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Plzeň, Czech Republic

{jimar,pkral,llenc}@kiv.zcu.cz

Abstract. Automatic dialogue management including dialogue act (DA)
recognition is usually focused on dialogues in the audio signal. However,
some dialogues are also available in a written form and their automatic
analysis is also very important.
The main goal of this paper thus consists in the dialogue act recognition
from printed documents. For visual DA recognition, we propose a novel
deep model that combines two recurrent neural networks.
The approach is evaluated on a newly created dataset containing printed
dialogues from the English VERBMOBIL corpus. We have shown that visual
information does not have any positive impact on DA recognition using
good quality images where the OCR result is excellent. We have also
demonstrated that visual information can significantly improve the DA
recognition score on low-quality images with erroneous OCR.
To the best of our knowledge, this is the first attempt focused on DA
recognition from visual data.

Keywords: Dialogue Act Recognition · Multi-modal · OCR · RNN · Visual
Information

1 Introduction

Dialogue Act (DA) recognition is a task to segment a dialogue into sentences (or
their parts) and to assign them appropriate labels depending on their function in
the dialogue [1]. These labels are defined by several taxonomies [2] (e.g. questions,
commands, backchannels, etc).

The standard input is a speech signal which is usually converted into textual
representation using an Automatic Speech Recognition (ASR) system [3]. The
combination of the following information sources is often considered for recog-
nition: lexical (words in the sentence), prosodic (sentence intonation), and the
dialogue history (sequence of the DAs) [4].

However, dialogues are also available in a written form (books and comics),
and their automatic analysis is also beneficial for further text analysis. Hence, the
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main goal of this paper is the DA recognition from the documents in a printed
form.

Similarly, as in the DA recognition from the audio signal, we first convert the
images into a lexical representation using Optical Character Recognition (OCR)
methods. We assume that the image form (as the speech signal) can contain
some additional information.

Therefore, the main contribution of this paper lies in the usage of visual
information for automatic DA recognition from printed dialogues. To the best of
our knowledge, there is no prior work that focuses on the DA recognition from
printed / handwritten documents.

For evaluation, we create a novel image-based DA recognition dataset from
written dialogues. This corpus is based on the dialogues from the VERBMOBIL

corpus [5] and the scripts for the creation of such a dataset are available online.
These scripts represent another contribution of this work.

We further assume that with the decreasing quality of the printed documents,
the importance of the visual text representation will play a more important role
for DA recognition, since a recognized text contains greater amount of OCR
errors. We will also evaluate this hypothesis using four different image quality in
the corpus.

For visual DA recognition, we propose a deep neural network model that
combines Convolutional Recurrent Neural Network (CRNN) and Recurrent Neural
Network (RNN). We utilize the Bidirectional Long Short-term Memory (BiLSTM)
as a recurrent layer in both architectures.

2 Related Work

This section first briefly outlines the DA recognition field and presents popular
datasets. Then, we describe recent multi-modal methods that use text and image
inputs to improve the performance of a particular task.

Usually, the research in the DA recognition field is evaluated on monolingual
standard datasets such as Switchboard (SwDA) [6], Meeting Recorder Dialogue
Act (MRDA) [7] or DIHANA [8]. Colombo et al. [9] proposed a seq2seq deep learn-
ing model with the attention and achieved excellent results that are comparable
or even better than current state-of-the-art results.

Shang et al. [10] presented experiments with a deep (BiLSTM-CRF) archi-
tecture with an additional extra input representing speaker-change information.
The evaluation was conducted on SwDA dataset.

The VERBMOBIL Dialogue Acts corpus [5,11] has been used in the past as a
representative of the multi-lingual corpus (see e.g. Reithinger and Klesen [12],
Samuel et al. [13] or Mart́ınek et al. in [14]).

Recently, experiments on joining DA recognition and some other Natural
Language Processing (NLP) tasks have begun to emerge. Cerisara et al. in [15]
presented a multi-task hierarchical recurrent network on joint sentiment and
dialogue act recognition. A multi-task recognition which is related to the DA
recognition is presented by Li et al. [16]. They utilize the DiaBERT model for
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DA recognition and sentiment classification and evaluate their approach on two
benchmark datasets.

There are efforts to join the visual information with text and improve to
some extent text-based NLP tasks. Zhang et.al [17] investigated Named Entity
Recognition (NER) in tweets containing also images. They showed that visual
information is valuable in the name entity recognition task because some entity
word may refer directly to the image included.

Audebert et al. [18] present a combination of image and text features for
document classification. They utilize Tesseract OCR together with FastText [19] to
create character-based embeddings and, in the sequel, the whole document vector
representation. For the extraction of image features, they use the MobileNetv2 [20].
The final classification approach combines both features.

A very nice approach for multi-modal document image classification has been
presented by Jain and Wigington in [21]. Their fusion of visual features and
semantic information improved the classification of document images.

3 Model Architectures

We describe gradually three models we use for the DA recognition. First of all,
we present the visual model that we use for DA recognition based only on image
features. Next, we describe our text model and, finally, the joint model that
combines both image and text inputs.

3.1 Visual Model

The key component in this model is the Convolutional Recurrent Neural Network
(CRNN) that has been successfully utilized for OCR (e.g. [22,23]) and also for
image classification [24].

For the visual DA recognition, the input is the image of an entire page of a
dialogue where each text line represents an utterance. This page is processed by
the Utterance Segmentation module that produces segmented images of text lines.
These images are fed into the CRNN that maps each utterance to the predicted
label. The scheme of this approach is depicted in Figure 1.

Hi Jim

Meet me outside

Okay

Bye bye

Input Image Dialogue

Utterance
Segmentation

Hi Jim

Meet me outside

Okay

Bye bye

Segmented Image Utterances

CRNN Model Predicted
Dialogue Acts

Fig. 1: Visual DA recognition model
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Convolutional layers within CRNN create feature maps with relation to the
specific receptive fields in the input image. Due to the pooling layers, dimension-
ality is reduced, and significant image features are extracted, which are further
processed by recurrent layers. The recurrent layers are fed by feature sequences
(the feature vectors in particular frames in the image).

The CRNN model is depicted in Figure 2 in two forms: the original model
proposed by Shi et al. [22] for OCR and our adapted version for DA recognition.

I I- -- ww-i-ll-ll- - ss-e-eee- -yy-o-uu- - aa-rr-o-uu-n-dd- -ttt-hh-eee-nn

I will see you around then

BiLSTM
Layers

Convolutional
Layers

Input Image

Feature Maps

Image Frame 
Feature Vectors

OCR Model
Predicted DA class

BiLSTM
Layers

Input Image

Feature Maps

Image Frame 
Feature Vectors

Image DA Recognition model

Image
Embedding

Dense
Layers

Output Layer

Fig. 2: CRNN models: OCR model proposed by Shi et al. [22] (left); our modified
version used for visual DA recognition (right)

The inputs of both models are segmented images of utterances. The activation
function of convolutional and recurrent layers is ReLU and we employed the
Adamax optimizer.

The crucial part of the OCR model is the connectionist temporal classification
(CTC) loss function which has been presented by Graves et al. [25]. The CTC is
designed to create an alignment between the labels and specific image frames. It
allows to use a simple form of annotation, for example, image and annotation
text without the necessity of providing the precise character positions in the
image. The output of the BiLSTM is given to the output which represents a
probability distribution of characters per image frame.

The right part of Figure 2 visualizes our modified version for the image-
based DA recognition. It doesn’t utilize the CTC loss function but we use the
categorical cross-entropy since the output is a vector of probabilities indicating the
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membership in the particular DA class. The size of the output layer corresponds
to the number of recognized DA categories.

3.2 Text Model

The centerpiece of this model is the Bidirectional Long Short-Term memory [26]
(BiLSTM). The input utterance is aligned to 15 words, so the utterances with less
than 15 words are padded with a special token while the longer ones are shortened.
We chose Word2Vec [27] embeddings as a representation of the input text. The
word vectors (with the dimension equal to 300) are fed into the BiLSTMlayer
and the final states of both LSTMs are connected to a dense layer with size 400.
Then a DA label is predicted through the softmaxed output layer. The model is
depicted in Figure 3.
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Fig. 3: Text DA recognition model

3.3 Joint Model

The second employment of the CRNN is in the combination with the text model
presented in the previous section. The objective is to create a joint model that
takes multi-modal input (segmented utterance image and simultaneously the text
of an utterance). Figure 4 shows the Joint model with both inputs.

Since the input text doesn’t have to be well-recognized, some words which
are out of vocabulary might appear resulting in a worse performance of the text
model. In such a case, the Image Embedding input should help to balance this
loss of text information.
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Fig. 4: Joint DA recognition model

4 Dataset

The multi-lingual VERBMOBIL dataset [5, 11] contains English and German di-
alogues, but we limit ourselves only to the English part. The dataset is very
unbalanced. The most frequent labels are FEEDBACK (34%) and INFORM (24%)
while the eight least frequent labels occur in only 1% of utterances or less.

The VERBMOBIL data are already split into training and testing parts and
stored in CONLL format. We created a validation data by taking the last 468
dialogues from the training part. To summarize, we have 8921 utterances in the
training part, 667 utterances as validation data and, finally, 1420 utterances serve
as our test dataset.

4.1 Image Dataset Acquisition

For each dialogue, we have created four pages with image backgrounds of different
noise level and programmatically rendered the utterances.

The first background (noise 0 ) contains no noise (perfectly scanned blank
piece of paper) while the fourth level (noise 3 ) contains significant amount of
noise3.

3 The noise is not artificial (i.e. we didn’t perform any image transformation), but we
have created the noise by real usage of the scanner. We put a blank piece of paper in
the scanner and we changed the scanning quality by different scanning options and
the amount of light.



Dialogue Act Recognition using Visual Information 7

Each rendered utterance is considered as a paragraph. We must take into
account, though, the utterances that are too long to fit the page width. In such
a case, it continues on the next line and we would struggle with the situation
where the beginning of the next utterance and continuing of the current utterance
would be indistinguishable. Therefore, we increased the vertical space between
paragraphs and we employed the intending of the first line of paragraphs. These
two precautions together solve the above-mentioned potential problem and make
the segmentation easier.

Another parameter that can be used to adjust the dataset difficulty is the font.
We chose the Pristina Font which is a hybrid between printed and handwritten
font.

Summing up, four steps of the acquisition of the image dataset are as follows.

1. Split original VERBMOBIL CONLL files to the individual dialogues;

2. Create the realistic scanned noisy background;

3. Choose a font;

4. Render the dialogues according to the above-mentioned scenario.

Figure 5 shows the examples of each dataset.

(a) Noise 0 (b) Noise 1 (c) Noise 2 (d) Noise 3

Fig. 5: Page examples from all four datasets

We have also created a second version of each of the four datasets. We have
artificially applied random image transformations (rotation, blurring, and scaling).
These transformations significantly increase the difficulty of our task because
the segmentation and OCR will become harder to perform. We call this version
the transformed dataset and in the following text, it will be labeled as follows:
(noise 0 trans, noise 1 trans, noise 2 trans, noise 3 trans).

So in total, we have eight datasets of different noise levels and difficulties.
Scripts for the dataset creation are available online4.

4 https://github.com/martinekj/image-da-recognition

https://github.com/martinekj/image-da-recognition
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4.2 Utterance Segmentation

This section describes the algorithm we used for segmentation of the entire page
into individual text line images – utterances. We utilized a simple segmentation
algorithm based on the analysis of connected components.

We first employed the Sauvola thresholding [28] to binarize the input image
that is a necessary step to perform the connected components analysis. Be-
fore getting to that, though, we carry out the morphological dilation to merge
small neigbouring components that represent fragments of words or individual
characters (see Figure 6). The ideal case is if one text line is one connected
component.

Fig. 6: Example of the morphological dilation with kernel (2, 10)

Thereafter, the analysis of the connected components is conducted. Figure 7
shows the output of this algorithm. The left part of the image shows the binarized
image after morphological dilation while the right part depicts the bounding
boxes detected by the analysis of connected components.

(a) Dilated binary image (b) Detected bounding boxes

Fig. 7: Utterance segmentation

Once the bounding boxes are obtained, we crop these regions from the image
and resize them to the common shape (1475× 50). To maintain the image quality
of narrow images, we perform the image expansion to the desired width by
padding with a white background.

5 Experiments

Within this section, we first present the comparison with state-of-the-art (SoTA)
results and then we quantify the difficulties of our datasets by measuring the
OCR performance. The next experiment presents results with various sizes of
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Image Embedding within the visual model and their influences on the overall
success rate.

We split the remaining experiments into three scopes to investigate the impact
of the visual information in the DA recognition task. The first scope is “image-
only” and its goal is to verify the performance of the visual model presented
in Section 3.1. The second scope is called “text-only” and similarly as the first
scope, the goal is to evaluate our text model (see Section 3.2). The purpose of the
final scope is to find the best joint model which is robust enough to be able to
respond to the deteriorating quality of text input. The joint model was presented
in Section 3.3.

For all experiments, we employed the Early Stopping that checks the value of
the validation loss to avoid over-fitting. We ran every experiment 5 times and we
present average Accuracy, Macro F1-Score, and also Standard Deviation of each
run evaluated on the testing part of each dataset.

5.1 Comparison with SoTA

Table 1 compares the results of our text model with state-of-the-art approaches
on the testing part of the English VERBMOBIL dataset. This table shows that our
results are comparable, but we need to take into account that some approaches
in the table utilize the information about the label of the previous utterance.
In this work, we did not use this information, since the utterance segmentation
from the image is not perfect. Some utterances may be skipped or merged that
results in jeopardizing the continuity of the dialogue.

Table 1: Comparison with the state of the art [accuracy in %].

Method Accuracy

n-grams + complex features [12] 74.7
TBL + complex features [13] 71.2
LSTM + Word2vec features [4] 74.0
CNN + Word2vec features [14] 74.5
Bi-LSTM + Word2vec features [14] 74.9

Text model (proposed) 73.9

5.2 OCR Experiment

We use Tesseract as the OCR engine within this work. We measured the OCR
performance by calculating the Word Error Rate (WER) and Character Error
Rate (CER) against ground truth text in CONLL files.

Tesseract was employed on the testing part (1420 utterances) of each 8
datasets. The results are presented in Table 2 and depicted in Figure 8. We
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can conclude that with the increasing difficulty, the WER and CER values are
increasing as expected.

Table 2: OCR experiment – Word Error Rate (WER) and Character Error Rate
(CER) over all datasets

Dataset Noise Level
0 1 2 3 0 trans 1 trans 2 trans 3 trans

WER 0.132 0.149 0.132 0.143 0.319 0.322 0.306 0.325

CER 0.049 0.053 0.049 0.053 0.131 0.128 0.128 0.168

0 1 2 3 0 trans 1 trans 2 trans 3 trans
0

0.1

0.2

0.3

0.4

0.5

Dataset Noise Level

CER

WER

Fig. 8: Average Word Error Rate (WER) and Character Error Rate (CER) of all
datasets

5.3 Image Embedding Dimension

The goal of this experiment is to find the optimal dimension of the Image
Embedding (a.k.a the size of the the penultimate dense layer in the Visual
model).

For this purpose, we limited ourselves only on the dataset with the poorest
quality (noise 3 trans). We started at dimension equal to 100 and this value
was gradually increased by 100. Within each run, a new model with particular
embedding size was trained and evaluated. Figure 9 shows the results. We present
Accuracy as the evaluation metric. The number of epochs that are needed for
training was in the range 8 – 16 depending on the Early Stopping.

We have here an interesting observation that the amount of information is
not increasing with the higher dimension. The best results were obtained with
values 400 and 500. So for the next set of experiments, we chose the value of the
Image Embedding dimension equal to 500.

5.4 Visual Model Experiment

Table 3 shows the performance of the Visual model. This table illustrates that
the results are relatively consistent for all given datasets.
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0.7
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Accuracy

Fig. 9: Experiment to determine the optimal Image Embedding dimension. The
standard deviation did not exceed the 0.006 for all runs.

Table 3: Visual model DA recognition results [in %]
Dataset Noise Level

0 1 2 3 0 trans 1 trans 2 trans 3 trans

Macro F1 46.8 54.5 47.2 43.7 47.3 43.7 43.2 40.2

Accuracy 56.6 54.9 57.8 54.6 59.1 56.5 59.4 55.9

Std. Dev. 1.1 0.2 0.6 1.0 0.5 0.2 1.1 1.5

5.5 Text Model Experiment

Within a training phase, the model is fed with a text from the VERBMOBIL dataset
while in the evaluation (prediction) phase the input utterances are provided by
the OCR. Our intention is to create a real situation where only images with
rendered text will be available and the only way to acquire the text itself is to use
OCR methods. Table 4 shows Accuracies and Macro F1-scores for all datasets.

Table 4: Text Model DA recognition results [in %]
Dataset Noise Level

0 1 2 3 0 trans 1 trans 2 trans 3 trans GT

Macro F1 59.2 59.9 54.8 59.6 50.9 54.2 56.6 52.2 61.6

Accuracy 71.9 70.4 71.8 71.2 56.2 56.4 58.1 56.0 73.9

Std. Dev. 0.5 0.4 0.9 1.1 0.2 1.3 1.3 0.6 0.5

The left part of the table presents the results on not transformed datasets
(Noise 0 – Noise 3 ). For these datasets, the OCR results turned out well (see
Section 5.2 – the average CER value around 0.05), which corresponds to Accuracy
exceeding 0.7.

The results on transformed datasets (Noise 0 trans – Noise 3 trans) are
presented in the right part of the table. The OCR performed significantly worse
(average CER in range 0.12 – 0.16). Hence, the results are worse as well.

For completeness and comparison the rightmost column of Table 4 shows the
results when the perfect ground truth text (from the CONNL VERBMOBIL files) is
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used instead of the recognized text. This Accuracy is used for the comparison
with state of the art (Section 5.1).

Last but not least, for transformed datasets, in terms of Accuracy, the Image
and Text model performed similarly. For datasets without transformation, the
Text model was significantly better, primarily due to the less amount of recognition
errors.

5.6 Joint Model Experiment

The fact that it is possible to successfully train a Visual DA recognition model
based solely on images with reasonable results brought us to the idea to use
learned image features in combination with text to create the joint model. We
assume that it might have better adaption to recognized text with a significant
amount of errors.

Similar to the text model, to simulate the real situation, the ground truth
text from the VERBMOBIL dataset is used to train the model while a recognized
text from the OCR is used to test the model to verify its generalization. As long
as the very same text is used in both text and joint model, it is very easy to verify
and measure the positive impact and the contribution of the visual information.

Our final experiment shows, among other things, the impact of the information
which was embedded into a single image feature vector (Image Embedding) by
the CRNN model. Based on the preliminary experiment, we chose the dimension
of embedding equal to 500.

We have eight stored CRNN models that have been trained separately on
particular datasets. We remind that the training of the joint model was carried
out in the same way as the training of the text model. The only difference from
the previous Text Model experiment is the usage of an auxiliary image input
which is predicted by the CRNN model as depicted in Figure 4. We present the
results in Table 5.

Table 5: DA recognition results with Joint model [in %]
Dataset Noise Level

0 1 2 3 0 trans 1 trans 2 trans 3 trans

Macro F1 49.6 56.8 50.3 51.9 48.3 46.8 54.2 49.3

Accuracy 60.2 60.6 61.1 63.3 61.2 59.9 66.4 60.1

Std. Dev. 0.5 0.2 0.4 0.2 0.4 0.6 0.6 3.1

As you can notice, the results no longer oscillate so much across all datasets.
Another important observation is that some transformed dataset results outper-
formed results based on the not transformed datasets (compare Noise 0 and
Noise 2 with their transformed versions). The help of auxiliary image input has
a bigger impact on transformed datasets where the amount of noise is massive
and vice versa.
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Figure 10 shows the visual comparison of all models we used in our experiments.
The blue curve shows Visual Model results, the red line represents Text Model
results and green line depicts the performance of the Joint model (text and image
input).

0 1 2 3 0 trans 1 trans 2 trans 3 trans
0.5

0.6

0.7

0.8

0.9

Dataset Noise Level

A
cc

u
ra

cy

Visual model

Text Model

Joint Model

Fig. 10: Depicted results and comparison of all models

As expected, in the case of a better quality of recognized text (Noise 0 –
Noise 3 ), the performance of the text model is the best. However, if the quality of
the recognized text is low (Noise 0 trans – Noise 3 trans), Accuracy and Macro
F1-score decrease.

6 Conclusions

The paper has dealt with the task of dialogue act recognition in the written form
using a model with multi-modal inputs. The goal of this paper has been twofold.

First, we have successfully employed the CRNN model as the visual model for
image-based DA recognition. We have shown that despite employing only visual
features it is possible to obtain reasonable results in the task that is dominantly
text-based.

Second, we have carried out a set of experiments where we have used the
same CRNN model as an image feature extractor and we have combined it with
BiLSTM text model for handling both text input (obtained by OCR) and image
input. We have successfully extracted the hidden layer representation of the
CRNN model (Image Embedding) and together with the text model we have
created the joint model. For poor-quality datasets, where the OCR success rate
is low, we have outperformed the text model that uses solely text input.

Hereby, we have shown that the visual information is beneficial and the loss of
the text information is partially compensated. The impact of such image features
results in improving Accuracy (4% – 10%) depending on the noise level in the
particular dataset.



14 J. Mart́ınek et al.

Acknowledgements

This work has been partly supported from ERDF ”Research and Development of
Intelligent Components of Advanced Technologies for the Pilsen Metropolitan
Area (InteCom)” (no.: CZ.02.1.01/0.0/0.0/17 048/0007267) and by Grant No.
SGS-2019-018 Processing of heterogeneous data and its specialized applications.
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