 Chapter 4 Entering symbolic expressions

The following numeric constants are all legal numbers:

-3.4 .3 67.08E-10 6.3K 5N 1K_VOLT 1OO_OHM -1PI

Please, pay attention to the fact that PI is a scalling factor. This means that it must be always preceded
by a fractional portion in numeric form. Note also, that the string 1FARAD is interpreted by DYNAST as

10 15, whereas the string 1_FARAD is understood as the numeric constant 1 0.

4.3 Variables and parameters

Table 4.2 gives a survey of DYNAST variables and parameters. The value of the independent variables
TIME and FREQ is controlled by DYNAST in the user-specified range automatically. The values of the
global independent parameter TEMP as well as the values of the independent system parameters are
specified by the user in the form of an explicit parameter definition equation, which is then evaluated
by DYNAST using just a substitution, not a solution, procedure. On the contrary, evaluation of the
dependent primary variables requires solution of a set of implicit-form equations or analyzing a block
or multipole diagram. To evaluate a dependent secondary variable no equation need be solved, but the
dependent primary variables must be solved before already.

The character string V. preceding a node identifier can be omitted if the first character in the node
identifier is a letter, not a number. Further details about the variables and parameters are given in the
subsequent chapters.

Table 4.1 Scale suffixes

Suffix Scale factor Value

T tera 1012

G giga 109

ME mega 106

K kilo 103

M mili 10 3

U micro 10 6

N nano 10 9

P pico 10 12

F femto 10 15

PI Ludolphian number

4.4 Operators 26

4.4 Operators

4.4.1 Arithmetic operators

The DYNAST variety of operators is shown in Table 4.3.

Table 4.3 Arithmetic operators

Operator Operation
+ addition

- subtraction

* multiplication

/ division

** power

% differentiation

Table 4.2 Variables and parameters

Format Variable or parameter By default
Independent

TIME variable of transient analysis 0

FREQ variable of frequency analysis 0

TEMP global parameter 300

Solved
variable variable of implicit equation
VD.variable derivative of implicit-equation variable

V.node node (across) variable in diagram

VD.node derivative of node (across) variable in diagram

I.element through variable of Z-class element

ID.element through-variable derivative of Z-class element

Evaluated
variable variable or parameter defined by explicit equation
V.element across variable of Z-class element

I.element through variable of Y-class element

parameter element parameter 1

event event variable 1032

interval interval variable

27 Chapter 4 Entering symbolic expressions

4.4.2 Logical operators

The variety of logical operators available in DYNAST language are in Table 4.4.

Table 4.4 Logical operators

Operator Operation
<= less or equal

> greater than

>= greater or equal

& logical AND

! logical OR

= equality

logical NOT

<> not equal

< less than

The value of a logical expression is either 0 or 1. The logical expressions must be enclosed in parenthesis
() . The operands to a logical operator can be numeric constants or symbolic expressions.

Example:

The logical expression

X AOR B AND COR D

can be submitted as

X = (A ! B)&(C ! D);

Using the logical functions you can also specify branched expressions.

Example:

For instance, the branched expression

y
10 for z 2
3z 4 z 2

 (4.1)

can be specified as

Y = 10*(Z <= 2) + (3*Z + 4)*(Z > 2);

4.5 Functions

The functions allowed in the symbolic expressions are classified in the DYNAST language as

4.5 Functions 28

standard, divided into basic and derived functions

user-defined polynomial, impulse and tabular functions

altered, i.e. composed, trimmed, and periodic

4.5.1 Standard functions

The complete list of DYNAST standard functions allowed in symbolic expressions is given
in Table 4.5.

Table 4.5 Standard functions

Type identifier Function
ABS absolute value

EXP exponential

SIN sinus

COS cosinus

TAN tangents

ATAN arcustangents

SINH hyperbolic sinus

COSH hyperbolic cosinus

TANH hyperbolic tangens

LOG natural logarithm

LOG10 decadic logarithm

E1O decadic exponential

SQRT square root

INT integer part

SGN signum

CTN cotangents

ASIN arcussinus

ACOS arcuscosinus

ACTN arcuscotangents

COTGH hyperbolic cotangents

Example:

The mathematical relations

29 Chapter 4 Entering symbolic expressions

x a b2 3sin

y
3

a2 10 5 a bcos 2

z
d2

dxdy
x3e ytan

can be given to DYNAST in the form of the following symbolic expressions

X = A * SIN(B**2 + 3);
Y = 3/SQRT(A**2 + 10*COS(5*(A + B)**2));
Z = X**3*EXP(TAN(Y))%X%Y;

respectively.

4.5.2 User-defined functions

DYNAST allows you to define also your own functions. The type identifiers of such user-defined
functions are given in Table 4.6.

Table 4.6 User-defined functions

Type Function
POLY polynomial given by coefficients

ROOT polynomial given by roots

PULSE impulse function

TAB function given by a table

TAB3D function with two arguments given by a table

A user-defined function can be specified by the function-definition statement

function / type / list ;

function

is a user-defined identifier of the function

type

is the function-type identifier in accordance with Table 4.6 placed between slashes / /

list

is a list of parameters of the function separated by comas , .

4.5 Functions 30

The function-definition statement must precede the expressions in which the function is used. Note,
please, that the statement definition defines the function function() independently from its argument.
Thus, each user-defined function can be used in the same problem with different arguments.

In a symbolic expression, the user-defined function should be refered to by the string

function(argument)

function

is a user-defined identifier of the function

argument

is a numeric constant or a symbolic expression enclosed in parentheses ()

4.5.3 Polynomial function

A real polynomial function

f x a0 a1x a2x2 k x x1 x x2

can be submitted using the function-definition statement either in terms of its coefficients or roots.

Specification in terms of coefficients:

type

is specified as POLY

list

is the list of the polynomial coefficients

a0 a1 a2

given in an ascending order by real numeric constants or symbolic expressions

Specification in terms of roots:

type

is specified as ROOT

list

is the list

k x1 x2

giving the polynomial multiplicative factor k and the polynomial roots xi as real numeric constants or
symbolic expressions. If the specified real polynomial has a pair of complex conjugate roots

xk Rexk jImxk xk Rexk jImxk

only one of the roots needs to be submitted using the form

31 Chapter 4 Entering symbolic expressions

[Rexk Imxk]

where the real and imaginary part of the root is given in the brackets [] as a numeric constant. The
sign of the imaginary part can be arbitrary.

The order of the polynomial is determined by DYNAST automatically from the number of the submitted
coefficients or roots.

Examples:

The polynomial

y x3 x x x j x j

can be specified refering either to its coefficients as

F /POLY/ 0, 1, 0, 1; Y = F(x);

or, refering to its roots, as

G /ROOT/ 1, 0, [0, 1]; Y = G(x);

4.5.4 Impulse function

Figure 4.1 Impulse function

f

L2

L1

TD TR TT TF

Fig. 4.1 shows the shape of the impulse function which can be submitted using the function-definition
statement where

type

is specified as PULSE

list

is the list of the impulse-function parameters (see Fig. 4.1)

L1 = value, L2 = value, TD = value, TR = value, TT = value, TF = value

submitted in an arbitrary order

4.5 Functions 32

value

is a numeric constant or a symbolic expression specifying the parameter value. By default, L2 1, the
default values of all the other parameters are zeroes.

Example:

An impulse y f t with a zero rise-time TR can be submitted as

TRAP /PULSE/ L2 = 10, TD = 5U,
TT = 20U, TF = 10U;

Y = TRAP(TIME);

4.5.5 Tabular function

DYNAST allows also for submitting a function y f x by the sequence of its discrete points using the
function-definition statement where

type

is specified as TAB

list

is the list of the discrete-point coordinates

x1, y1, x2, y2, , xn yn

where the argument values xi and the corresponding function values yi are given as numeric constants

or symbolic expressions. The argument values should be given in the ascending order, that is, there
should be xi xi 1 for each i. A functional discontinuity yi yi at xi must be given by two pairs of
values, i.e. by the values xi yi and xi yi

If the function argument is outside of the specified points, i.e. if either x x1 or x xn, the function
value is defined as follows:

f x

y1 x1 x
y2 y1

x2 x1
for x x1

yn x xn

yn yn 1

xn xn 1
for x xn

, i.e. the first and the last segment of the tabular function is extrapolated to the left and to the right of
the interval x1 xn , respectively.

You may replace the list of discrete-point coordinates list with statement FILE=filename. The point
coordinates should be then placed in file filename.ftn. The file has the same format as list with the
exception that commas separating individual points may be omitted. This allows you e.g. to import

33 Chapter 4 Entering symbolic expressions

some data computed by DYNAST to an input file, just by copying part of DYNAST output file to
function file.

Example:

The impulse function from the previous example can be submitted as a tabular function

TRAP /TAB/ 0,0, 5U,0, 5U,10, 25U,10, 35U,0;
Y = TRAP(TIME);
F /TAB/ FILE=t;
X = F(TIME);

Note the functional discontinuity at TIME 5 s. The statement on the third line of the example fetches
specification of the tabular function from the file t.ftn.

4.5.6 Tabular function with two arguments

The tabular function can also have two arguments. The function z f x y can be submitted by sequence
of discrete-point coordinates using the function-definition statement where

type

is specified as TAB3D

list

is specially-formated list of points defining the shape of the function:

[x1, x2, , xn],

y1 [z11, z21, , zn1],

y2 [z12, z22, , zn2],

ym [z1m, z1m, , znm]

where the argument values xi and y j and the corresponding function values zij are given as numeric

constants or symbolic expressions. The argument values should be given in the ascending order, that
is, there should be xi xi 1 for each i and y j y j 1 for each j. A functional discontinuities must be
handled similarly as discontinuities of tabular function described above.

You may replace the list of discrete-point coordinates list with statement FILE=filename. The point
coordinates should be then placed in file filename.ftn. The file has the same format as list with the
exception that commas separating individual points may be omitted.

4.5.7 Altered functions

New functions can be also acquired in the DYNAST language by altering the basic and user-defined
functions, i.e. by augmenting or trimming them, or by making the periodic. In such a way, a function

4.5 Functions 34

g can be converted into a function f with some additional features. Then, g makes the kernel
function of f .

The function-alteration statement takes the form

function / type / [list,] altlist;

function

is a user-defined identifier of the function

type

is the function-type identifier of a basic function (see Table 4.5) or of a user-defined function or of a
user-defined function (see Table 4.6). The identifier is placed between slashes / /

list

is a list of function-definiton parameters in the case of user-defined function

altlist

is the list of function-alteration parameters given in an arbitrary order and separated by comas , .

Obviously, the function-alteration statement differs from the function-definition statement just by the
additional list of parameters altlist. Both statements can be combined into one common statement with the
parameter lists list and altlist mixed freely.

4.5.8 Composed function

A kernel function g x can be composed to form a more general function

f x A BgE Cx D

using the function-alteration statement where

altlist

is the list of the function-composing parameters

A = value, B = value, C = value, D = value, E = value

value

is a numeric constant or symbolic expression. The default values of the parameters are
A D 0 B C E 1

Examples:

The relation

i I0 e v 1

can be submitted as an composed exponential function:

35 Chapter 4 Entering symbolic expressions

FUN /EXP/ A = -1, C = THETA;
I = I0*FUN(V);

The function

f x 3 z x 5z3 x 8z5 x
2 4

in which

z x 3x 1

can be submitted as an composed user-defined polynomial function

g z z 5z3 8z5

using the statement

F /POLY/ 0, 1, 0, 5, 0, -8, C = 3, D = -1, A = -4,
E = 2, B = 3;

4.5.9 Trimmed function

A kernel function g x trimmed and linearly extrapolated outside the interval L x U to form the
function

f x

f U SU x U for x U

g x L x U
f L SL x L x L

 (4.5)

can be submitted using the function-alteration statement where

altlist

is the list of the function-trimming parameters

L = value, U = value, SL = value, SU = value

value

is a numeric constant or a symbolic expression. The default values of the parameters L and U are L =
, U = .

For a finite value of L and U , the corresponding slope SL and SU is by default

SL
df

dx x L
SU

df

dx x U

Thus, the function f x is by default continuous at the points x L and x U .

Examples:

4.5 Functions 36

The relation

i I0 e v 1

linearized outside the interval 0 v v1 in such a way that its derivative is continuous, i.e. that

i

I0 e v 1 for v v1

I0 e 1 I0 e v v v1

I0 v v

can be submitted as an composed and trimmed exponential function:

FUN /EXP/ A = -1, C = THETA, L = 0, U = V1;
I = IA*FUN(V);

4.5.10 Periodic function

A function g x can be converted into a periodic function f x such that

f x g x for 0 x P f x k P f x

where k is an integer and P is a period of f x , using the function-alteration statement where

altlist

gives the period P = value where value is a numeric constant or a symbolic expression. The default
value of the period is P

The exception is the impulse function g x , which is converted to f x so that f x g x
for TD x P TD

Example:

A user-defined impulse function can be made periodic just by adding the specification of the period into
the list of its parameters, for example:

F1 /PULSE/ TD=-2,TR=1,TT=2,TF=1, P=5;
Y = F1(time);

The same periodic impulse function can be submitted as the altered tabular function:

F2 /TAB/ 0,1, 1,1, 2,0, 3,0, 4,1, 5,1, P=5;
Y = F2(TIME);

37 Chapter 4 Entering symbolic expressions

4.5.11 Random number generator

Random variables can be generated using random number generators with a normal or uniform
distribution. The random numbers can used as an argument in a symbolic expression (without any prior
declaration). The specification of such a random-waveform function is either of the form

normal(mean value,variation,delta)

or

uniform(lower,upper,delta)

This function behaves in fact like a tabular function with the argument time defined at time points
separated from each other by delta s. All parameters mean value, variation, lower, upper, delta must
be numeric constants or constant expressions.

Example:

A variable representing a sequence of random numbers with normal distribution and unit variation at time
points displaced by 10ms can be submitted as

A = NORMAL(0, 1, 10m);

The signal may look like this:

Figure 4.2 A random signal with distribution N 0 1 and sample time 10ms

random signal

-3
-2

-1
0
1

2
3

1)
1) A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
TIME

4.5.12 Events

An occurence of a specific event is indicated by DYNAST during numerical transient analysis by the
changes of the event variable assigned to a particular event. Until the event occurs, the value of the
associated event variable is 1032. At the moment of the event occurence, the event variable drops to the
value the TIME variable aquired at this moment.

The event order is an integer number indicating the number-of-times the expression must become true
for the event to occur. The default values of event orders are 1.

4.5 Functions 38

Several events can be specified by a statement of the form:

EVENT event [(order)] = expression[, event [(order)] = expression];

event

is a user-defined identifier of an event as well as of the event variable associated with that event. If this
identifier is set to STOP, the DYNAST run is terminated at the moment of the event occurrence.

expression

is a logical expression which defines the actual event the event occurs when expression becomes
true

order

is a positive integer number n indicating the event order.

If the value of order is n 1, the event variable changes its value from 1032 to the value of the
TIME variable when its expression becomes true for the n-th time only, and than it keeps this value
constant up to the end of the analysis

In case order is set to 0 , the corresponding event variable changes its value to a new TIME variable
value each time its expression becomes true again

Example:

An event A representing the moment at which a variable VAR1 becomes less than another variable VAR2
can be submitted by the statement

EVENT A = VAR1 < VAR2;

The specification of an event B implying that the event A has already occurred and that the variable Y
ascended above the level 1500 for the second time after A has occured might look as

EVENT B (2) = (A < 1G)*(Y > 1.5K)*(VD.Y > O);

4.5.13 Intervals

By the interval between some events we understand the difference between the TIME variable values
corresponding to two event occurrences.

To specify several intervals we can use the following statement:

INTRV interval = expression [, interval = expression] ;

interval

is a user-defined identifier of the interval

expression

39 Chapter 4 Entering symbolic expressions

is a symbolic expression which defines the TIME variable difference between the event occurences

Examples:

Thus, the statements invoking the computation of events E1 and E2 together with the interval I between
them might be given as

EVENT E1 = W < 0.5, E2 = W < 0.3 ;
INTRV I = E1 - E2;

The width WP of a positive overshoot of the variable VOUT above the level 1 5 may be specified as follows

EVENT T1 = (VOUT > 1.5)*(VD.OUT > 0),
T2 = (T1 < 1E32)*(VOUT < 1.5)*(VD.OUT < 0);
INTRV WP = T2 - T1;

4.6 Specification of expressions using the wizards

The Expression wizard can be open either directly from the System menu, or from the other wizards
in this menu for entering equations, blocks, elements or submodels. The Expression wizard facilitates
submitting operators, functions and variable identifiers. After specifying a new variable or a user function,
the list of variable identifiers or functions is automatically updated.

To specify an impulse, tabular, polynomial, or altered user-defined function, open the corresponding dialog
box from the System menu.

40

Chapter 5
Submitting basic blocks

5.1 Basic blocks

Comparing with the conventional block-diagram simulators, the variety of DYNAST basic blocks looks
rather poor at the first sight. In fact, however, the blocks are very versatile as their constitutive relations
can be characterized by symbolic expressions in a very flexible way. In block diagrams processed by the
conventional simulators, block inputs must be connected to the outputs of some other blocks. But in block
diagrams analyzed by DYNAST the block inputs can be associated with any variables or parameters of
the block diagram. The DYNAST block variety includes even implicit blocks the input of which can
by directly associated with their output variable. Also unlike the conventional block-diagram simulators,
DYNAST has no problems with algebraic loops in block diagrams, the diagrams may be even composed
from blocks characterized by algebraic relations exclusively.

Besides the one-output basic blocks, the block diagrams analyzed by DYNAST may consist also from
multi-input multi-output superblocks stored as library models. The blocks can be combined with explicit
or implicit equations and with physical elements.

5.2 Variety of basic blocks

The variety of basic blocks built-in DYNAST is shown in Table 5.1. Different block types are
characterized by specific constitutive relations between a block-output variable y t and block-input
variables zi t . The basic blocks have one output only, but they may have several inputs, except for the
transfer, delay and sample&hold blocks.

Explicit blocks are characterized by a constitutive relation which may be linear, nonlinear and time
or parameter dependent. Also input-variable derivatives zi t dzi t dt are allowed as arguments of the
relation. If there is no input variable specified in the relation, the explicit block behaves as an autonomous
block source of its output variable y t .

The implicit block is more versatile than the explicit block as its constitutive relation is of implicit form.
This block makes an exception among the other basic blocks as as also its output variable y t and/or its
derivative y t dy t dt may become an argument of its constitutive relation.

In the case of the integrators and differentiators, the constitutive relation is assumed to be linear
without time derivatives of input variables. The transfer blocks are characterized by real rational transfer
functions F s of the Laplace operator s. It is assumed that F s K M s N s where

M s sm am 1sm 1 a0

is a numerator polynomial of the transfer function F s , and

41 Chapter 5 Submitting basic blocks

N s sn bn 1sn 1 b0

is its denominator polynomial. K is a constant multiplicative factor of the transfer function.

Notice, that in the time-domain the transfer block is characterized by the n-th order ordinary differential
equation

y
n

bn 1 y
n 1

b0 y K z
m

am 1 z
m 1

a0z

with the initial conditions y
i

0 0 i 0 1 n 1.

The delay blocks are characterized by the relation y t z t tD , where TD is the transportation delay of
the block. If the transient analysis starts at t t0, y t D during the first integration step, where D is a
user-specified constant or expression.

A sample&hold block samples its input signal at specified time points, and keeps the sampled value at its
output for the interval between the two sampling instants.

5.3 Basic blocks in block diagrams

In the DYNAST interpretation of block diagrams it is assumed that each block output is coalesced with
a diagram nodenode. If only one block output is coalesced with the node, then the node variable is
identical to the block output variable.

Table 5.1 Basic blocks

Type Block Symbol Constitutive relation

BS explicit block

z1
z2 yf (z1,z2,...) y f z1 z1 z2 z2 t

BO implicit block
z1
z2 yf z1 z2

f y y z1 z1 z2 z2 t 0

BI integrator

z1
z2 yf (z1,z2,...) y k1z1 k2z2 dt y0

BD differentiator

z1
z2 yf (z1,z2,...) y d

dt k1z1 k2z2

BT transfer block z yF(s) Y s F s Z s F s K M s
N s

BX delay block y t z t tD
BH S-H block

5.3 Basic blocks in block diagrams 42

In general, coalescing of several block outputs is forbidden as it is inconsistent with the block-diagram
principles. If, however, outputs of two or more static blocks are coalesced with a node in a block
diagram analyzed by DYNAST, the node is assumed to be acting as a summing node the node variable
of which equals to the sum of the coalesced output variables. The advantage of summing nodes is
in simplifying the input data preparation, and also in reducing the number of equations formed and
solved simultaneously by DYNAST. But the individual block output variables are not available in the
analysis results.

The block inputs can be associated, besides node variables, with any variables or parameters of
the submitted block diagram. Just the transfer-block inputs can be associated with nodes only. No
block-input variable should be left unspecified as this would result into the error message SYSTEM IS
SINGULAR indicating the singularity of the equations formed by DYNAST automatically for the analyzed
block diagram.

5.4 Variables of basic blocks

DYNAST allows for the analysis of block diagrams combined with equations and physical elements. The
input variables zi taking place in the constitutive relations characterizing the blocks can be any variable
declared as a solved variable by the SYSVAR statement as well as any evaluated variable or parameter
specified already by an explicit equation.

5.5 Specification of blocks in a diagram

Once a block symbol is placed into a diagram, you can open the dialog box related to the block by
pointing the cursor at the symbol and clicking the right button of the mouse. There choose Edit properties
and fill in the text fields.

5.6 Specification of blocks in a text fi le

Specification of a block should be included into the SYSTEM section of a problem file. It can be also
included in a submodel file. From the System menu, choose Insert block to open the wizard.

Basic blocks are specified in the DYNAST input language by a statement of the form

block [>type] node [= expression];

block

is a user-defined identifier of the specified block

type

is a two-character string indicating the block type shown in Table 5.1. If the identifier block is chosen
in such a way, that its first two characters coincide with type, the string > type can be omitted.

node

is a user-defined identifier of the node with which the block output is associated

expression

43 Chapter 5 Submitting basic blocks

is a numeric constant or a symbolic expression specifying the block constitutive relation with the
exception of transfer blocks. If this expression is unity, the corresponding string = 1 can be omitted.

The ransfer-block specification differs from the specification of the other basic blocks by the form of the
In this case, expression is of the form

[factor][*][numerator] [/denominator]*input;

factor

is a numeric constant corresponding to the multiplicative factor K of the block transfer function F s .
If the value of the multiplicative factor K is unity, the corresponding character string 1 * can be
omitted.

numerator

is an identifier of the numerator polynomial M s of the block transfer function F s . If this
polynomial is unity, the corresponding character string * 1 can be omitted.

denominator

is an identifier of the denominator polynomial N s of the block transfer function F s . If this
polynomial is unity, the corresponding character string / 1 can be omitted.

input

is a user-defined identifier of the primary variable with which the block input is associated.

The specification of the transfer-block polynomials has to precede the specification of the transfer block.

The expression is of the form

input AFTER delay [DEFAULT default] ;

input

is a user-defined identifier of the input variable of the block.

delay

is a numeric constant or symbolic expression specifying the transportation delay tD of the block.

default

is a numeric constant or symbolic expression D specifying the output-variable during the first
integration step, for which the block input is not defined. The value of D is zero by default.

The expression is of the form

block [> BH] output = input PERIOD period [SHIFT shift] ;

input

is a user-defined identifier of the block-input node.

period

5.6 Specification of blocks in a text file 44

is a numeric constant representing length of the sampling period T .

shift

is a numeric constant representing the time instant t1 of the first sample, it is zero by default.

The parameters period and shift are evaluated only at the beginning of the transient analysis, then they
remain constant.

Examples:

The relation

u t aebv t d

dt
c

can be implemented by a nonlinear explicit block specified as

EXP > BS u = a*exp(b*v) + VD.c;

or as

BSexp u = a*exp(b*v) + VD.c;

The same relation can be implemented also by the implicit block

BO_EXP u = a*exp(b*v) + VD.c - u;

The statement

BS X = 1; or BS X;

enters a block source generating the unit-step waveform of the variable x t .

The block

BS x = k*time*(time > 0)&(time < t0);

generates a ramp waveform of x t for 0 t t0, outside this interval x t 0.

Both the integrator

INTEGR > BI xOUT = x1 + 3*x2;

and the implicit block

45 Chapter 5 Submitting basic blocks

INTEGR > BO xOUT = VD.xOUT - x1 - 3*x2;

implement the relation

xOUT x1 3x2 dt

A transfer block implementing the transformed relation

Y s 5
s2 1

s 1 j s 1 j
Z s

can be specified as

M /poly/ 1,0,1; N /root/ 1, [-1,1];
BT Y = 5*M/N (Z);

or as

M /poly/ 5,0,5; N /root/ 1, [-1,1];
BT Y = M/N (Z);

Example:

Figure 5.1 Quadratic-feedback block diagram: (a) summator, (b) implicit-summator, and (c)
imlicit-block version.

(c)

(b)

(a)

SUM

IMPL

5.6 Specification of blocks in a text file 46

The block diagram shown in Fig. 5.1a represents a simple static system with quadratic feedback. The
system is excited by the ramp function v t. The block diagram consists of four blocks, the output
nodes of which are denoted by the identifiers v, x, y, z. The block diagram structure and its numerical
time-domain analysis can be specified by the following input data file:

*SYSTEM; *: Quadratic feedback
k = 10; :parameter
BSgen v = time; :signal source
SUM > BS x = v + z; :summator
BSforw y = k*x; :feedforward branch
BSback z = - y**2; :feedback branch
*TR; dc 0 10; :time analysis
PRINT v, x, y, z;
RUN; *END;

In the input data file

*: Quadratic feedback - implicit-summator version
*SYSTEM; k = 10;
BSgen x = time;
BSforw y = k*x;
BSback x = - y**2;
*TR; dc 0 10; PRINT x, y;
RUN; *END;

corresponding to the block diagram shown in Fig. 5.1b, the summator SUM was replaced by an implicit
summator. It is formed there by coalescencing the outputs of the blocks BSgen and BSback at the same
node x. The output variables of the two blocks are inaccessible, but the number of describing equations
decreased by one.

Example:

The following block-diagram specification

*: Quadratic feedback - implicit-block version
*SYSTEM; k = 10;
BSgen v = time;
IMPL > BO y = y - k*(v - y**2); :implicit block
*TR; dc 0 10; PRINT v, y;
RUN; *END;

requires formulation of two equations only. The corresponding block diagram utilizing the implicit block

IMPL characterized by the equation y K t y2 0.

47 Chapter 5 Submitting basic blocks

Example:

For instance, Bessel s equation can be submitted in the following way utilizing differentiators:

N = 1; SYSVAR X; BD XD = X ; BD XDD = XD;
0 = TIME**2*XDD + TIME*XD
+ (TIME**2 - N**2)*X;

*TR; TR 0 10; INIT yD=.5; PRINT y; RUN;
*END;

Example:

A delay block delivering the input A delayed by 1 s to node B can be specified as

BX B = A AFTER 1;

During the first integration step the output-node variable is zero.

Example:

A sample&hold block sampling the input A at points 0 5 s, 1 5 s, 2 5 s etc. and delivering its output
stair-like waveform to node B can be specified as

BH B = A PERIOD 1 SHIFT 0.5;

During the first 0 5 s the variable B is zero.

48

Chapter 6
Creating and editing diagrams

6.1 Block and multipole diagrams

Besides equations, models of dynamic systems can be submitted to DYNAST in the graphical form of
diagrams consisting from interconnected graphical symbols of multipole models and blocks.

Recollect that blocks represent algebraic relations between their inputs and outputs. The line segments
interconnecting blocks are associated with just one variable propagating in one direction only - from
a block output to a block input. The multipoles, on the other hand, portray energy interactions of
real system components. The line segments interconnecting multipole symbols are associated with two
variables propagating in both directions (the products of these two variables represent the flows of energy
of the interactions).

In DYNAST, one line segment may support even a vector of variables or variable pairs. Also, you even
may to encapsulate a diagram, associate it with a symbol, and use it as a part of another diagram in a
hierarchical way.

Once you create a diagram and submit it to DYNAST, the program is capable of

converting the diagram graphical form into its textual form called netlist

forming a set of algebro-differential equations underlying the diagram

solving the equations and plotting the desirable variables

6.2 Creating diagrams

6.2.1 Placing parts into a diagram

You can start creating a diagram after opening the diagram window in DYNSHELL. Another alternative
is creating the diagram in OrCAD and importing it then into DYNSHELL.

A diagram consists of parts interconnected by line segments and annotated by texts. Parts are instances
of the following graphical symbols placed into a diagram:

symbols of two-pole physical elements and one-output basic blocks

symbols of submodels, i.e., of general multipoles, superblocks, or their combinations

symbols for across-variable references, like the electrical ground, the reference mechanical frame, the
references for temperature or pressure, etc.

49 Chapter 6 Creating and editing diagrams

1.

2.

3.

4.

5.

6.

7.

These graphical symbols are stored in symbol libraries. Part s dynamic behavior is either defined in the
DYNAST language (this is the case of basic blocks, physical elements and references), or it is described
in an independent text file (subsymbol files), or it may be represented by a diagram portraying the internal
configuration of the related submodel.

A part can interact with the rest of the diagram via its pins. The pins are symbolized by short line
segments sticking out from the part symbols. There are scalar and vector pins. A scalar pin supports
just one variable if it represents a block input or output, or two complementary power variables if it
represents a multipole pole. A vector pin supports either several block output variables, or several pairs
of power variables.

To place a part into a diagram follow these steps:

From the Place menu, choose Part.

Browse through the symbols in the Place part window.

Select a symbol using the left mouse button.

Drag the symbol by mouse into the appropriate location in the diagram.

Before placing the symbol, you may press the R, X or Y keys to rotate the symbol or to miror it.

Using the left mouse button, place the symbol.

Unless you want to create another instance of the same symbol, press the the right mouse button.
Otherwise, repeat the procedure starting from step 4.

After placing a part, you may set its identifier, parameters and comments using Edit properties of part in
the dialog window that opens after double clicking the part.

6.2.2 Interconnecting parts

Pins of the parts placed into a diagram are interconnected by connectors or buses. A connector
interconnects scalar pins, whereas a bus, consisting of several connectors, interconnects vector pins. Both
connectors and buses are represented by line segments, the line segments related to busses are more thick
then those of connectors. To place a connector or a bus, click the respective button in the Place menu,
then click the left mouse button at the diagram location where you want the connection to start, and click
it again at the location you want it to end. Unless you want the connection to continue to some other
direction, click the right mouse button.

Any of the individual scalar connectors in a bus can be interconnected with a pin or node outside the
bus by a vector entry. Each of the individual connectors in a bus is associated with an identifier. The
vector entry you want to connect to a connector inside a bus must be denoted by the connector identifier.
You will find Vector entry in the Place menu. The pins are interconnected either directly or via nodes.
A node, symbolized by a dot, indicates the interconnection of either at least three scalar pins and/or
connectors, or at least three vector pins and/or buses. The diagram editor in DYNSHELL denotes the
nodes automatically except the case of crossing of two connectors or buses. In such a case, it is up to
the user to decide if there is a node at the crossing or not. In the former case, the user must indicate the
interconnection by placing a junction symbolized by a small full square at the crossing. Note, that several
dots or junctions may symbolize only one node if they are interconnected directly by connectors or buses.

6.2 Creating diagrams 50

To be able to convert diagrams into a netlist text file, DYNSHELL requires all nodes denoted by
identifiers, either numbers or strings of some other characters. For this reason, DYNSHELL numbers the
nodes in a diagram automatically. But you can associate any node with an identifier of your choice by
placing a label at the node. From the Place menu, choose Node Label. You can rotate or mirror the
label in a similar way as the parts. Double clicking the Node Label symbol opens the dialog box Label
properties with a text field for you to write in the node identifier.

6.3 Editing a diagram

The diagram editor allows for moving, copying and deleting the graphical objects in a diagram, and for
changing properties of the objects. The editor can be used also for adding or editing texts in the diagram.
To edit a diagram, the diagram editor must be in the select mode enabled by choosing Select from the Edit
menu. Note that all editing operations can be cancelled by clicking Undo in the Edit menu.

Selecting objects. To edit an object, select it by pointing the cursor at it and press the left mouse button.
To edit a group of objects, select each of the individually while pressing the Ctrl key. To select all objects
in a rectangular region, drag the mouse with the left button pressed over the region. You may also select
all objects in the diagram by clicking Select All in the Edit menu.

Moving objects. Selected objects can be dragged to a new position by the mouse with the left button
pressed. By default, the diagram editor tries to preserve the interconnection of the selected parts with the
remainder of the diagram. If you do not want the interconnections preserved, hold the Alt key during
the dragging.

Copying objects. Selected objects can be copied by dragging them to a new position while pressing the
Ctrl key. You may also use Copy and Paste from the Edit menu this allows you to copy objects even
between different documents.

Deleting objects. To delete selected objects, use Delete from the Edit menu, or just press the Delete key.

Editing properties of objects.

Some objects have properties specified by texts. These properties are displayed in the diagram as tags.
You may edit the properties of an object by double-clicking the object, or by double clicking of one of
its tags.

Editing texts in a diagram.

You may place short texts into diagrams. First from the Place menu, choose text note and place the label
note into a position in the diagram. Then double click the label note to open the Text Note dialog box.

Changing the diagram title.

The diagram title should be in agreement with the title of the coresponding problem file. You may change
the title after opening the Change Title Diagram Title dialog dialog from the Edit menu.

6.4 Synchronization of a diagram with its netlist

You can see the netlist of the open diagram after clicking Open Input Text from the View menu. Now
you may work in parallel with both the textual and graphical representation of the system model. If you
open both the documents, they are automatically compared by DynShell. If there is a difference between

51 Chapter 6 Creating and editing diagrams

them, you will be prompted about it and asked whether you want to update the activated document to
consolidate both documents.

If the activated document is a netlist, it is updated in the following way:

the title is updated from the graphical document

the statements present both in the textual and graphical document are updated from the graphical
document

the statements present only in the graphical document are added to the textual document

the statements present only in the textual document and managed by the diagram editor (i.e., elements,
blocks and submodels, but not equations) are removed from the textual document

If the activated document is a diagram, it is updated as follows:

the title is updated from the textual document

if only values of a parameter in both documents differ, the parameter value is updated in accordance
with the textual document

if types of blocks or elements in statement differ, the corresponding block or element is removed from
the diagram

the statements present only in the textual document are ignored, but a warning is issued

the statements present only in the graphical document are removed from it

The synchronization process normally takes place when either textual or graphical document is activated
and the direction of synchronization is determined automatically according to the document time stamps.
However, you can invoke the synchronization explicitly by selecting Synchronize from Edit menu. You
may then select the synchronization direction regardless time stamps of the activated documents.

52

Chapter 7
Submitting physical elements

7.1 Physical elements

You can submit to DYNAST multipole model of a real dynamic system set up directly from physical
elements and based on mere inspection of the real system without the necessity to formulate any
equations, or to construct any graph or block diagram. Equations characterizing the dynamics of such a
physical system model are then formulated automatically by DYNAST in a way respecting the physical
laws governing the mutual energetic interactions between the system components.

The physical models analyzed by DYNAST may be linear, nonlinear and time or parameter dependent.
The physical elements can be combined with library models of complex system modules as well as with
blocks and equations.

7.1.1 Variety of physical elements

The variety of physical elements which is at your disposal in the DYNAST input language is given
in Table 7.1. The element constitutive relations characterize different element types in terms of the
element variables, p denotes the elements parameters. The element classes Y and Z given in Table 7.1
differ from each other by the way in which DYNAST treats their variables (either as solved or
evaluated).

Table 7.1 Physical elements

Type Element Constitutive relation Class
J through-variable source i p Y

E across-variable source v p Z

G conductor or damper i p v Y

R resistor v p i Z

C capacitor or mass i p dv dt Y

L inductor or spring v p di dt Z

OA operational amplifier idealized Z

S ideal switch i 0 or v 0 Z

Our symbols for through-variable and across-variable sources are shown in Fig. 7.1a and b, respectively
(for the sources, we are using the same symbols in all energy domains). Fig. 7.1c shows the symbol
of the element representing an idealized operational amplifier. Graphical symbols for the other elements
in different energy domains are shown in Table 7.2.

53 Chapter 7 Submitting physical elements

7.1.2 Element physical variables

Each of the physical elements is associated with an element-through variable i and an element-across
variable v. Examples of physical quantities corresponding to these variables in several energy domains
and their physical units are given in Table 7.3. These two element-power variables complement each
other in the sense that their product

P t i t v t

represents the power consumed in the element. (Instead of introducing a new notation for generic through
and across variables, we are using the notation common for these variables in the electrical domain.)
Table 7.3 gives also the corresponding pairs of energy variables, i.e. the through and across variables
integrated with respect to time. The vacancies in Table 7.3 correspond to variables which are not used
in general.

The criterion for selecting certain physical quantity either as a through or an across variable is based
unambiguously on the way in which it is measured. This is illustrated by Fig. 7.2 for a generic physical
element. Measurement of the element-through variable i requires connecting a measuring instrument in
series with the element, i.e., the measuring instrument must be included between the element and the rest
of the system. Measurement of an element-across variable requires attaching a measuring instrument to

Table 7.2 Symbols of physical-model elements

Type G R C L

Element Conductor Resistor Capacitor Inductor

Electric

Magnetic

Thermal

Fluid or
acoustic

Element Damper Mass Spring

Mechanic translatory

Mechanic rotary

Figure 7.1 (a) Through-variable source, (b) across-variable source, (c) operational amplifier.

7.1 Physical elements 54

the element in parallel without intervening into its interconnection with the system. Besides this, each
pole is associated with a pole across variable, i.e., with an across variable of the pole with respect to an
across-variable reference. Measurement of pole-across variables is shown in Fig. 7.2c.

Figure 7.2 Measurement of (a) element-through variables, (b) element-across variables, and (c)
pole-across variables.

Table 7.4 gives typical across-variable references and their graphical symbols in several energy domains.
In the case of thermal, fluid or acoustics capacitors as well as translatory or rotary masses, the
element-across variables must be always considered with respect to a related reference. In other words,
one pole of these two-pole elements must be always associated with a reference. The graphical symbols
of these elements given in Table 7.2 do not show the references, however, just to simplify the notation.

Table 7.3 Pairs of through- and across-variables

Power variables Energy variables

Energy
domain

through
i

across
v

through
idt

across
vdt

Electrical
Electrical
current

A

electrical
voltage

V

electrical
charge

C

flux
linkage

V s

Magnetic
magnetic
flow rate

Wb s

magnetic
voltage

A

magnetic
flow
Wb

Thermal
entropy

flow
W K

temperature
K

entropy
J K

Fluid or
acoustic

volume
flow

m3 s

pressure

N m2

volume

m3

pressure
momentum

N s m2

Translatory
force

N

velocity
m s

momentum
N s

displacement
m

Rotary
torque
N m

angular
velocity
rad s

angular
momentum

N m s

angular
displacement

rad

55 Chapter 7 Submitting physical elements

7.1.3 Parameters of physical elements

Table 7.1 shows that in the case of a source, the parameter p corresponds directly to the source nominal
variable, either i or v. Relations in terms of i and v as well as physical dimensions and units for the
parameters p of the other physical elements in different energy domains are given in Table 7.5.

Table 7.5 Constitutive parameters of physical elements

Element G R C L

p i
v

v
i

i
dv dt

v
di dt

Electrical
conductance

S

resistance capacitance
F

inductance
H

Magnetic
conductance resistance

S

permeance
H

Thermal

entropic
conductance

W K2

entropic
resistance

K2 W

entropic
capacitance

J K

Fluid or
acoustic

conductance

m3 Pa s

resistance

Pa s m3

capacitance

m3 Pa

inertance

Pa s2 m3

Mechanical
translatory

damping
N s m

mass
kg

compliance
m N

Mechanical
rotary

torsional
damping

N m s rad

moment
of inertia

m2kg rad

torsional
compliance
rad N m

In the case of ideal elements, the parameter p is constant. The elements given in Table 7.1 need not
be ideal, however. DYNAST allows also for nonlinear as well as for general controlled elements the
parameters of which are functions of variables or parameters of some other elements, equations or blocks.

Table 7.4 Across-variable references

Energy
domain

Reference
across variable

Reference
symbol

Electrical
or

magnetic
electrical-ground voltage

Thermal zero-point on a temperature scale

Fluid
or

acoustic
free-atmosphere pressure

Mechanical absolute-frame velocity

7.1 Physical elements 56

1.

2.

In general, the parameter p of a controlled nonlinear and time-variable element can be given by an
expression of the form

p f z1 z2 z1 z2 t (7.1)

where z1 z2 are element controlling variables or parameters, z1 z2 are their time derivatives, and
t denotes time.

The OA-type element shown in Fig. 7.1c and representing an ideal operational amplifier is considered
as a physical element controlled by the input voltage vin. In this case, the element-through and
element-across variable corresponds to the amplifier output current i and output voltage v, respectively.
As this operational-amplifier model is assumed to be ideal, its voltage-amplification factor is infinite. The
assumption that the values of system variables are finite implies that vin 0. Therefore, the polarity of vin

is irrelevant.

7.1.4 Element and variable orientation

To simplify the determination of element-variable polarities in multipole diagrams as much as possible,
we are assuming that the variable orientation is related unambiguously to the orientation of the physical
elements. Since the polarity references for through variables and across variables can be assigned to
each element in an arbitrary way, they can be combined into one reference and fixed to each element
symbol once for ever. (In the case of elements with asymmetric characteristics such element orientation
is mandatory.)

To be able to assign an element-polarity reference to each of the elements, we are associating one of
their two poles with the sign, and the other one with the sign. In the element symbols given in
Fig. 7.1 and in Table 7.2, the sign is not shown, however, in order to simplify the notation. In the
case of the elements with an asymmetric symbol even the sign is omitted for the same reason, but it is
always assumed to be associated with the pin shown in Table 7.2 in the upper position. The pins of the
one-pin symbols are always the sign pins.

To interrelate the reference of a physical element and the references of its variables in a multipole
diagram, we are adopting the following Element Polarity Convention:

The element-across variable v v v , where v is the pole-across variable of the element pole,
and v is the pole-across variable of the pole of the element. Thus, the value of the element-across
variable v is positive if v v , otherwise v is negative.

Then the positive polarity of the element-through variable i is determined by the assumption that the
power P consummed (dissipated or accumulated) in the element is positive, i.e., P i v 0.

7.1.5 Arrow convention for non-mechanical variables

This Element Polarity Convention is fully sufficient for the unambiguous determination of
element-variable polarities. In some situations, however, it might be useful to denote the variable
orientation by arrows, and we also need the arrows to indicate the variable orientation in geometric
schemes of the modeled real systems. In such cases, we are using arrows with a full arrowhead for
through variables, and arrows with an empty arrowhead for across variables. If the actual polarity
of any of the variables is opposite with respect to the direction of its arrow, the variable value

57 Chapter 7 Submitting physical elements

is taken as negative. Unfortunately, however, the traditional conventions for the arrow orientation in
the mechanical-energy domain are different from those common in the non-mechanical domains (like
electrical, magnetic, thermal, fluid or acoustic).

Traditionally, it is assumed in the non-mechanical domains that the arrow indicating the assumed positive
polarity of through variables shows the direction of the actual flow of a medium through the components
(i.e., the flow of mass particles in the case of fluid or acoustic domain, the flow of positively charged
particles in the case of electrical domain, etc.). An unambiguous arrow association with across variables is
not so well established in the non-mechanical domains, arrows pointing at the direction of both increasing
and decreasing across variables are commonly used.

Choosing the latter possibility, and taking into consideration our Element Polarity Convention, we are
arriving at the following Arrow Convention for Non-Mechanical Variables in multipole diagrams:

The empty-head arrow indicating the assumed positive polarity of a pole-across variable is pointing
always away from the pole towards the reference.

The empty-head and full-head arrows indicating the assumed positive polarity of the across and
through variable of an element, respectively, are pointing both away from the pole to the pole of the
element.

Figure 7.3 (a) A generic non-mechanical physical element, (b) a corresponding two-entry real component.

Fig. 7.3a shows a generic symbol for a physical element from a non-mechanical energy domain. Once
the pole of the element was denoted by the identifier A, the assumed positive polarities of all the across
and through variables associated with the element and with its poles are set by our Element Polarity
Convention and there is no need for denoting the polarities by any arrows.

Let us now assume that the element models with a sufficient accuracy the real component shown in
Fig. 7.3b, and that each of its two entries A and B corresponds to the element pole denoted by the
same identifier. If we now want to have the orientation of all the variables of the component in a full
agreement with the orientation of the corresponding element variables, we must assume the component
positive polarities shown by arrows drawn in conformity with the Arrow Convention for Non-Mechanical
Variables. If, however, any of the variable polarities will associated with the component in the opposite
way, also the sign of the variable will be opposite to the sign of its element counterpart.

Note, that the through variable ie entering the component via the entry A and leaving it via the entry
B corresponds to the element-through variable. The across variables vA and vB of the component entries
with respect to a reference correspond to the element pole variables, and the across variable ve of the entry
A with respect to the entry B corresponds to the element-across variable.

7.1 Physical elements 58

7.1.6 Arrow convention for mechanical variables

In the case of mechanical variables, the arrows of across variables velocities are commonly chosen in
agreement with direction of the motions with which they are associated. Similarly, the arrows of through
variables forces or torques show direction of the motion which they are causing. Thus, the orientation
of mechanical variables must be always considered with respect to a coordinate system.

Sticking to this tradition, and taking into consideration our Element Polarity Convention, we are arriving
at the Arrow Convention for Mechanical Variables in multipole diagrams:

The empty-head arrow indicating the assumed positive orientation of a pole-across variable points
always towards the pole away from the reference-frame symbol.

The empty-head and the full-head arrows indicating the assumed positive polarity of the across and
through variable of an element, respectively, are both pointing towards the element pole away from
its pole.

Fig. 7.4a shows a generic symbol for a physical element from the mechanical translatory domain. The
symbol is augmented by arrows showing positive polarities of the element velocity xe, the element force
Fe, and the pole velocities xA and xB in conformity with the Arrow convention for Mechanical Variables
taking into consideration the element orientation (this time, the pole Bx was taken as the pole).

Let us assume that the element models a real component shown in Fig. 7.4b. The component translatory
entries A and B, moving along the axes x painted on the mechanical reference frame, correspond to
the element poles Ax and Bx, respectively. The orientation of the axes x as well as of all the component
variables shown by arrows in Fig. 7.4b is in conformity with the orientation of the element in Fig. 7.4a
modeling the component.

Obviously, the element velocity xe corresponds to the relative velocity xBA of the entry B, corresponding
to the element pole, with respect to the entry A. The element force Fe corresponds to the external force
counterbalancing the component internal forces by stretching it.

Note, that we are assuming that the x-axes direction determines the positive orientation of all the
forces and velocities (as well as deflections and accelerations) associated with the motion of the
component terminals.

Similarly, Fig. 7.4d shows a real component with two energy entries rotational the mechanical
entries of which rotate around the x-axis fixed to the reference frame. The corresponding physical
element with arrows indicating the assumed positive directions of its variables is given in Fig. 7.4c.
We assume again that once the positive direction of this rotation has been chosen, it determines
the positive orientation of all the variables associated with the rotary motion (torques as well as
angular velocities, angular deflections, angular accelerations, etc.). Thus the empty arrow indicates
the positive direction of the relative angular velocity e of the component terminals, the full arrow
denotes the positive direction of the elementtorque e counterbalancing the external torques acting on
the component.

59 Chapter 7 Submitting physical elements

7.1.7 Interaction of physical elements

So far, we have discussed properties of individual physical elements. In this section we will explain the
way in which the elements can be interrelated to form the physical model of a complete system.

The physical model of a system model can be displayed graphically in the form of a multipole diagram
set up from symbols of the physical elements the poles of which are interconnected by line segments. The
line segments represent ideal connections which neither dissipate, nor accumulate any energy.

In a system model analyzed by DYNAST, physical elements can be interacting in the following ways:

via system model nodes

in a common series configuration

via inductive coupling

Besides this, the element parameters can be controlled by variables or parameters of some other elements,
blocks or equations.

7.1.8 Node interactions

Each of the nodes of a physical system model is associated with a node-across variable, i.e., with the
across variable of the node with respect to a reference node of the system model. As the reference node
represents the across-variable reference in the related energy domain, its node variable is always zero.

Let us assume that poles of k elements are coalesced with the node N. Than, according to Postulate of
Continuity,

iN1 iN2 iNk 0

where iNj is the through variable of the j-th of the k elements. The sign (sign) is valid if the element
pole (pole) is coalesced with the node N.

Figure 7.4 Generic (a) translational and (c) rotational physical elements, (b) and (d) the corresponding real
two-entry components, respectively.

7.1 Physical elements 60

At the same time,

vN vp1 vp2 vpk

where vN is the node-across variable of the node N, and vpj, j 1 2 k is the pole-across variable of the
j-th-element pole coalesced with the node N.

Thus, if the pole of an element is coalesced with the node N, and the pole of the same element is
coalesced with the node M, then the element-across variable

ve vN vM

where vN and vM is the node-across variable of the node N and M, respectively. This is in agreement with
Element Polarity Convention as well as with Postulate of Compatibility.

7.1.9 Series configuration

If several Z-class elements form in the system model a series configuration without any branching,
DYNAST allows for submitting all the elements in a simplified way without a introducing nodes between
the elements. Only the nodes between which the whole series is placed are considered. One of the
elements in the series, chosen as the series-representative, is submitted as connected between these two
nodes. Then the other elements in the series are submitted referring to the series-representative element.
Besides simplifying the model description, this option also reduces the number of equations formulated
and solved by DYNAST.

Let us assume that in a series of k elements the first element is taken as the series representative. Then the
through variable of the series iS is identical to the through variable iS1 of the first element in the series,
and, in conformity with Postulate of Continuity,

iS iS1 iS2 iSk

where the through variable iSj of the j-th element in the series, j 2 3 k is taken with the sign (
sign) if the polarity of the j-th element is in agreement with (oposite to) respect to the polarity of the first
element in the series.

In the same time, in conformity with Postulate of Compatibility, the across variable of the series

vS vS1 vS2 vS2

where the signs are related again to polarities of the individual elements in the series with respect to the
polarity of the first element.

7.1.10 Inductive coupling

DYNAST allows also to enter mutual inductive couplings between several inductors, i.e., L-type
elements. The inductive coupling between inductors of the self-inductances La and Lb can be
characterized either by their mutual inductance Mab, or by the inductance-coupling factor

Kab Mab LaLb

61 Chapter 7 Submitting physical elements

The mutual inductance Mab as well as the inductance-coupling factor Kab between inductors La Lb is
positive if the + poles of the inductors correspond both to the wounding beginnings (or both to the
wounding ends) of the modeled coils.

7.1.11 Parameter control

The constitutive parameters of the submitted elements can be specified by expressions as functions with
arguments corresponding to variables of some other elements in the system model. The arguments can be
also defined by blocks or equations.

Note please, that the sources can be also used as ideal measuring instruments or ideal sensors. A
zero-value through-variable source (as well as any Y-class element) behaves in fact as an open connection.
When connected between two nodes, it can be used for sensing , or picking-up , the across variable
between the nodes. Similarly, a zero-value across-variable source (as well as any Z-class element) behaves
as a short connection. When connected in a series with an element, it can be used for picking-up the
element-through variable.

7.2 Specification of physical elements in a diagram

Once a physical element is placed into a diagram, you can open the dialog box related to the element by
pointing the cursor at the symbol and clicking the mouse right button. There choose Edit properties and
fill in the text fields.

7.3 Specification of physical elements in a text fi le

Specification of a physical element should be included into the SYSTEM section of a problem file. It can be
also included in a submodel file. From the System menu, choose Insert Element to open the wizard.

7.3.1 Node-to-node element interaction

element [> type] node [- node] [= expression];

element

is a user-defined identifier of the specified element

type

is a one- or two-character string indicating the element type in accordance with Table 7.1. If the
element identifier is chosen in such a way, that its first characters coincide with its type, the string >
type can be omitted.

node and node

are identifiers of the diagram nodes between which the specified element is situated. If the element
is submitted in such a way that its +pole coincides with the node the variables of the element
obey the Element-Variable Polarity Convention. Otherwise, the polarities of all the element variables
are opposite.
Each reference node must be denoted by the character 0 . (Note, that merging of several reference

7.3 Specification of physical elements in a text file 62

nodes in no way effects the element variables.) If node coincides with the reference node, the
corresponding string - 0 can be omitted.

parameter

is a numeric constant or a symbolic expression specifying the element constitutive parameter in
accordance with Table 7.1. In case the parameter is the unity, the corresponding string = 1 can be
omitted. The parameter of an ideal switch must be a logical expression. The switch is closed, when the
expression is true, or open otherwise.

7.3.2 In-series element interaction

A Z-class element which is in series with another Z-class element submitted already and considered as the
series-representative, can be submitted in the following way:

element [> type] - series [= expression];

element

is a user-defined identifier of the specified Z-class element

type

is a one- or two-character string indicating the element type in accordance with Table 7.1. If the
element identifier is chosen in such a way, that its first characters coincide with its type, the string >
type can be omitted.

series

is the identifier of the Z-class element in the series chosen as the series-representative and submitted
already in the node-to-node fashion assuming that its poles are coalesced with the nodes between
which the series is situated.

parameter

is a numeric constant or a symbolic expression giving the value of the specified element constitutive
parameter in accordance with Table 7.1. In the case the value is unity, the corresponding string = 1
can be omitted.

Example:

For instance, specification of a series interconnection of four elements between nodes 13 and 0 might
look as

E6 13 = 10; R7 - E6 = .1K; R - E6 = 1K;
L8 - E6 = 2M;

or as

63 Chapter 7 Submitting physical elements

RI7 13 = .1K; E6 - RI7 = 10; R - RI7 = 1K;
L8 -RI7 = 2M;

but also as

BR > L8 13 = 2M; E6 - BR = 10;
R7 - BR = .1K; R - BR = 1K;

7.3.3 Inductive couplings

coupling [> type] inductor - inductor [= parameter];

coupling

is a user-defined identifier of the specified inductive coupling. The first character of the identifier
coupling should be either M for the mutual inductance or K for the coupling factor of the inductive
coupling. M stands for for the case when the coupling is specified by the value of its mutual inductance,
whereas K indicates, that the inductance-coupling factor is given.

inductor

is the identifier of one of the L-type elements participating in the inductive coupling

parameter

is a numeric constant or a symbolic expression giving the value for the mutual inductance or coupling
coefficient of the appropriate polarity. In case the value is the unity, the corresponding string = 1 can
be omitted.

Example:

Three terminals representing closed loops with a mutual inductive coupling inside the second loop and
another one between the second and third loop may be specified as

: 3rd loop
L 0 = 20M; OUT > R-L = 1.5K; M L-L2 = 1M;
: 1st loop
IN > E 0; RI-IN = 10.;
E 0 = 50*I.RI; R2-E = 1K; L1-E = 8M;
: 2nd loop
L2 > L-E = 3M; K L1-L2 = - 0.95M;
: 3rd loop
L 0 = 20M; OUT > R-L = 1.5K; M L-L2 = 1M;

The analysis of the terminal diagram specified in this way requires formulation and solution of three
equations only.

64

Chapter 8
Submitting and creating submodels

8.1 Multipole and superblock submodels

When setting up a model of your system to be analyzed by DYNAST, you are not limited to the
basic blocks and twopole physical elements or equations only. For complex components and subsystems,
you can also use submodels in the form of multi-input multi-output superblocks and multipoles. Each
submodel is stored in an independent data file which can be used in a system model wherever it is needed.

The dynamic features of a submodel can be defined by a block and/or multipole diagram combined
eventually with a set of algebro-differential equations. The submodels can even be nested in a hierarchical
way, i.e., they themselves can be built out of submodels.

8.2 Submitting ready-made submodels

8.2.1 Specification of submodels in a diagram

Once the symbol of a submodel is placed into a diagram, you can open the dialog box related to the
submodel by pointing the cursor at its symbol and clicking the mouse right button. There choose Edit
properties and fill in the text fields.

8.2.2 Specification of submodels in a text fi le

Specification of a submodel should be included into the SYSTEM section of a problem file. It can be also
included in a text file of a submodel. From the System menu, choose Insert Submodel to open the wizard.

A submodel can be specified using the following statement:

[modul >] @model interface [- interface] / [parameter =] value , [parameter =] value ;

modul

is a user-defined identifier of the modeled system component

model

is the identifier of the submodel used for the component, it is preceded by the character @ without any
space.

interface

is a user-defined identifier of a system node or of a system branch in the later case the identifier
is preceded by the string I. . The interface identifiers are separated by the - or , characters.

65 Chapter 8 Submitting and creating submodels

Identifiers of the system nodes and branches can differ from the identifiers of the library-model
interface nodes and branches. However, both lists must contain the same number of identifiers ordered
in a way corresponding to their mutual interaction. Thus neither the system reference-node identifiers
0 can be omitted in the list. If a library-model node or branch does have its counterpart in the system,

it can be created by adding a fictitious block or two-pole element to the system.

parameter

is an identifier of a library-model external parameter. The list of the library-model external parameters
is separated from the list of its interface identifiers by a slash / .

value

is a numeric constant or a symbolic expression specifying the value of the corresponding external
library-model parameter. If value is not specified, the parameter acquires its default value specified
within the library-model file (or zero, if neither the default value has been specified).

Note:

If the external parameters and their values are submitted in the same order as in their list within the
submodel specification, the strings parameter = can be omitted.

The same submodel can be used for several different components in a system. Submodels can be also
used in specifications of other submodels, they can be even nested in this way up to 8 hierarchical levels.
The statement for using a submodel in a model specification is the same as the statement for using it in
the specification of a system.

Example:

A system in the form of a cascade of two double RC differentiating electrical circuits can be submitted
using the subCRCR model in the following way (see the data file of the CRCR submodel in the
following section):

*SYSTEM; E 1; RLOAD 3 = 100;
CIR1 > @CRCR 1,2,3;
CIR2 > @CRCR 2,0,2 / 10k,.1u;

The first submodel CIR1 is called without external parameter specification. It means that its parameters

retain their default values a 103 and b 10. The second submodel identified as CIR2 acquires the

parameter values a 103 and b 10 7.

The system of two ideal coupling or transformer submodels TRAFOID in a serio-parallel combination can
be given as (see the data file of the TRAFOID submodel in the following section):

*SYSTEM; E 1; RILOAD 0 = 100;
TR1 > @TRAFOID 1-0,I.RILOAD / N=50;
TR2 > @TRAFOID 1-0,I.RILOAD / N=-20;

8.2 Submitting ready-made submodels 66

From the system specification you can refer to the following library model variables:

V.modul.node node-across variable

V.modul.element Y-class element-across variable

I.modul.element Z-class element-through variable

8.3 Submitting new submodels

8.3.1 Specification of submodel properties using the diagram editor

Once the symbol of a submodel is placed into a diagram, you can open the dialog box related to the
submodel by pointing the cursor at its symbol and double clicking the left mouse button. There choose
Edit properties and fill in the text fields.

8.3.2 Specification of a new submodel using the text editor

Each submodel is to be stored in an individual text file model.MOD of the following structure:

model interface [- interface] / parameter [= value] , parameter [= value] ;

model specification statements

EO@;

model

is a user-defined identifier of the submodel.

interface

is a user-defined identifier of a library-model node or branch via which the submodel can interact with
the rest of the system (the reference node 0 need not be given here). The interface identifiers are
separated by the - or , characters.

parameter

is a user-defined identifier of a submodel external parameter the value of which can be specified
outside the submodel file. The list of the library-model external parameters is separated from the list of
its interface identifiers by a slash / .

value

is a numeric constant specifying the default value of the related external parameter (the parameter
acquires this value if its value is not specified outside the library-model file). If the string = value is
not specified for a parameter, its default value is considered zero.

model specification statements

67 Chapter 8 Submitting and creating submodels

are identical to the statements for entering equations, blocks and twopole elements into the SYSTEM
section of the problem file. From within a library-model specification you can refer to the following
system variables or parameters:

across variables of interface nodes

through variables of interface branches

library-model external parameters

internal independent variables (like TIME, TEMP, FREQ)

EO@

is the string terminating the library-model specification.

Examples:

A submodel CRCR of a double-RC differentiating circuit

CRCR IN-OUT, REF / a=1k, b=10;
C1 IN-INT = b; C2 INT-OUT = b/2;
R1 INT-REF = a; R2 OUT = b/2;
EO@;

IN, REF and OUT are interface nodes of the model, INT is its internal node. a 103 and b 10 are external
parameters and their default values.

Let us consider a ball moving freely along the vertical y-axes. The dynamics of its motion can be

BODY A, Y / m=1, k=1;
mass > C A = m; gravity > J A = temp*m;
air > G A = abs(V.A)*k; BI y = v.A;
EO@;

A primary variable specified by an implicit primary equation within the model description cannot be
referred to from outside of the model. This problem can be overcome, however, by replacing the
primary equation by an operation block with the output node identifier identical to the identifier of the
given variable. Similarly, replacing a secondary equation by an explicit block allows for referring to the
corresponding secondary variable.

BODY A, Y / M=1, K=1;
BO y = VD.y - v.A;
BO A = VD.A*m + sgn(v.A)*k*v.A**2 + temp*m;
EO@;

The submodel TRAFOID is stored in the file TRAFOID.MOD and represents an ideal transformer

8.3 Submitting new submodels 68

1.

2.

3.

4.

TRAFOID A-B,BR / N=1;
E-BR = (V.A-V.B)*N; J A-B = -I.BR*N;
EO@;

A, B are the interfacing node identifiers and BR is the identifier of the interfacing branch.

The file model.MOD of a submodel model can be created and included directly into the appropriate
directory using an ASCII editor. But it is also possible to include the fail there automatically assuming
that the model description has been entered within the SYSTEM section of a problem file preceded by the
DEFMAC command. This option is advantageous for debugging of new submodels as will be shown in the
next section.

Example:

After processing the following input file by DYNAST the submodel files CRCR.MOD and TRAFOID.MOD are
created and included into the directory reserved for this purpose automatically.

*SYSTEM;
DEFMAC
CRCR IN, REF, OUT / a=1k,b=10;
R1 INNER-REF = a; R2 OUT-REF = b/2;
C1 IN-INNER = b; C2 INNER - OUT = b/2;
EO@;
DEFMAC
TRAFOID A-B,BR / N=1;
E-BR = (V.A-V.B)*N; J A-B = -I.BR*N;
EO@;
RUN; *END;

8.3.3 Specification of a new submodel using the diagram editor

You may want to encapsulate a diagram so that you could use it as a part of another diagram. Then you
would need to specify which of the encapsulated diagram nodes should become associated with the new
part pins. Such nodes must be labeled by the External port symbol from the Place menu.

To develop the corresponding submodel file follow these steps:

In the Edit menu press the Is model button.

From the View menu, choose Open input to open the submodel textual file.

When DYNSHELL prompts you that the file is out-of-date press Yes to have it updated.

Specify the submodel external parameters using the text editor.

You can see the textual representation of the submodel diagram press Submodel in the Edit menu
and choose Open Input Text from the View menu. Now you may work in parallel with both the
textual and the graphical representation of the submodel. If you switch between the documents, they are

69 Chapter 8 Submitting and creating submodels

automatically compared and updated by DYNSHELL. If there is a difference between the activated and
the corresponding document, you will be prompted about it and asked whether you want to update the
activated document to consolidate both documents.

Then you should associate the submodel text file with a graphic symbol. To associate it with a new
symbol, open an existing or new symbol library from the DYNSHELL File menu, design the symbol
using the symbol editor, and add the symbol to the library.

8.3.4 Designing graphical symbols for submodels

Editor of graphical symbols.

The symbol editor allows you to design and edit libraries of graphical symbols that can be used
in the diagram editor (see chapter 6). For each symbol you may edit its size, appearance, pins and
other properties.

The window of the symbol editor is divided into two panes. The left pane displays thumbnails of all
symbols in the library, and allows you to manipulate the library on the symbol level. The right pane
displays the selected symbol, and allows you to edit its properties.

Manipulating symbols in the library.

Manipulation with symbols can be done in the left pane of the symbol editor window. You may add
new symbols using New symbol from the Edit menu, create a duplicate of the selected symbol using
Duplicate symbol, or delete the selected symbol using Delete. You may also change the order of symbols
in the library by dragging a symbol with the mouse, or duplicate symbols by dragging a symbol while
pressing the Ctrl key.

All operations on the symbol level can be undone by Undo from the Edit menu, but be sure that the left
pane of the symbol editor is selected, otherwise operations done in the right pane will be undone. It is also
possible to edit properties of a symbol by double-clicking its thumbnail in the left pane.

Editing a symbol.

To create a valid symbol, you should define its

size (Bounding Box)

appearance (by placing graphical elements)

pins

properties (name, comment, shortcut and DYNAST statement)

Adding new graphical elements.

You may use the Place menu to add new graphical elements to a symbol; you may add lines, rectangles,
polygons, circles, arcs, and pins.

To place a line, polygon or filled polygon, use Polyline, Polygon or Filled Polygon, respectively. Click
for each endpoint of the line or polygon. To start a new line or polygon, press the right mouse button.

To place a rectangle or a filled rectangle, use Rectangle or Filled Rectangle, respectively. Define the
positions of the rectangle corners by a double click.

8.3 Submitting new submodels 70

To place a circle or a filled circle, use the Circle or Filled Circle, respectively. Use a double click to
define position of the center of the circle and its radius.

To place an arc, use Arc. Use a mouse click to define the center and two endpoints of the arc. Between
the endpoints the arc will appear in a clockwise direction.

To place a text note, use Text from the Place menu. Use mouse clicks to place as many instances of the
text as you need; when finished, press the right mouse button. If you double-click the text with the mouse,
you may change its properties in the Text Properties dialog.

Adding new pins.

To place a pin, use Pin from the Place menu. Use mouse click to define the active endpoint of the pin
the passive endpoint will be always at the bounding box of the symbol. When you fix the position of the
pin, the Pin Properties dialog appears. Here you have to fill-in name and type of the pin. The pin can be
either scalar then you should fill-in only the type of the pin, or vector then you should fill in a vector
of pin names and corresponding types.

Editing existing objects.

The symbol editor provides features for editing the symbol, i.e. for moving, copying and deleting objects,
and for changing properties of pins. To edit a symbol, the symbol editor must be in the select mode. This
mode can be enabled using Select from the Edit menu.

You may use the mouse to select, move and copy the objects in the symbol body in the same way as in
the diagram editor. Moreover, if you select a single object, you may modify its shape by dragging its
manipulation points (small color boxes). If nothing is selected, you may change the size of the bounding
box by dragging its manipulation point in its lower-right corner.

Properties of pins and texts may be changed by double-clicking them with the mouse.

All editing operations can be undone by Undo from the Edit menu, but be sure that the right pane of the
symbol editor is selected, otherwise operations done in the left pane will be undone.

Editing properties of the symbol.

You may edit the properties of the symbol using the Symbol Properties from the Edit menu, or by
double-clicking the editor window. The Symbol Properties dialog appears. Here you specify following
properties of the symbol:

the name

the shortcut, i.e. the default name of parts created from the symbol

the DYNAST statement, i.e. type of DYNAST statement to which the symbol should be converted,
usually a model

the description (displayed in the library browser of the diagram editor)

Library of symbols are used in the diagram editor to represent models. Most often, you will need to
connect your library symbols to library models, specified in separate .mod files. To do this, type @model
to the Type field of the dialog, where model is the file name of your library model without path and
extension, e.g. diode.

71 Chapter 8 Submitting and creating submodels

Sometimes you will need to connect your library to a DYNAST built-in construct, i.e. physical element or
block. Then enter the identifier of the construct to the Type field, e.g. R or BI .

72

Chapter 9
Invoking nonlinear analysis

9.1 Nonlinear analysis

Nonlinear analysis capability of DYNAST allows you to solve sets of nonlinear algebro-differential
equations for given initial conditions and/or to analyze diagrams consisting of basic blocks, physical
elements or submodels. In the case of diagrams, the underlying equations are formed automatically by
DYNAST. The same analysis procedure can be also applied to sets of nonlinear algebraic equations and
to static diagrams (i.e., diagrams the components of which are characterized by algebraic relations only).

By choosing different analysis modes you can compute transient and steady-state quiescent or periodic
responses, and you can also ask for static or static parameter-sweeped analysis as well as for Fourier
analysis of the responses. The initial conditions, at which the analysis starts, can be specified by yourself,
they can also be taken from the previous analysis, or they can be computed by DYNAST to correspond to
a steady state, either quiescent or periodic.

Besides various responses, the nonlinear analysis yields the equations, either submitted by the user, or
formed by DYNAST for a diagram, linearized at the last solution point so that they can be utilized for the
subsequent linear analysis.

9.2 Modes of nonlinear analysis

There are the following nonlinear analysis modes available to you in DYNAST:

transient analysis, i.e., solving a set of algebro-differential equations or analyzing a dynamic diagram
for the independent variable t growing from tmin to tmax and starting from the initial conditions

x tmin x0 where x t is the vector of solved variables

static analysis, i.e. solving a set of algebraic equations or analyzing a static diagram

quiescent steady-state analysis, i.e. computation of the system transient response for t assuming
that this response is constant

In this case, DYNAST automatically converts any algebro-differential equation into an algebraic
equation and any dynamic diagram into a static diagram by

setting all derivatives with respect to the independent variable t to zero

setting the Laplace operator s in transfer block functions to zero

setting the output variables of all differentiators to zero

ignoring all integrators (this may result in singularity of the underlying equations as the output
variable of an integrator becomes undetermined if its output does not control any part of the
system)

73 Chapter 9 Invoking nonlinear analysis

ignoring all C-type physical elements

replacing all L-type physical elements by an ideal connection

static or quiescent steady-state parameter-sweeped analysis, i.e., solving the nonlinear algebraic
equations for a parameter p growing from a value pmin up to a value pmax. If t is taken as the parameter
p, this becomes the quasi-static analysis

periodic steady-state analysis, i.e. computation of the system transient response for t assuming
that this response is periodic due to a periodic excitation and/or self-oscillations of the system

Fourier analysis yielding the frequency spectrum of the periodic steady-state responses, and the
nonlinear distortion factor

d
i

Ai
2 A1

2

i
Ai

2

where Ai is the amplitude of the i-th harmonic of the spectrum

9.3 Initial conditions of nonlinear analysis

The nonlinear transient analysis of a system can be started from the initial conditions of the system
solved variables

set to zero (by default)

specified by the user

taken from the residual solution remaining in the computer operational memory from the previous
nonlinear analysis execution during the current DYNAST run

loaded from a nonlinear analysis residual solution file saved during a DYNAST run

corresponding to a steady state, either quiescent periodic

In the static or quiescent steady-state analysis modes, the initial-condition option can be utilized for
submitting the solution initial estimate to speed up the computation, and also to single out the required
solution from other solutions in the case of multiple-solution problems.

9.4 Output of nonlinear analysis results

The nonlinear analysis results are saved into the DYNAST output file in a tabular form from which they
can be plotted on the computer screen or on other devices, they can be also saved in the print-plot form.
The variables or parameters of the solved set of equations or analyzed diagram which you want to be
saved are referred to as the output variables.

The size of the steps at which the output variables are evaluated is changed automatically by DYNAST
during the computation to minimize the computational time while maintaining the required accuracy.
The output variables can be saved into the output file either as they are computed, or, before saving,
their values can be recalculated at evenly distributed points of the independent variable using linear
interpolation. The number of the points is specified by the user.

9.4 Output of nonlinear analysis results 74

The solution vector and the set of linearized equations resulting from the last iteration of the numerical
analysis is always stored temporarily in the computer operational memory as the residual solution until

the residual solution is erased by the user

DYNAST run has been terminated

The residual solution can be also saved into a residual-solution file. Each of the residual solutions, either
stored temporarily or saved in a file, can be used in a subsequent nonlinear analysis to specify initial
conditions, or, in a subsequent linear analysis, the system linearized equations.

9.5 Specification of nonlinear analysis using the wizard

Activate either the problem window, or the diagram window, in which the system to be analyzed is
specified. In the Analysis menu choose Numerical nonlinear analysis and open the corresponding wizard.
After filling in its text fields execute the analysis by choosing Analysis or Analysis&Plot from the
Run menu.

9.6 Specification of nonlinear analysis using the text editor

Specification of the nonlinear analysis should be included in the TR section of the DYNAST problem file.
Activate the problem window in which the system to be analyzed is specified. If the system is specified in
an active diagram window, choose Problem file from the menu View.

The section can be open by the *TR; command, and closed by the *END; command or by a command
opening some other section. In between, the following statements can be submitted and repeated several
times (some of them can be omitted):

*TR;
modification of system parameters
erasing the previous solution and statements

mode of the analysis
initial conditions or solution estimate

output of analysis results
saving the last solution

analysis execution command RUN
computational control

*END or another section opening command

9.6.1 Modes of the analysis

The actual nonlinear analysis execution can be activated by the statement which can be combined with a
list of parameters for the control of the numerical-analysis computational procedures.

75 Chapter 9 Invoking nonlinear analysis

If the statement specifying the required mode of analysis is omitted, the statement stored temporarily by
DYNAST from the previous computation specified up to its execution up to the RUN command within
the current TR section of the input data (if any) shall apply also to this analysis.

9.6.2 Transient analysis

TR [TIME] min max;

min and max

are numeric constants determining the lower and upper limits of the independent variable t

9.6.3 Transient analysis starting from quiescent steady-state

DCTR [TIME] min max;

min and max

are numeric constants determining the lower and upper limits of the independent variable t

9.6.4 Static or quiescent steady-state analysis

DC;

9.6.5 Static or quiescent steady-state parameter-sweep analysis

DC [parameter] min max;

parameter

is the user-defined identifier of a parameter of an equation, basic block, physical element or library
model. If omitted, the identifier TIME is assumed by default in this place

min and max

are numeric constants determining the lower and upper limits of the sweeped parameter

9.6.6 Fourier analysis

FOUR period , harmonics [, points] ;

period

is a numeric constant giving the period of the analyzed periodic response

harmonics

is an integer numeric constant determining the required number of harmonics in the computed
frequency spectrum. Its default value is 10.

9.6 Specification of nonlinear analysis using the text editor 76

points

is an integer numeric constant determining the number of points within one period at which the
frequency spectrum of the waveforms is evaluated. The default value is 128.

Examples:

Next problem file invokes Fourier analysis of the solution of a nonlinear differential equation. Ten
harmonics are computed and a histogram of the corresponding spectrum can be plotted. First, however,
transient analysis over a sufficient number of periods should be performed to reach a steady-state periodic
solution of the equation.

*SYSTEM; SYSVAR x;
0 = 10*cos(100pi*time) - x**3 - .02*VD.x;
*TR; tr 0 .1 ; INIT x=1;
PRINT (100) x; RUN;
FOUR 20m; RUN; *END; :Fourier analysis

9.6.7 Initial conditions of nonlinear analysis

9.6.8 User-specified initial conditions

computations

INIT variable = value [, variable = value];

variable

denotes

the user-defined identifier of a solved variable

the user-defined identifier of the across variable of a C-type physical element

the command !XALL if the initial conditions of all the solved variables are to be set to the same
value

the command !XMAX to set the initial value of the solution-vector norm for the computational
control

value

is a numeric constant. By default, it is zero (under the condition that there is no nonzero value
available in the residual solution already)

77 Chapter 9 Invoking nonlinear analysis

9.6.9 Residual initial conditions

If no value is specified for the initial condition of a solved variable, DYNAST takes its value from the
last residual solution available in the computer operational memory unless if it exists and if it has not been
erased from the memory by the statement ERASE .

9.6.10 Loaded initial conditions

LOAD name[.extension];

name

is the name of the solution-vector file in which a residual solution vector has been saved

extension

is a three-character string denoting the file-name extension. If it is the default string INC , it can be
omitted.

Example:

For instance, the initial conditions may be set as

INIT X1 = -3, V.3 = 10k, NODE3 = .01,
I.LOAD = 1_A, !XMAX = 1;

9.6.11 Output variables

PRINT [(points)] variable [, variable] ;

points

is an integer numeric constant specifying the number of the independent-variable points evenly
distributed over the interval of the analysis at which the values of the output variables are listed in
the output file. If the string (points) is omitted, the output-variable values are listed at the unevenly
distributed points of the independent variable where they have been actually computed (in the former
case, the output variables are evaluated from the computed values using a linear interpolation)

variable

is a user-specified identifier of a variable or parameter specified in the SYSTEM section. If no variable
is specified, all variables and parameters will be saved into the output file

Examples:

The statement

PRINT (21) X1, X2, Y;

9.6 Specification of nonlinear analysis using the text editor 78

shall cause the output of a four-column table with 21 lines containing values of the variables denoted as
X1, X2 and Y at 21 evenly spaced points of the variable TIME.

9.6.12 Computational control

The analysis execution command RUN can be augmented by the specification of
computational-control parameters:

RUN control = value [, control = value] ;

control

is the identifier of a computation-control parameter

value

is a numeric constant specifying the parameter value

Examples:

The following problem file demonstrates solution of nonlinear algebro-differential equations for initial
conditions determined by static analysis.

*SYSTEM; SYSVAR i, v;
0 = i - 2*VD.v - 5;
0 = 10 - v - i**2;
*TR; DCTR 0 10;
PRINT; RUN; *END;

9.6.13 Saving the residual solution

SAVE name[.extension];

name

is the name of the residual solution file

extension

is a string denoting the file-name extension which is INC by default

9.6.14 Modification of system parameters

MODIFY parameter = value [, parameter = value];

parameter

denotes the user-defined identifier of a parameter of an equation, basic block, physical element or
library model specified in the preceding SYSTEM section of the DYNAST problem file

79 Chapter 9 Invoking nonlinear analysis

1.

2.

3.

4.

5.

value

is a numeric constant for the new parameter value

9.6.15 Erasing the residual solution and statements

The residual solution remaining in the computer operational memory from the previous computation, and
also all the statements submitted in the current TR section already can be erased by the statement

RESET;

9.7 Plotting simulation results

As a result of analysis, DYNAST Solver creates an output text file. The output file usually contains one
or more tables of analyzed data. Each column of the tables corresponds to the independent variable of the
analysis (such as time or frequency).

The Plot viewer window in DYNSHELL is capable of plotting the results in a graphical way. To open
Plot Viewer for a given output file, choose Result Plot from the View menu.

Selecting variables for plotting. First you should specify the independent variable of the plot, and the
dependent variables that you want to display. By default, the first variable from the first analysis is
considered as independent, and the second variable is considered as dependent. To change this, use Set
variables , which displays the Plot - Select Variables dialog.

In this dialog you should first select which plot (table) of the current output file you want to display
selecting from the Plot list.

Then you should select the independent variable and dependent variables. Independent variable should be
selected from the Independent variable list. One or more dependent variables may be selected in the
Dependent variable list. You may also select independent and dependent variables by pressing the right
mouse button in the Dependent variable list.

Importing plots. You may also display variables from two or more output-file tables in one plot. To do
this, you must import a plot to the current plot. You may import plots from other output files, different
plots from the current output file, or even the current plot (this is useful if you want to display two or
more variables each with its own independent variable).

To import a plot,

From the Plot menu, choose Set variables.

Press the Import button.

Choose the output file you want to import.

Choose the table of variables which you would like later display from the imported output file.

Confirm your choice and return to the Select variables dialog. There you can see the imported
variables at the end of the list of dependent variables.

9.7 Plotting simulation results 80

6. Press the right mouse button in the Dependent variables list. Then you may still change the
independent variable of the imported table, set dependent variables, or remove the imported table
from the plot viewer.

Changing plot properties.

The plot appearance can be customized in many ways. To change the layout of the plot, use from the Axis
Menu:

the Common Y toggles Common Y mode, when all dependent variables share the same independent
variable.

Zero Y offset toggles the Zero Offset Y mode, when each dependent variable has its own axis with
individual scale, but all zero points are aligned at the same vertical position.

Multiple Y toggles the Multiple Y mode, when all curves are displayed in individual plots, one above
another.

To change the way how curves are displayed, use

the Log X to display independent axis in logarithmic instead of linear scale

the Discrete X to display histogram instead of smooth curves

You may also display the point marks on the curves using the Point marks. To set the mark density use
the Point Marks Occurrence field on the Plot Viewer Toolbar.

Zooming.

By default, the ranges of all variables are automatically adjusted to ensure that all curves fit into the
drawing area. You may customize the ranges by

dragging the mouse over a region that you want to zoom in

using the Custom Range - this allows to change the scales of the displayed variables manually

using Full View restores the scales to their original values

All these zooming actions can be undone using the Undo Zoom from the Axis menu. The undone
zooming action can be redone using the Redo Zoom.

Cursor & tracing features.

If you use Reference Cursor, a window with values of dependent and independent variable
corresponding to the mouse position appears.

The Curve Tracing allows you to observe coordinates of points on the chosen curve. After activating
Tracing, click the curve you want to trace. Then move mouse left or right to see the tracing point along
the curve. Press ESC key to stop tracing.

Annotating a plot. The plot viewer allows you to attach short text notes to plots. To add a new note, use
Text from the Plot menu. It displays the Plot - Text Properties dialog.

The dialog defines properties of the text note. Enter the text of the note to the Text field. Fields Font
face and Font size allow you to define font face and font size for the whole text. You may also apply

81 Chapter 9 Invoking nonlinear analysis

formatting attributes (such as bold, italics, script) to parts of the note by selecting the part in the Text
field, and pressing one of the buttons on the Font style toolbar.

Each note has a reference point that is placed in the coordinate system of a curve. The reference point is
displayed in the plot viewer as a small red box. The Alignment buttons allows you to define the relative
position of the reference point with respect to the note. The Align to curve list allows you to select to
which curve the note will be aligned. This information is useful for repositioning of the textual note when
some of properties of the plot change.

To end editing the current note, press the Close button. To delete the current note from the plot, press the
Delete button. Use the mouse to define the position of the reference point of the note in the coordinate
system of the given curve. To change properties of a note already defined in the plot, click it with
the mouse.

To make the definition of the notes permanent, you may save the layout of all windows opened in
DYNSHELL using the Save Screen Layout.

82

Chapter 10
Invoking numerical frequency analysis

10.1 Numerical frequency analysis

The purpose of frequency analysis is to compute the response of a linear or linearized system to
the harmonic (sinusoidal) excitation in the steady state. In this DYNAST section a set of complex
algebraic equations is formed and solved numerically at each frequency point resulting at numerical
values of various frequency-characteristic components. In the semisymbolic analysis section the resulting
frequency characteristics are in the form of a rational function with the frequency variable as a
symbol. Unlike the semisymbolic analysis, the numerical frequency analysis is not limited to models
with frequency-independent parameters only. Thus it can be applied even to linear models with
distributed parameters.

The harmonic excitation must be applied to the analyzed system models using special physical elements:
sources of sinusoidal across-variable type FE and/or sources of sinusoidal through-variable type FJ. All
independent across-variable sources type E in the system model behave as ideal connectors, whereas all
independent through-variable sources type J behave as nonexistent. Outputs of all blocks type BS act as
across-variable references.

10.2 Specification of numerical frequency analysis using the wizard

Activate either the problem window, or the diagram window in which the system to be analyzed is
specified. From the Analysis menu, choose Numerical frequency analysis and open the wizard. After
filling in its text fields execute the analysis by choosing Analysis or Analysis&Plot from the Run menu.

10.3 Specification of numerical frequency analysis using the text editor

10.3.1 Specification of the system excitation

Syntax for the FE and FJ elements that should be applied to the system model specified in the SYSTEM

section is similar to that of the other physical elements described in the, i.e.

element [> type] node [- node] = amplitude [@ phase] ;

element [> FE] - series = amplitude [@ phase] ;

element

is a user-defined identifier of the specified element

type

83 Chapter 10 Invoking numerical frequency analysis

is the string specifying the element type, either FE or FJ

+node and -node

are identifiers of the diagram nodes between which the specified element is situated

series

is the identifier of the Z-class element to which this element is connected in-series

amplitude

is the numeric constant or symbolic expression specifying the amplitude of the harmonic source

phase

is the numeric constant or symbolic expression specifying the phase of the harmonic source in radians,
which is zero by default

Example:

A harmonic source of voltage with the amplitude of 2 2 V and the phase of 180 degrees, connected
between nodes A and B, can be entered as

FE A-B = 2.2 @ 1pi;

10.3.2 Specification of the analysis

Specification of the numerical frequency analysis should be included in the AC section of the DYNAST
problem file. Activate the problem window in which the system to be analyzed is specified. If the system
is specified in an active diagram window, choose Problem file from the View menu.

*AC;
properties of the analysis
specification of analysis results
RUN; : execution of the analysis

DYNAST evaluates the response of the system either at equidistant frequency points within a
user-defined frequency range, or at user-defined frequency points. Thus the analysis can be specified
either as

FREQ /[LIN] [min max];

or as

FREQ = f1, f2, ;

min and max

are numeric constants determining lower and upper limits of the frequency interval

f1, f2,

10.3 Specification of numerical frequency analysis using the text editor 84

are numeric constants specifying individual frequency points

/LIN

, or just the / , is the string setting a linear scale for the frequency axis. By default, this scale is
logarithmic.

If the statement FREQ is missing, DYNAST assumes the default frequency range from 10 1 to 101.

10.3.3 Output of the analysis

Tabular output for various components of the harmonic response of the system can be specified by
the statement

PRINT [(points)] component.variable [, component.variable];

where the identifier variable stands for the solved variable. The identifiers component are listed
in Table 10.1.

Table 10.1 Components of reponses of AC analysis

Identifier Component Identifier Component
MOD modulus DB modulus in dB

RAD phase in radians RE real part

DEG phase in degrees IM imaginary part

Examples:

The statement

PRINT (60) MOD.I.R1, MOD.A;

results in a table giving modules of variables I.R1 and A at 60 points.

85 Chapter 11 Invoking semisymbolic analysis

Chapter 11
Invoking semisymbolic analysis

11.1 Semisymbolic analysis

Semisymbolic analysis can be applied to linear time-invariant lumped-parameter system models
composed from multipoles and/or blocks combined eventually with algebro-differential equations. The
semisymbolic analysis can be also used for small-signal analysis of nonlinear models within the vicinity
of a quiescent operating point. Such a point can be located and the system model can be linearized at it
using the DYNAST nonlinear-system analysis.

DYNAST provides operator functions for a given system model in a semisymbolic rational form. The
operator functions may represent either the system transfer functions, or the Laplace transforms of
the system zero-input responses to a given initial state. The operator functions can be converted into
semisymbolic time-domain responses for given input excitation and initial state of the system. The
time-domain responses as well as various components of frequency characteristics of the semisymbolic
transfer functions are also evaluated numerically.

The semisymbolic analysis is based on the computational scheme shown in Fig. 11.1.

Figure 11.1 Computation of operational functions.

where E s is the Laplace transform of a system excitation e t , and Y s is the Laplace transform of the
system response y t . For a given system model, DYNAST computes operator functions representing

the system transfer function H s , i.e., the Laplace transform of the system response to an input
stimulus e t in the form of a Dirac impuls while the system initial state vector x t0 is zero

the Laplace transform of the system response Y 0 s to an initial state x t0 while the excitation e t is
zero

The resulting operator functions are expressed in the semisymbolic rational form

F s K
s z1 s z2

s p1 s p2
K

a0 a1s a2s

b0 b1s b2s

11.1 Semisymbolic analysis 86

with the Laplace operator represented by the symbol s, and with numerically expressed multiplicative
factor K, polynomial roots z1, z2,..., p1, p2 (i.e., operator-function poles and zeros), and polynomial
coefficients a0, a1, a2, ..., b0, b1, b2 .

The system response y t to an excitation e t for its given rational Laplace tranform E s and for an
initial state x t0 is then expressed in the semisymbolic form

y t
i

aie
bi t

i t icos

where t stands as a symbol, whereas ai, bi, i and i are numerical constants.

DYNAST also evaluates various components of the semisymbolic responses and frequency
characteristics numerically and displays them in different graphical forms.

11.2 Specification of semisymbolic analysis using the wizard

Activate either the problem window, or the diagram window, in which the system to be analyzed is
specified. From the Analysis menu, choose Semisymbolic analysis and open the corresponding wizard.
After filling in its text fields execute the analysis by choosing Analysis or Analysis&Plot from the
Run menu.

11.3 Specification of semisymbolic analysis using the text editor

Activate the problem window in which the system to be analyzed is specified. If the system is specified in
an active diagram window, choose Problem file from the menu View.

11.3.1 Operator functions

The required operator functions can be specified in the PZ-section using the statement

TRAN function [, function] ;

where function can be of the form

identifier = response / stimulus [coef]

or

identifier = block [coef]

identifier

is a user-specified identifier of the required operator function

response

can represent

the identifier of a primary variable (either node-across variable or through variable of a Z-class
element)

87 Chapter 11 Invoking semisymbolic analysis

V.element, which is the across-variable of a Y-class element

stimulus

, separated from response by the character / , may represent:

the source of an input stimulus in the form of the Dirac impuls if function is a transfer function.
This can be:

source, which is the identifier of a J- or E-type element, or the identifier of a BS-type
block assuming that this element or block has been specified in the SYSTEM section already
(regardless of their actual specification there, they are considered as Dirac-impulse sources in this
analysis)

BS.node, which is a BS-type block additionaly connected by its output to a node of the identifier
node

E.element, which is an E-type element additionaly connected in series to a Z-type element of the
identifier element

J.element, which is a J-type element additionaly connected in parallel to a Y-type element of the
identifier element

the Laplace transform of the system zero-input response to an initial state. Then stimulus represents
the character string INIT .

COEF

is the string indicating the requirement to compute also polynomial coefficients for the operator
function besides the polynomial roots.

When a transform of the system zero-input response is specified, the initial state is submitted by the
separate statement

INIT variable = value [, variable = value];

variable

can represent:

V.element, which is the across-variable of an C-type element of the identifier element

I.element which is the through-variable of a L-type element of the identifier element

value

is a numerical constant

The values of all the sources and variable initial states not mentioned in the specification of an operator
function are considered as zero during the analysis of the function.

The actual execution of the analysis can be activated by the command

RUN;

11.3 Specification of semisymbolic analysis using the text editor 88

Examples:

Some examples of operator functions:

TRAN T1 = I.RIOUT/EIN COEF, T2 = V.LOAD/INIT, T3 = BT13;
INIT V.C4 = .5, I.L0 = 1.2M, V.BI = 1;

Operator function T1 represents a transfer admittance, the function T2 is a Laplace transform of a response
to initial conditions and the function T3 corresponds to the transfer function of the block BT13.

11.3.2 Operator-function time-responses

The required semisymbolic-form time-responses of some of the operator functions specified in the
PZ-section can be submitted in the TRA-section using the statement

SYMB expression [, expression];

where expression is of the form

[stimulus]transfer-function + init-function

or

init-function

stimulus

is the string indicating the stimulus of the transfer function; it may be either

empty then the impulse response of the transfer function is computed

STEP. then the step response of the transfer function is computed

block. then the response is defined by a previously defined BT block

transfer-function

is the identifier of a transfer function specified in the PZ-section

init-function

is the identifier of an operator function specified in the PZ-section, which was defined as response to
the initial state of the system; it should have the same output specification as the transfer-function; the
init-function may be also submitted alone (without the transfer function)

To evaluate numerically the time responses at specific time points, the points can be submitted either by
the statement

TIME min max;

or by the statement

TIME = t1, t2, ;

89 Chapter 11 Invoking semisymbolic analysis

min and max

are numeric constants specifying the lower and upper limits of the time interval

t1, t2,

are numeric constants giving the time points specified individually

If this statement is missing, DYNAST determines the time interval of the analysis automatically. For its
upper limit DYNAST takes a multiple of the largest operator-function time constant, zero is then taken
for the lower limit.

The tabular output of the time responses or of their combinations can be specified by the statement

PRINT expression [, expression];

where expression has the same form as the expression of the SYMB command.

The actual time-characteristics analysis execution can be activated by the command

RUN;

Example:

The statement

PRINT (10) TF, STEP.TF + TFINIT;

results in table of 10 lines for the impulse characteristics of the transfer TF and also for the sum of
the transfer TF step response and of the corresponding initial condition response (its transform denoted
as TFINIT).

11.3.3 Frequency analysis of transfer functions

Computation of frequency characteristics of the semisymbolic transfer functions acquired in the PZ
section can be specified in the FRE section.

Frequency is specified either as

FREQ /[LIN] [min max];

or as

FREQ = f 1, f 2, ;

min and max

are numeric constants determining lower and upper limits of the frequency interval

f 1, f 2,

are numeric constants specifying individual frequency points

11.3 Specification of semisymbolic analysis using the text editor 90

/LIN

, or just the / , is the string setting a linear scale for the frequency axis. By default, this scale is
logarithmic.

If the statement FREQ is missing, DYNAST determines the frequency range automatically taking into
consideration the smallest and largest time constants of the analyzed problem.

Table 11.1 Frequency characteristics components

Identifier Component Identifier Component
MOD modulus DEL group delay

DB modulus in dB SLO modulus slope

RAD phase in radians RE real part

DEG phase in degrees IM imaginary part

Tabular output for various components of the frequency characteristics is to be specified by the statement

PRINT [(points)] component.function [, component.function];

The identifiers component are listed in Table 11.1.

The actual frequency-characteristics analysis execution can be activated by the command

RUN;

Examples:

The statement

PRINT (60) MOD.ADMIT, MOD.IMPED;

results in a table giving modules of transfer functions ADMIT and IMPED at 60 points.

91 Chapter 12 Documenting problems and submodels

Chapter 12
Documenting problems and submodels

12.1 The documentation system

The documentation system facilitates considerably publishing problems solved by DYNAST as well as
documenting the DYNAST submodels. The system was designed to produce documents in a standardized
form and in an appropriate typographical quality with many operations automated. For this reason, the
system is based on the LaTeX typesetting system and the produced documents are formated in PostScript
(for printing), HTML (for electronic presentation), and PDF (for both).

You can exploit the documentation system directly from the DynShell menu either across the Internet on
our server, or you can freely install it on your computer. A part of it the latex2html package - requires,
however, a UNIX compatible operational system. Before you start using the documentation system, you
should configure it (see Configuring Documentation System). By default, the documentation system is
configured for remote usage.

12.2 The documentation statements

The documentation statements are placed directly in the problem file together with the input data in the
case of problem documents, or directly in the submodel data files in the case of submodel documents.

The documentation statements are denoted by colon characters, respecting the following rules:

text between a colon : and the end of the line is treated as a comment and ignored both by the solver
and by the documentation system

a text to the right of a double colon :: provides more detailed information for the statement
preceding these two characters (e.g., the description of a parameter or of a submodel interface)

the triple colon ::: indicates that the text to the right of it on the same line is either a documentation
statement or a text in LaTeX format

12.2.1 Special statements

The documents are underlined is by LaTeX formatted text combined with special statements. These
statements must be always placed at the beginning of the line immediately after the three colons. Some of
these statements have parameters.

12.2 The documentation statements 92

12.2.2 Simple statements

Simple statements allow specifying a logical structure of the document. Each of the statements creates
a new paragraph with a corresponding caption. The list of the simple statements shown in table 12.1 is
stored in the file template\dyn2tex.ini, so it can be easily modified.

Table 12.1 Simple statements

Statement Section caption
:::EXCI System excitation

:::TASK Task

:::ORIG Example origin

:::VARI Model variables

:::SYST System

:::MODEL Model

:::ASSUM Modeling assumptions

:::ANALY Model analysis

:::RESUL Results

:::PURP Purpose

:::CONCL Conclusion

The FIG statement.

Syntax:

:::FIG[suffix,width]{title}

The FIG statement inserts a figure in Encapsulated PostScript format from an external file. The file must
be placed in the same folder as the document file. The name of the file must be formed by the name of the
document file followed by a suffix suffix.

If the parameter width (in millimeters) is entered, the figure is scaled to the given width (preserving the
aspect ratio). Otherwise the original size is used. You may also specify the percentage of the original size.

The figure will get the title title.

All parameters are optional.

Example:

: File problem.prb

:::FIG[a]{the figure}

inserts an image from file problema.eps, preserves its original size, and adds title the figure .

:::FIG[,80%]

inserts an image from file problem.eps, and scales it down to 80% of the original size.

The DIAGRAM statement.

93 Chapter 12 Documenting problems and submodels

Syntax:

:::DIAGRAM[width]{title}

The DIAGRAM statement generates a figure in EPS format corresponding to the diagram of the current
simulation experiment or library model, and inserts it to the document. The diagram file must be placed in
the same folder as the document file, and must have the same name.

If the parameter width (in millimeters) is entered, the figure is scaled to the given width (preserving the
aspect ratio). Otherwise the original size is used. You may also specify the percentage of the original size.

The figure will get the title title.

All parameters are optional.

Example:

: File problem.prb

:::DIAGRAM{the diagram}

inserts an image of the diagram problem.dia, preserves its original size, and adds title the diagram .

:::DIAGRAM[80%]

inserts an image of the diagram problem.eps, and scales it down to 80% of the original size.

The SYMBOL statement.

Syntax:

:::SYMBOL{library}{symbol}{title}

The SYMBOL statement generates a figure in EPS format corresponding to the library symbol, and inserts it
to the document.

The parameter library specifies the name of the library, The parameter symbol specifies the name of the
symbol in the library.

The figure will get the title title.

Example:

: File problem.prb

:::SYMBOL{electric}{R_ELE}{Symbol}

inserts an image of the library symbol R_ELE from the library file electric.lbr, and assigns a
title Symbol .

The PLOT statement.

Syntax:

:::PLOT[parameter=value,parameter=value] lpartitle}

The PLOT statement generates a figure in EPS format corresponding to the output of the current simulation
experiment, and inserts it to the document. The output file must be placed in the same folder as the
document file, and must have the same name. If the output file does not exists, it is created by running the
DYNAST simulator on the current simulation experiment.

12.2 The documentation statements 94

The figure will get the title title.

By default, the figure has dimensions 50 50mm, and displays the relationship of the second quantity on
the first quantity of the first table of the output file. You may change the default behavior by submitting
one or more parameters listed in table 12.2.

Table 12.2 Parameters of the PLOT statement

Parameter
[Default]

Value

w[50] the width of the figure in milimeters
h[50] the height of the figure in milimeters
plot[1] which plot (table) of the output file will be displayed, 1 denotes the first table
indep[0] independent quantity, counts from zero

deps[1]
dependent quantities, count from zero; you may specify more quantities separated by
the plus (+), or ranges separated by the hyphen (-), such as 1-5+10 for quantities
1,2,3,4,5 and 10

rangen

custom range of the n-th quantity (quantities counts from zero); n may be specified as
range by two integers separated by the hyphen range is then set for all quantities in
the range; the range specification has the form lower..upper, where lower and upper
are constants

import

imports another plot to the current plot; the import specification has the form
file;plot;indep, where file is the name of the output file to import from without
extension (empty string stands for the current file), plot is the index of the plot (table) in
the file (counts from one), and indep is the index of the quantity to be considered as
indepentent (counts from zero)

grid[yes] no disables the grid
multiple[yes]

no disables the Multiple Y mode

common[no]
yes enables the Common Y mode

zero[no] yes enables the Zero Offset Y mode
log[no] yes enables the Log X mode
discrete[no] yes enables the Discrete X mode
marks[no] yes enables the point marks
occ[1] sets the density of point marks, the bigger number, the lower density
title[yes] no disables drawing of the plot title

Example:

: File problem.prb

:::PLOT[w=100,h=80]{The plot}

inserts an image generated from the output file problema.o, with size 100 80mm, displaying the first plot
of the output file, with the zeroth variable as independent, and the first one as dependent.

95 Chapter 12 Documenting problems and submodels

:::PLOT[indep=2,deps=3-6+8-9]{The plot}

sets the second variable as independent and variables 3,4,5,6,8,9 as dependents

:::PLOT[log=yes,discrete=yes]{The plot}

sets the modes Log X and Discrete X on

:::PLOT[range0=0..1E6,range1-4=-1..3]{The plot}

sets the range of the zeroth variable from 0 to 106, and ranges of variables 1,2,3,4 from 1 to 3

:::PLOT[import=b;2;5,deps=1-20]{The plot}

imports the second plot of the file b.o to the current plot, and sets the fifth quantity of the plot as
independent (the dependent quantities 1 20 now refer to the concatenation of quantities from the original
plot and the imported plot)

See also:

Changing properties of the plot

The SITE statement.

Syntax:

:::SITE

::: site name ... site description

::: site name ... site description

:::

The SITE statement creates a section with description of subsystem sites of interaction. This description
consists of several lines. Each line defines one site of interaction. The definition contains the name of the
site and the description of the site, separated by ellipsis.

Example:

Input
:::SITE

::: A ... wheel

::: B ... car suspension

::: C ... car body

Output
Sites of interaction
A wheel
B car suspension
C car body

The PARA statement.

Syntax:

:::PARA

12.2 The documentation statements 96

1.

2.

3.

The PARA statement inserts list of parameters. This list is taken from the active part of the data file. The
parameters should be defined using following form:

parameter = value; ::[dimension] description

parameter = value; ::[dimension] description ::: p[d] = v

parameter = value; ::[dimension] description :::%

The first form adds the following line to the table of the parameters:

parameter = value [dimension] description

Using the second form you may redefine the appearance of items parameter, dimension value using
items p d v respectively. These items may contain an arbitrary fragment of LaTeX code, which will be
processed in LaTeX math mode.

By using the percentage % after three colons you can disable adding of a line to the table of parameters.

The three colons and the text behind them will not be inserted to the output generated by DATA statement.

Example:

97 Chapter 12 Documenting problems and submodels

Input

:::para
:::data
*SYSTEM;
x = 10; :: [m] displacement
i = sqrt(2); :: [A] current ::: = \sqrt{2}
v = 5; :: [m/s] velocity ::: [\frac{m}{s}]
omega = 5pi; :: [rad/s^-1] ang. vel. ::: \omega = 5\pi
beta = 10pi; :: [rad] angle :::%
*END;

Output
System parameters
x 10 m displacement
i 2 A current

v 5 m
s velocity

5 rad s 1 ang. vel.

Input data

*SYSTEM;
x = 10; :: [m] displacement
i = sqrt(2); :: [A] current
v = 5; :: [m/s] velocity
omega = 5pi; :: [rad/s^-1] ang. vel.
beta = 10pi; :: [rad] angle
*END;

The DATA statement.

Syntax:

:::DATA

The DATA statement inserts the active part of the data file (simulation data) to the document. The
document (lines or line parts beginning with three colons) is removed.

When creating the electronic document to a simulation experiment, the DATA statement inserts a form that
can be used for remote simulation of the experiment.

For usage example see PARA statement.

The MODP statement.

Syntax:

:::MODP

12.2 The documentation statements 98

The MODP statement inserts a list of modules (instances of submodels) to the document. Each module is
accompanied by a list of parameters that were modified from their default values.

Example:

Input

:::MODP
chass1 > @ROD2 PX7-PX13,PY7-PY13,OM3/L=az1-a13;
chass2 > @ROD3 PX13-PX37,PY13-PY37,OM3/m=m3,J=J3;
spring20 > @SPRING1 0-PX2,PY20-PY2/c=k20,d=d20;

Output
Module parameters
Module: chass1 Rod

Submodel: ROD2 Weightless rigid rod link in polar coordinates

L = az1-a13 m rod length
Module: chass2 Rod

Submodel: ROD3 Mass rigid rod link

m = m3 kg mass

J = J3 kg m2 moment of inertia

Module: spring20 Spring

Submodel: SPRING1 Linear weightless spring with damping

c = k20 N m 1 spring rate

d = d20 N s m 1 damping constant

The INTER statement. EXTP

Syntax:

:::INTER

:::EXTP

The statements INTER and EXTP can be used only for documenting of submodels. They insert the
specification of the submodel interface and of the external parameters to the document.

Example:

99 Chapter 12 Documenting problems and submodels

Input

ROD3 ::Mass rigid rod link
:with two pin joints
Ax- :: mechanical inlet in the x-direction
Bx, :: mechanical inlet in the x-direction
Ay- :: mechanical inlet in the y-direction
By, :: mechanical inlet in the y-direction
om/ :: mechanical inlet of rotation
LA=1,:: [m] distance from A and G :::L_A
LB=1,:: [m] distance from B and G :::L_B
m=0, :: [kg] mass
J=0, :: [kg.m^2] moment of inertia
g=9.81; :: [m.s^-2] acceleration of gravity
::: INTER
::: EXTP

Output
Interface
Ax mechanical inlet in the x-direction

Bx mechanical inlet in the x-direction

Ay mechanical inlet in the y-direction

By mechanical inlet in the y-direction

om mechanical inlet of rotation

External Parameters
LA 1 m distance between joint A and G

LB 1 m distance between joint B and G

m 0 kg mass

J 0 kg m2 moment of inertia

g 9 81 m s 2 acceleration of gravity

The INCL statement.

Syntax:

:::INCL[category]{filename}

The INCL statement affects only the electronic form of the document. It inserts a reference to an applet,
which displays the DYNCAD schematic editor and loads the file filename into it. Files (diagrams) may be
organized to categories. To use a category other than the default, you must name of the category.

Example:

:::INCL{d1}

Inserts a reference to the diagram d1 from the default category

12.2 The documentation statements 100

:::INCL[mechanical]{d2}

Inserts a reference to the diagram d2 from category mechanical.

12.3 Documenting subsystems

A subsystem describes some part of a dynamic system that may have several submodels. Models may
differ in interface, parameters, way of modeling of physical phenomena, etc.

The document describing a subsystem must be written in LaTeX. It contains only the document (not
data), so it has no colons for distinguishing data from document. It may contain the special statements
FIG, SITE, and the statement CAPTION.

The CAPTION statement.

Syntax:

CAPTION name of the subsystem

The statement CAPTION inserts the heading of a subsystem. It should be the first statement of each
subsystem file document.

12.4 Processing the documents

The documentation system can generate an output in PostScript for printing, in HTML for electronic
presentation, or in PDF format for both.

Conversion to PostScript can be done locally on a MS Windows platform or on a server equipped with
the necessary software. Conversion to HTML and PDF can be done only remotely.

To create a document for a given file, you may choose from the Documentation menu

Publish document in PostScript

Convert document to PDF

Convert document to HTML

To view previously created documentat, you may use from the same menu

View document in PostScript

View document in PDF

View document in HTML

101 Chapter 13 Inside DYNAST

Chapter 13
Inside DYNAST

13.1 Formulation methods

As we have already mentioned, DYNAST is capable, besides other things, of solving systems of ordinary
nonlinear and nonstationary first-order algebro-differential equations in the implicit form

f x t x t t 0 (13.1)

where f is the vector of functions, x t is the vector of the solved variables and x t is the vector of
their derivatives with respect to the independent variable t.

In case of static systems or in case of static or quasistatic analysis of dynamic systems, (13.1) boils down
to to the system of nonlinear algebraic equations

f x t t 0 (13.2)

The DYNAST procedure for solving these equations described further is based on their iterative
linearization at discrete points of t. Thus, at the point t tn 1 and at the k 1 -st iteration of the
procedure, DYNAST formulates for a given set of (13.2) in fact the linear algebraic equations

f
x n 1

k f
x n 1

k
xn 1

k 1

f xn 1
k xn 1

k tn 1

(13.3)

where is a variable computational factor. On the right-hand side we can see the approximation of
the vector function f x t x t t value as obtained at the previous iteration. In large parentheses are the

jacobians of the vector function f with respect to xn 1
k and xn 1

k . These are the approximations of the
vectors x tn 1 and x tn 1 at the k-th iteration of the solution process (13.3). DYNAST computes the
jacobian elements automatically using a built in symbolic differentiation procedure.

The automatic formulation of diagram representing equations in DYNAST is based in principle on the
modified method of nodal voltages. To make it applicable to the whole range of problems we wanted
DYNAST to solve, we had to generalize the method

to both nonlinear t domain as well as to linear s domain analysis

to one port as well as to multiport elements

to node as well as to port specified element interconnections (thanks to this a series interconnection of
several elements can be characterized just by one equation)

to electrical as well as to nonelectrical elements.

13.1 Formulation methods 102

Later, the formulation method was extended also to block diagrams and to their combinations with
port diagrams [4], [5]. As DYNAST formulates all the primary port and block diagram equations
simultaneously, it has no problems with the fast or algebraic loops as it is common to most of the other
simulation programs.

The contributions to the jacobians as well as to the right-hand side of (13.3) corresponding to individual
block and port diagram elements are preprogrammed in DYNAST in the form of matrix-stamps .
The Table 13.1 shows, how many primary equations DYNAST has to formulate for different items
representing a dynamic system.

Table 13.1 Number of equations requirements

Type Item Equations
first-order algebro-differential equation 1
nonzero node 1

BS explicit block 1

BO implicit block 1

BI integrator 1

BD differentiator 1

BT n-th order transfer block n 1

J through-variable source 0

R resistor 0

G conductor/damper 0

C capacitor/inertor 0

E across-variable source 1

RI resistor 1

L inductor/spring 1

OA operational amplifier 1

For linear dynamic systems represented by a block and/or port diagram the corresponding equations are
formulated using the matrix-stamps in the form

A0 s s A1 s X s B s (13.4)

where s is the complex Laplace operator. A0 s and A1 s are square matrices, B s is a column vector. In
case of lumped-parameter dynamic systems these matrices are constant.

For the analysis of small excitations around a computed or user specified operating point of nonlinear
lumped-parameter dynamic systems, DYNAST is able to determine the corresponding linearized (13.4)
automatically. This is done very easily just by replacing the factor by the Laplace operator s in (13.3)
after having the iteration process converged.

103 Chapter 13 Inside DYNAST

13.2 Computational methods

To solve the system of (13.1) in an interval t t0 t1 for given initial conditions x t0 during
the transient analysis DYNAST uses the implicit multistep integration method characterized by the
backward-differentiation formula

xn 1 hb 1xn 1
i 0

r 1

aixn i (13.5)

The length of the integration steps h and, at the same time, the order of the method r DYNAST
continuously optimizes during the integration with respect to the actual shape of the resulting responses.
The aim is to minimize the computational time while respecting the admissible computational error [6].
The coefficients ai and bi in (13.5) are chosen in such a way, as to make the integration procedure
numerically stable even for dynamic systems with a wide spread of time constants (stiff-stable method)
[7]. The order of the integration varies within the range of 1 and 6.

In the discretized and linearized (13.3) the value of the integration factor 1 hb 1 depends both
on the integration step length h, as well as on the order of the integration method r. The solution

xn 1
k 1 xn 1

k 1 xn 1
k of (13.3) is used to correct the approximation of the vector x tn 1 obtained at the

k-th iteration. After finishing the iteration process, the initial estimate of the next step solution is made in
accordance with the formula (13.5).

In the static cases represented by the systems of nonlinear algebraic (13.2), when the second jacobian
in (13.3) is zero, the integration procedure described above turns into the modified well-known
Newton-Raphson method. In case of quasistatic analysis, during which some of the system or ambient
parameters is supposed to vary slowly in a specified range, the independent variable t represents
the varied parameter. The integration procedure built-in DYNAST is then used there to control the
independent parameter variations.

The linearized system of algebraic (13.3) is solved at each iteration by the LU algorithm, i.e. by the Gauss
elimination method modification based on the decomposition of the system matrix into an upper and
lower triangular matrix. This decomposition as well as the jacobian evaluation, however, is not performed
at each iteration step. To make the computation faster, this is done only when the iteration convergence
slows down too much.

Considerable savings of computational time and memory are achieved by matrix sparsity exploitation.
The sparsity of jacobian matrices growths usually very fast with the complexity of dynamic systems
(13.3). DYNAST stores in the computer operational memory the nonzero matrix elements only. The
arithmetic operations resulting in zeroes are excluded in advance and the matrices are rearranged to
minimize the matrix fill-in during their the LU decomposition.

To accelerate computation of periodic responses of weakly damped dynamic systems the iterative
-algorithm [8] is utilized. For the spectral analysis of the steady-state periodic responses the fast Fourier

analysis algorithm [9] is at the users disposal.

In case of the linear dynamic system analysis in the frequency domain, the corresponding (13.4) can
be solved by DYNAST numerically at discrete frequency points. This approach is especially useful for
distributed-parameter dynamic systems.

13.2 Computational methods 104

Besides that, however, for linear or linearized lumped-parameter dynamic systems, DYNAST makes
possible to compute numerically their rational transfer functions and transforms of initial-condition
responses. And what is important, the results are in the semisymbolic form, i.e. with symbolic Laplace s
operator and numerical polynomial roots and coefficients.

For linear lumped parameter systems, for which the matrices A0, A1 and B are constant, (13.4) represent
the generalized eigenvalue problem. The solutions of this problem in terms of s, correspond to the transfer
function poles (i.e. denominator polynomial roots) of the analyzed dynamic system. An algorithm was
developed to transform (13.4) to some other generalized eigenvalue problems the solutions of which
correspond to the zeroes (i.e. numerator polynomial roots) of required transfer functions [10].

Before their actual solution, the generalized eigenvalue problems DYNAST reduces first into standard
ones using a sparse matrix transformation procedure [11]. Thus the matrix A1, which is in engineering
problems much more sparse usually than the matrix A0, is turned into a unit matrix. The standard
eigenvalue problem is then solved iteratively by a very robust QR-algorithm. From the resulting transfer
function poles and zeroes it is than very easy to derive their polynomial coefficients.

For the semisymbolic transfer functions the program than can numerically compute frequency and time
characteristics in the semisymbolic form again. To do this, DYNAST makes use of closed-form formulas
and does not thus have to resort to any approximations. Before that, however, the transfer functions have
to be decomposed into sums of partial fractions.

13.3 Computational hints

Try to keep the number of equations as low as possible, but do not oversimplify your model. DYNAST
prefers models closed to nature

When using block or port diagrams take into your consideration Table 13.1.

Remember, that for DYNAST the dynamical models are easier to solve than the static ones

Model the nonlinear relations by functions as smooth as possible, prefer functions which have their
first derivatives continuous

Start with simple models and make them more elaborate later

When debugging a large model, deactivate first most of it by the semicolon characters : and remove
these than gradually

In case of SYSTEM IS SINGULAR message check the number of your primary variables with respect to
your primary equations, and also your initial conditions

Avoid printplotting of results unless you really need it. Plotting is faster.

13.4 Computation control

Table 13.2 shows the parameters for the computational control in DYNAST, the values of which can be
changed by the user in case of necessity.

Those are parameters of the section TR, parameters WPRINT and WPLOT apply also to the sections AC,
PZ, FRE.

105 Chapter 13 Inside DYNAST

During the transient analysis DYNAST continuously evaluates the relative computational error with
respect to a norm related to the maximum absolute values reached by primary variables since the
computation started. The initial value of this norm can be set by a numeric constant using the command
!XMAX (see Chapter 8).

Table 13.2 Parameters for the computational control

Identifier Parameter Default value

EPS permitted relative solution error 5.10 4

DCEPS permitted relative solution error in static analysis 10 6

MAXIT permitted number of iterations in one integration step 50

DAMP iteration damping factor 0

FLUF LU decomposition control factor 1

MIN relative minimal permitted size of integration steps 105

MAX relative maximal permitted length of integration steps 10

FEPS prediction control factor 5

KMAX maximal permitted prediction order 6

C1 C6 prediction damping factors of the order 1 to 6 1

CYCLE maximal permitted number of the integration steps 32600

WPRINT number of characters in one table line (from 30 to 120) 105

WPLOT number of characters in one semiplot line (from 40 to 120) 80

106

Chapter 14
DYNAST as a modeling toolbox for MATLAB

14.1 DYNAST & MATLAB in control design

DYNAST can be easily used as a modeling toolbox for MATLAB. While MATLAB is well suited to
control design, DYNAST is capable of automated equation formulation even for very realistic models
of real systems. You can combine these two programs to exploit advantages of both. Notably, you can
implement and analyze a nonlinear model of the plant to be controlled in DYNAST. Then, for example,
you may ask DYNAST to linearize the model, compute transfer-function poles and zeros of the plant
model, and export them for the plant-control synthesis to MATLAB. Finally, to verify the complete
controlled system you can use DYNAST again after augmenting the plant model by the resulting control
configuration. During this design phase, you may use DYNAST to consider also plant nonlinearities
as well as the non-ideal features of the controllers and sensors in various operation regimes of the
control system. If the designed control is digital, you may verify it by interconnecting DYNAST with
SIMULINK so that these two packages can communicate with each other at each time step.

How to do it, both in the case of analog and digital control, is described in this chapter. Even the
DYNAST sitting on our server (or any other server) can communicate with MATLAB or SIMULINK
installed on your own computer across the Internet. See the instructions and examples linked
from http://virtual.cvut.cz/dyn/

14.2 Exporting transfer functions from DYNAST to MATLAB

Using the semisymbolic analysis DYNAST capability, you can compute poles and zeros the plant transfer
functions necessary for the plant control design. A window with the output file showing the analysis
results in a textual form opens in DYNSHELL automatically as soon as the computation is completed.
From the View menu, choose then Operator functions to see the all the computed operator functions.

If you want to export all the computed transfer functions, select the problem title in the Operator functions
box and click the Export to MATLAB button. If you want to export only some of the functions select
them one by one and click the button for each of them separately. Do not forget, however, that your
MATLAB should be configured properly and running before you start the export.

14.3 Controlling a plant model in DYNAST from SIMULINK

Using a controlling structure represented by a block diagram implemented in SIMULINK you can control
a plant model implemented in DYNAST. In the SIMULINK block diagram, the DYNAST plant model
is represented by a block called S-function. This block provides communication between SIMULINK
and DYNAST.

107 Chapter 14 DYNAST as a modeling toolbox for MATLAB

1.

2.

3.

14.3.1 Preparing the plant model in DYNAST

The DYNAST problem file describing the plant model must specify numerical transient analysis of the
model. The analysis time interval must be at least as long as the time interval specified for the simulation
in SIMULINK. In addition, the problem file for the plant model must include a statement defining the
plant input and output signals. This statement should be placed at the end of the problem file, and it
should be of the following form:

: MATLAB interface spec: inputs ; outputs

where inputs is a comma-separated list of input variables, and outputs is a comma-separated list of
output variables. Each of the input variables should be some of the model parameters (i.e., parameter of
an equation, element, block or submodel). Each of the output variables should be defined in the PRINT
statement within the problem file (see Specification of output variables).

Example:

: MATLAB interface spec: force ; V.x,V.xdot

14.3.2 Preparing the control diagram in SIMULINK

In SIMULINK, set up the block diagram of the control system with an S-function block from the
SIMULINK Nonlinear library representing the plant model. Then specify the following parameters for the
S-function block:

set S-function name to dynPlantL

set S-function parameters to filename, sample where filename is the name of the problem file with
specifying the plant model, sample is the length of the fixed step size used during the simulation. In the
specification of filename, you may use the %DATA% string as a substitution for the data directory of the
DYNAST Shell environment.

Example:

'%DATA%\matlab\BallBeam.prb',0.02

14.4 Installing support fi les

Before using the DYNAST-MATLAB interface, some files must be installed in MATLAB. The following
instructions describe the procedure for installing the DYNAST as a toolbox into MATLAB 5.2 for
Windows. For other versions of MATLAB, the procedure may be slightly different.

copy directory DYNAST\matlab\toolbox to your MATLAB directory

run MATLAB

use File - Set Path command to add the path MATLAB\toolbox\dynast to the list of the paths
accessible for MATLAB

DYNAST is the directory where DYNAST for Windows is installed.
MATLAB is the directory where MATLAB for Windows is installed.

14.4 Installing support files 108

To verify that MATLAB is prepared to utilize the DYNAST toolbox, type HELP dynPlant in MATLAB
prompt. You should see the SIMULINK Help for the dynPlant S-function.

109 Chapter 15 Installing and configuring DYNAST

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 15
Installing and configuring DYNAST

15.1 Installing DYNAST on Windows

15.1.1 System requirements

IBM compatible PC computer

32MB RAM and 15MB of free disk space

MS Windows 95, 98, Millenium, NT, 2000, or XP

MS Internet Explorer 4.0 or higher

Recommended: connection to the Internet

15.1.2 Installation procedure

Exit any existing copies of DYNAST you have running.

Download the dynast.exe file, or insert the DYNAST CD into your CD-ROM drive.

From the Start menu, choose Run, and type in either the path to the dynast.exe file, or to the
setup.exe file that is in the root folder on the CD.

Read the welcome message and make sure that your computer meets the program requirements, then
press the Next button.

If you don t have an older version of DYNAST installed, skip to step 6.. If DYNAST is already
installed, select whether you want to overwrite the old version, or whether you want to install
DYNAST to another folder; press the Next button.

Enter the target path for the installation, then press the Next button.

If you are not installing the Professional version of the DYNAST, skip to step . Select whether
you want to install the device driver for the hardware key. The device driver is required for proper
function of the Professional version of the DYNAST solver. Note that the installation of the device
driver requires administration privileges under Windows NT, 2000 or XP.

Select whether you want to install the device driver for the hardlock. The device driver is required
for proper function of the Professional version of the DYNAST solver. Note that the installation of
the device driver requires administration privileges under Windows NT, 2000, or XP.

Confirm settings by pressing the Finish button. If DYNAST is already installed and is being
overwritten, make sure it is not running.

Wait while setup installs files to your system.

15.1 Installing DYNAST on Windows 110

1.

2.

3.

11.

12.

13.

In the Registering shell types dialog, select which extensions you want to associate with DYNAST.
The association allows you to handle DYNAST files from within Windows environment. The dialog
also shows whether an extension is not already associated with another application.

Let the installer install the HTML Help Update and COMCTL32 Update. It is OK if your system
says that it doesn t need the updates.

Finish the installation by pressing the OK button.

15.1.3 Uninstalling DYNAST

Uninstalling removes all installed files. Files created by the user are not removed. The uninstallation
procedure is the following:

From the Start menu, choose Settings, Control Panel.

In the Control Panel, choose Add/Remove Programs

Click DYNAST for Windows

15.2 Configuring DynShell

The main site for configuring DYNAST Shell is the IDS-WIZARDS-CAPTION-SHEET-PREFS,
displayed by the Options command of the Preferences menu. The dialog consists of several pages,
described in the following sections.

15.2.1 The text editor

The Editor dialog allows you to set up properties of the text editor. You may set up the way in which
the editor will format text that is automatically inserted to the editor. The text is inserted to the editor, for
example, by the commands from the System and Analysis menus.

You can set up the maximum width to which text being inserted should be formatted, and the hanging
indent, i.e. number of spaces that will be inserted at the beginning of all lines except the first one.

15.2.2 The plot viewer

The Plot dialog allows you to set up properties of the plot viewer. You can set up plot properties
independently for three output devices: the display, the printer, and the PostScript converter. Plots are
accompanied by texts. You can select the Font Face and Font Size for the text.

Plots contains several elements like the frame, axes, curves etc. You can assign attributes (color, line
width, and point marks) to them. Table 15.1 displays the list of the other elements of plots for which you
can set their properties.

To change properties of some elements, select them in the Symbols list. Click mouse with Ctrl key to
toggle an element, drag mouse or click with Shift key to select a range of elements. Then select available
properties for selected elements.

111 Chapter 15 Installing and configuring DYNAST

The Colors list displays the default set of colors. To customize the colors, press the Custom
colors button.

15.2.3 The external tools

The Tools dialog allows you to set up some external tools utilized by DYNAST Shell.

The documentation system produces PostScript, PDF and HTML outputs. If you want to view these
outputs, you must set up PostScript, PDF and HTML viewer.

The recommended viewer for PostScript, PDF and HTML is GhostView, Adobe Acrobat, and MS
Internet Explorer respectively. You may also use Netscape Navigator for viewing HTML.

All above applications are freeware, and can be downloaded from following sites:

Table 15.2 External applications and their sites

GhostView http://www.cs.wisc.edu/~ghost/
Acrobat http://www.adobe.com/products/acrobat/
MS Internet Explorer http://www.microsoft.com/windows/ie/
Netscape http://home.netscape.com/browsers/

User can also configure DYNAST Shell to run its own custom tools (e.g. the MATLAB program). To do
that, add custom menu items to the Menu contents list, and for each menu item (user tool), fill-in

full path to the tool

argument for the tool

folder in which the tool will be executed

For the latter two, you may use symbolic names (macros) to express some useful strings, such as the full
path to the file corresponding to the active document opened in DYNAST Shell. To insert a macro, press
the button right to the input field.

Table 15.1 Properties of plot elements

Element Color Width Point mark
Background
Plot back.
Frame
Axis
Grid
Point mark
Text
Title
Curve i

http://www.cs.wisc.edu/~ghost/
http://www.adobe.com/products/acrobat/
http://www.microsoft.com/windows/ie/
http://home.netscape.com/browsers/

15.2 Configuring DynShell 112

To run a tool configured in this page, select it from the Run menu.

15.2.4 The documentation system

The LaTeX dialog allows you to set up properties of the documentation system. If your computer is
connected to the Internet, you can use the remote documentation server that is currently available at the
address icosym.cvut.cz:3000. The remote documentation server can produce documents in PostScript,
PDF and HTML formats.

You should enter there the e-mail address that will be presented in the headings of all the
documents generated in HTML. You may customize conversion to HTML by setting the command
line to LaTeX2HTML conversion program; see LaTeX2HTML documentation for more details
(http://www.latex2html.org/). You may also specify what should be done after the conversion. The
documentation system may open the LaTeX code, and/or the conversion outcome.

15.2.5 The folders

The Folders dialog allows you to set up folders for file types DynShell works with.

The Problem Folder is the folder that is referred to by several commands, such as Open, List of
Problems, etc.

The Submodel Folders are the folders storing text files, diagram files and symbol libraries for submodels.
These folders are searched when a reference to a model is made from a problem or submodel file model
(if the model was not found within the folder of this file, or in its subfolders). The same folders are search
through by the diagram editor.

15.2.6 Exporting transfer functions from DYNAST to MATLAB

Using the semisymbolic analysis capability of DYNAST, you can compute poles and zeros the plant
transfer functions necessary for the plant control design. A window with the output file showing the
analysis results in a textual form opens in DYNSHELL automatically as soon as the computation
is completed. From the View menu, choose then Operator functions to see the all the computed
operator functions.

If you want to export all the computed transfer functions, select the problem title in the Operator functions
box and click the Export to MATLAB button. If you want to export only some of the functions select
them one by one and click the button for each of them separately. Do not forget, however, that your
MATLAB should be configured properly and running before you start the export.

15.2.7 Controlling a plant model in DYNAST from SIMULINK

You can verify control of a plant using the plant model implemented in DYNAST and controlled from a
block diagram representing the control structure in Simulink. The DYNAST plant model is represented in
the Simulink block diagram by the block called S-function. This block provides communication between
SIMULINK and DYNAST. This communication can even take place across the Internet.

http://www.latex2html.org/

113 Chapter 15 Installing and configuring DYNAST

1.

2.

3.

15.2.7.1 Preparing the plant model in DYNAST

Specify the numerical nonlinear transient analysis of the plant model in a DYNAST problem file. The
time interval of the transient analysis must be at least as long as the time interval specified for the
simulation in SIMULINK. In addition, the problem file must include a statement defining the plant input
and output signals. This statement placed at the end of the problem file should be of the following form:

: MATLAB interface spec: inputs ; outputs

where inputs is a comma-separated list of input variables, and outputs is a comma-separated list of output
variables. Each of the input variables should be one of the model parameters (e.g., parameter of a source
or some other element, block, equation or submodel). Each of the output variables should one of the
variables defined in the PRINT statement in the problem file (see Specification of output variables).

Example:

: MATLAB interface spec: force ; V.x,V.xdot

15.2.7.2 Preparing the control diagram in SIMULINK

In SIMULINK, set up the block diagram of the control system with an S-function block from the
SIMULINK Nonlinear library representing the plant model. Then specify the following parameters for the
S-function block:

set S-function name to dynPlantL

set S-function parameters to filename, sample

where filename is the name of the problem file with specifying the plant model, sample is the length of the
fixed step size used during the simulation. In the specification of filename, you may use the %DATA% string
as a substitution for the data folder of the DYNAST Shell environment.

Example:

'%DATA%\matlab\BallBeam.prb',0.02

15.2.7.3 Installing support fi les

Before using the DYNAST-MATLAB interface, some files must be installed in MATLAB. The following
instructions describe the procedure for installing the DYNAST as a toolbox into MATLAB 5.2 for
Windows. For other versions of MATLAB, the procedure may be slightly different.

Copy folder DYNAST\matlab\toolbox to your MATLAB folder

Run MATLAB

Use File - Set Path command to add the path MATLAB\toolbox\dynast to the list of the paths
accessible for MATLAB

DYNAST is the folder where DYNAST for Windows is installed.
MATLAB is the folder where MATLAB for Windows is installed.

15.2 Configuring DynShell 114

To verify that MATLAB is prepared to utilize the DYNAST toolbox, type HELP dynPlant in MATLAB
prompt. You should see the SIMULINK Help for the dynPlant S-function.

115

[1] Rubner-Petersen, T.: Nonlinear Analysis Program NAP3 (an unfinished project). DTH, Lyngby
1980

[2] Mann, H.: Computer applications in electrical engineering design (in Czech). SNTL Publishing
House, Prague 1984

[3] Oliva Z.: Some algorithms for electronic circuit analysis (in Czech). PhD. thesis, Czech
Technical University, Prague 1986

[4] Mann, H.: Multipoles, multiports and operational blocks. Proc. European Conf. Circuit Theory
and Design, London 1974

[5] Mann, H.: Analysis of combined circuit-block diagrams. Proc. Int. Symp. on Circuits and
Systems ISCAS IEEE, Rome 1982, 639-642

[6] Rubner-Petersen, T.: ALGDIF a FORTRAN IV subroutine for solution and perturbated
solutions of algebraic-differential equations. Research Report, DTH, Lyngby 1979

[7] Gear, C.W: Numerical initial value problems in ordinary differential equations. Prentice-Hall,
Englewood Cliffs, N.J. 1971

[8] Skelboe, S.: Time-domain steady-state analysis of nonlinear electrical systems. Proc. IEEE 70
(1982), 1210-1228

[9] Brigham, E.O.: The Fast Fourier Transform. Prentice-Hall, Englewood Cliffs, N.J. 1974
[10] Mann, H.: An algorithm for the formulation of state-space equations. Proc. 1979 Int. Symp. on

Circuits and Systems ISCAS IEEE, Tokyo 1979, 161-162
[11] Rubner-Petersen,T.: SFORM1 and SFORM2 two FORTRAN IV subroutines for sparse matrix

transformation of the general eigenproblem to standard form. Research Report IT-41, DTH,
Lyngby 1979

[12] Mann, H. et al.: Computer-aided design of dynamic systems. CSVTS House of Engineering,
Prague 1986

[13] Mann, H.: Theory of mechanical systems II. Textbook, Technical University, Brno 1990

	DYNAST Language reference
	DYNAST simulation system
	DYNAST Solver
	Sections of DYNAST Solver
	Input language of DYNAST Solver
	Data-files of DYNAST Solver

	DYNAST for MS Windows
	DynShell working environment
	Working with DynShell
	Browsing files
	Saving and restoring the state of the application

	Access to DYNAST across the Internet
	Communication with MATLAB

	Submitting systems of equations
	Systems of equations
	Implicit equations
	Implicit algebro-differential equations
	Implicit algebraic equations
	Equation singularity

	Explicit equations
	Specification of equations using the wizard
	Specification of equations using the text editor
	Examples

	Entering symbolic expressions
	Symbolic expressions
	Numeric constants
	Variables and parameters
	Operators
	Arithmetic operators
	Logical operators

	Functions
	Standard functions
	User-defined functions
	Polynomial function
	Impulse function
	Tabular function
	Tabular function with two arguments
	Altered functions
	Composed function
	Trimmed function
	Periodic function
	Random number generator
	Events
	Intervals

	Specification of expressions using the wizards

	Submitting basic blocks
	Basic blocks
	Variety of basic blocks
	Basic blocks in block diagrams
	Variables of basic blocks
	Specification of blocks in a diagram
	Specification of blocks in a text file

	Creating and editing diagrams
	Block and multipole diagrams
	Creating diagrams
	Placing parts into a diagram
	Interconnecting parts

	Editing a diagram
	Synchronization of a diagram with its netlist

	Submitting physical elements
	Physical elements
	Variety of physical elements
	Element physical variables
	Parameters of physical elements
	Element and variable orientation
	Arrow convention for non-mechanical variables
	Arrow convention for mechanical variables
	Interaction of physical elements
	Node interactions
	Series configuration
	Inductive coupling
	Parameter control

	Specification of physical elements in a diagram
	Specification of physical elements in a text file
	Node-to-node element interaction
	In-series element interaction
	Inductive couplings

	Submitting and creating submodels
	Multipole and superblock submodels
	Submitting ready-made submodels
	Specification of submodels in a diagram
	Specification of submodels in a text file

	Submitting new submodels
	Specification of submodel properties using the diagram editor
	Specification of a new submodel using the text editor
	Specification of a new submodel using the diagram editor
	Designing graphical symbols for submodels

	Invoking nonlinear analysis
	Nonlinear analysis
	Modes of nonlinear analysis
	Initial conditions of nonlinear analysis
	Output of nonlinear analysis results
	Specification of nonlinear analysis using the wizard
	Specification of nonlinear analysis using the text editor
	Modes of the analysis
	Transient analysis
	Transient analysis starting from quiescent steady-state
	Static or quiescent steady-state analysis
	Static or quiescent steady-state parameter-sweep analysis
	Fourier analysis
	Initial conditions of nonlinear analysis
	User-specified initial conditions
	Residual initial conditions
	Loaded initial conditions
	Output variables
	Computational control
	Saving the residual solution
	Modification of system parameters
	Erasing the residual solution and statements

	Plotting simulation results

	Invoking numerical frequency analysis
	Numerical frequency analysis
	Specification of numerical frequency analysis using the wizard
	Specification of numerical frequency analysis using the text editor
	Specification of the system excitation
	Specification of the analysis
	Output of the analysis

	Invoking semisymbolic analysis
	Semisymbolic analysis
	Specification of semisymbolic analysis using the wizard
	Specification of semisymbolic analysis using the text editor
	Operator functions
	Operator-function time-responses
	Frequency analysis of transfer functions

	Documenting problems and submodels
	The documentation system
	The documentation statements
	Special statements
	Simple statements

	Documenting subsystems
	Processing the documents

	Inside DYNAST
	Formulation methods
	Computational methods
	Computational hints
	Computation control

	DYNAST as a modeling toolbox for MATLAB
	DYNAST & MATLAB in control design
	Exporting transfer functions from DYNAST to MATLAB
	Controlling a plant model in DYNAST from SIMULINK
	Preparing the plant model in DYNAST
	Preparing the control diagram in SIMULINK

	Installing support files

	Installing and configuring DYNAST
	Installing DYNAST on Windows
	System requirements
	Installation procedure
	Uninstalling DYNAST

	Configuring DynShell
	The text editor
	The plot viewer
	The external tools
	The documentation system
	The folders
	Exporting transfer functions from DYNAST to MATLAB
	Controlling a plant model in DYNAST from SIMULINK
	Preparing the plant model in DYNAST
	Preparing the control diagram in SIMULINK
	Installing support files

	

