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ABSTRACT
This paper presents a novel method for grid detection in historical
maps. The approach is based on Hough transform accompanied with
a sophisticated post-processing. They are applied to detect the grid
that consists of graticule lines. It works without any training and
does not require any annotated data. The proposed approach is very
efficient in detecting the rectangular grid and the intersection points
as shown in the international ”MapSeg” segmentation competition,
where it won the Task 3 with a significant margin. The robustness
of the proposed method has been demonstrated by evaluating on an-
other dataset composed of significantly different cadastral map im-
ages with excellent results.

Index Terms— Grid Detection, Historical Map Segmentation,
Hough Transform, Geo-reference

1. INTRODUCTION

Digitization of historical maps is an ongoing process and a large
number of such maps are already scanned and accessible. However,
to be able to efficiently utilize the maps, scanning and storing it in
a digital form is not enough. It is beneficial to perform several ad-
ditional tasks which brings many research problems in the image
processing field.

A crucial task, which is often performed is geo-referencing.
It allows a proper positioning of the map images and aligning
them with recent maps. Important features that can be used
for geo-referencing the maps are graticule lines indicating the
North/South/East/West major coordinates and their intersections. [1]
Another use case is assembling the single map sheets into a larger
seamless map. This task was also the part of the ICDAR 2021
Competition on Historical Map Segmentation1 [1] (MapSeg). In this
work we concentrate on the graticule line intersections detection
according to the Task 3 of the competition and present the winning
UWB method.

The task offers several solutions like point or line detection us-
ing conventional computer vision (CV) and also deep learning tech-
niques. Especially with little training data, deep learning approaches
contain noise in predictions and require additional post-processing
in order to provide good results. This can be the reason, that tradi-
tional CV methods can still compete with deep learning approaches
and perform well as stated in [2]. Traditional CV approaches usually

1https://icdar21-mapseg.github.io/

start with the detection of significant parts of the grid (e.g. longest
line) and then build the grid. This can produce fault results, espe-
cially if this part is out of the grid.

Therefore, we propose a method that detects the grid directly
as a set of lines. The result is thus much more robust. Further we
propose an approach for intersections refinement to provide the pre-
cise outcome that can be directly used for geo-referencing the map
images.

In order to show the robustness of the proposed method we eval-
uate it on another dataset composed of cadastral map images which
significantly differ to the ”MapSeg” competition data.

2. RELATED WORK

For the solved task, methods for object detection, line detection
or segmentation are potentially useful. We can mention template
matching approaches [3], Hough transform [4], Convolutional
neural networks [5] and more recently fully convolutional net-
works [6, 7, 8]. Further we report approaches that were submitted to
the MapSeg competition and are designed specifically for this task.

2.1. CMM

The CMM [1] approach uses morphological processing and the
Radon transform to detect the graticule lines. The lines correspond
to the Radon transform maxima at corresponding and orthogonal
angle. The angle is selected based on the longest detected line.
Further it uses auto-correlation to obtain the period of the grid and
finally it uses morphological closing with two perpendicular lines as
a refinement.

2.2. IRISA

The IRISA [2] method consists of a line segment detector and gram-
mar rules. Firstly, a large amount of line segments are detected.
These are filtered using a set of rules that constraint spacing or per-
pendicularity for example. The grid is composed of a longest seg-
ment cross and the additional parallel rulings. Finally, the line inter-
sections are computed.

2.3. L3IRIS

The L3IRIS [1] approach uses the U-Net [6] as intersection point
detector. There are several noisy point predictions in the output so



Fig. 1. Graticule candidate generation process: Hough accumulator (top) peaks from the same perpendicular peak group (PPG) and their
visualization (bottom) have the same color. Note that image origin is placed at top left corner and y-axis is inverted so the angle goes
clockwise.

the Hough transform is used to detect candidate lines. These lines
are filtered using a proposed clustering. The intersections of result-
ing parallel and orthogonal lines are finally filtered using the map
content area mask.

3. GRATICULE DETECTION

Graticule lines cover the whole map content area overlapping many
elements. The lines form practically a grid and they can be of any
angle. Usually, they are not strictly straight and can be suppressed
or degraded.

To detect graticule line intersections, we first locate the grid-
forming graticule lines using Hough transform [4]. The Hough trans-
form produces an accumulator (Fig. 1) containing more or less noise
depending on the input image. Since the graticule lines in the in-
put image are thin and not easily distinguishable, the input image is
firstly binarized and pre-processed. Then, the grid can be detected
under the following presumptions:

1. graticule lines are straight;

2. graticule lines are equidistant;

3. graticule lines are parallel or perpendicular to each other;

4. there are at least three detectable graticule lines, of which at
least two lines are perpendicular.

It is expected that graticule lines will locally over-vote other
lines and noise. This expectation depends on the first presumption.
Generally, the presumption does not have to be fully satisfied and
allows some tolerance but it affects the local maxima positions and
values in the Hough accumulator. Tolerance is also allowed in the
second and third presumptions, which are important for the target
peak pattern. The last presumption is strict and allows determining
the distance interval between lines, filtering and rating of the candi-
dates. The better fulfilled the presumptions, the better results can be
expected.

Using parameters ta (line angle difference tolerance in grid), dm
(minimal allowed distance of parallel lines) and tdr (parallel line rel-
ative distance tolerance in grid), the proposed method firstly detects
peaks in the Hough accumulator and selects angle candidates. Based
on the angle candidates, peaks are grouped into perpendicular peak
groups (PPGs). Further steps include filtering, correcting, fixing, rat-
ing and filling the PPG. As a result, we have several graticule candi-
dates that are represented by the PPGs and contain information about

their rating, angle and distance between the lines. Based on these,
we can select the best candidate, detect intersection points and also
refine them.

3.1. Pre-processing

Bigger components and mainly thin lines are crucial for the task.
Therefore, a recursive Otsu binarization method [9] is used. It
preserves well thin lines, treats noise, brightness inconsistency and
other degradation in the map frame. It also deals in an adaptive
manner with large homogeneous areas that could be disruptive for
Hough transform. Optionally, the result is masked with map content
area from the Task 2 of the MapSeg competition.

3.2. Peak detection

Peaks in the Hough accumulator (Fig. 1.a) are detected as local max-
ima in a certain area. That area should not be neither too small (can
result in noisy peaks) nor too big (can result in missed graticule
peaks). The height of an area is given by h = 2dm + 1 where
dm is a minimal distance parameter which determines how close the
lines can be so that they are still detectable. The width of the area
is set experimentally to π

5
. This setup results in suitable amount of

peaks even in noisy inputs. Since the graticule lines usually overvote
“noise” lines in the image, the width settings from π

10
to π

2
yields

comparable results on both examined datasets.

3.3. Angle candidate selection

The angle error of 2 parallel lines can be approximated with nor-
mal distribution. The angle candidate is then selected as the local
maxima of weighted arithmetic mean. As weights, we use Gaussian
window given by 2σ = ta. It is used for convolution with angle
histogram. The histogram is obtained summing the peak values ac-
cording to the angle coordinate of the peak. Taking into account
perpendicularity, the perpendicular angle values are summed. Since
it is periodic, only the peaks between π

4
and 3π

4
are considered.

3.4. Peak grouping

The grouping of peaks utilizes the 3. presumption saying that the
peaks should have corresponding angle-axis value. The perpendic-
ular peak group (PPG) (Fig. 1) is composed of two peak groups.
Peaks in the PG have the same angle ± tolerance (ta) and represent



parallel lines. For a given angle candidate a, first and second PG of
the PPG contain peaks whose angle-axis values match a ± ta and
a+ π

2
± ta respectively.

3.5. PPG filtering

As can be seen in Fig. 1.a, there are several detected noisy PPGs that
do not satisfy the presumption no. 4, which can be rewritten into the
following conditions:

1. the PPG has to contain at least three peaks;

2. the PPG has to have at least one peak in each PG.

Then the filtration is straightforward, the PPG is filtered out if it does
not satisfy all conditions.

3.6. Distance interval selection

According to 2. presumption, graticule line intervals should be the
same, but usually there is an error. This error can be approximated
by normal distribution and candidates selected as in Sec. 3.3.

The histogram is created from distance-axis differences between
two consecutive peaks within each PG. Gaussian window is given
by Eq. 1, where tdr is relative distance tolerance parameter and ie is
median interval as initial estimate.

2σ = tdr · ie (1)

According to Fig. 2, the distance interval is identified either as
the maximal value or additional interval candidates can be identified
from the peaks.

Fig. 2. Distance interval probabilities and detected peaks of red PPG
from Fig. 1.b.

3.7. PPG correcting

As can be seen in Fig. 1.b and 2, there are several intervals due to
noisy peaks. For every possible interval, we try to find the biggest
group of peaks that corresponds to that interval within both PGs.
This way, several PPGs can be made of a single PPG. Finally, filter-
ing according to Sec. 3.5 is repeated.

3.8. PPG fixing

The purpose of this step is to detect previously undetected insignifi-
cant peaks that match the expected position. The position is given by
the same angle, corresponding distance interval and tolerance (tdr
and ta). This way, the peaks are not over-voted by noisy peaks and
even insignificant lines can be detected as can be seen in Fig. 1.d.

3.9. PPG rating

Since we have detected several grid candidates, we need to distin-
guish the good ones. Therefore we propose heuristic rating inspired
by heart rate variability analysis [10]. According to Eq. 2, we con-
sider the set of intervals i as a signal s, where the mean value i is

subtracted because of 0 Hz component and the result is divided by
probable interval ip to consider relative differences among intervals.

s = (i− i)/ip (2)

The rating r is computed according to Eq. 3, where n stands
for the number of intervals. FFTas(s) represents the mean value of
amplitude spectrum and penalize the interval differences. The bigger
amount and more stable intervals results in lower rating. The lower
the rating, the better it is.

r = FFTas(s)/n
2 (3)

3.10. PPG filling

Last but not least, PPG is filled with missing but expected peaks
using probable distance interval and corresponding angle coordinate
according to Fig. 1.e.

3.11. Graticule line intersection detection

Intersections are determined using homogeneous coordinates [11].
It is straightforward if we represent lines in normal form and detect
peaks with angle and distance coordinates.

3.12. Graticule line intersection refinement

The 1. presumption on straight lines is not usually satisfied so de-
tected intersections are rather estimates of intersections and their lo-
calization can be improved as can be seen in Fig. 3.
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Fig. 3. Graticule lines intersection refinement process: (a) cropped
binarized input image, (b) cropped result of template matching,
(c) red refinement of green estimated point using maximal value of d,
(d) pixel-wise product of b and f, (e) template for template matching,
(f) Gaussian hill with estimated point as center, (g) red refinement of
green estimated point visualization.

To do that we use normalized correlation coefficient template
matching [3]. The template is a cross rotated accordingly to the grid
(Fig. 3.e). The result of the template matching is multiplied with
Gaussian hill to limit the refinement distance and also to approxi-
mate error distribution. The center of the Gaussian hill is positioned
at the intersection estimate and its size is given by the maximal re-
finement distance parameter (rd). Finally, the maximal value deter-
mines position of refined intersection.



4. EXPERIMENTAL SET-UP

We use the same scenario, provided evaluation tools and dataset [12]
as in MapSeg competition [1]. The source codes and other re-
lated materials are freely available for non-commercial purposes
at https://gitlab.kiv.zcu.cz/balounj/21_icdar_
mapseg_competition.

For grid detection, the tolerance parameters ta = π
360

and tdr =
0.05 are used. Since there are two possible distance intervals be-
tween lines (d = ±1180 or ±2360 pixels), we use two minimal
distance parameters as dm = 0.6 · d for each. The best PPG is
selected from the candidates with regard to its rating and distance
interval. PPGs with intervals close to d are favored. For the intersec-
tions refinement (Sec. 3.12), rd is set to 200 pixels. Finally, the map
content area mask from Task 2 of the MapSeg competition is used
to filter the intersection points. For more details, visit the provided
website.

Fig. 4. Grid detection example in different images.

In order to show the robustness of the algorithm, we further an-
notated 21 cadastral Austro-Hungarian maps from the 19th century2

(Fig. 4 left). Compared to MapSeg dataset, these sheets contain in-
distinct lines, thus the binarization is not optimal and many graticule
line segments are missing. On the other hand, there are more lines
and they are straighter. We use the same parameters except the dis-
tance interval d = 826 pixels and thus dm = 0.6 · d.

Generally, the parameters are tolerant to improper setting.
Changes in ta ([ 0.5π

180
, 4π
180

]), tdr ([0.05, 0.2]) and dm ([0.2, 0.8]
of expected distance interval) produced comparable results on both
datasets. Except the rd for refinement that depends on the binariza-
tion quality as can be seen in Table 1.

Dataset \ rd 0 20 50 200 400
MapSeg 77.7 82.4 87.1 93.6 91.4

Ours 91.9 97.1 96.6 89.7 84.3

Table 1. PDS [%] for different maximal refinement distances (rd)
on different datasets.

4.1. Evaluation criteria

The provided evaluation tools and the same scenario as in [1] are
used for evaluation. Points detection score (PDS) represents the area
under Fβ=0.5 vs distance threshold curve. The predicted point is
considered correct if it is closer than threshold. The threshold ranges
from 0 to 50 pixels. The final measure is computed as an average of
the all test image measures.

2https://corpora.kiv.zcu.cz/map_border/

Method CMM [1] IRISA [2] L3IRIS [1] Ours3

PDS [%] 86.6 89.2 73.6 93.6

Table 2. Final PDS for locating graticule line intersections task.

5. RESULTS

The proposed method shows excellent results even on noisy histor-
ical map images. As can be seen in Table 2 and Fig. 5, our method
surpassed the other methods by a significant margin.

There may appear a small amount of fault refinements that
are caused usually by noisy lines. Some extra predictions are also
present in the map content area exceeding map frame or at map
borders. It is hard for us to decide their correctness, since they
correspond to the expected position in the grid. Those points could
be probably filtered with improved map content area segmentation
for example. The correction is also very beneficial as could be seen
in Table 1. In total, more than 90 % of all predicted points are closer
than 3 pixels from provided GT. This can be considered perfect
taking into account high image resolution and possible GT error.

Based on the Fβ=0.5 from Fig. 5 and taking into account the
approach order, we deduce that focusing on bigger part of the grid
(whole grid, cross, longest line etc.) brings more correct detections
and is thus more robust.

Fig. 5. Locate graticule lines intersections results: Fβ=0.5 vs dis-
tance threshold across test images.

6. CONCLUSIONS

In this paper we have proposed an efficient and robust approach
for map grid (graticule) detection with three intuitive parameters.
Hough transform, several structure constraints and sophisticated
post-processing are used for determining a set of graticule lines
and their intersections. In order to allow the best possible geo-
referencing, we have further proposed the refinement approach to
maximize the localization accuracy of the intersections.

The proposed approach is very efficient as shown in the interna-
tional ”MapSeg” segmentation competition, where it won the Task 3
with a significant margin. We have also shown the robustness of the
proposed approach by evaluating it on another significantly different
dataset with excellent results.
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