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Abstract Nowadays, the accessibility of digitized historical documents is ex-
tremely important to facilitate fast and efficient retrieval of historical informa-
tion and knowledge extraction from such data. To provide such functionality, it
is necessary to convert document images into plain text using optical character
recognition (OCR). Many OCR related methods and tools have been proposed,
however, they are often too complicated for a standard user, some important parts
are missing or they are not available in free versions.

Therefore, this paper describes a complex and flexible web framework for
historical document manipulation and analysis with the main focus on OCR.
The framework contains eight modules to facilitate three main tasks: image pre-
processing and segmentation, creation of data for OCR model training and the
OCR itself. This framework is freely available for non commercial purposes.

We have experimentally evaluated this framework on real data and we have
shown that this system is efficient and can save human labour in the process
of annotated data preparation. Moreover, we have reached state-of-the-art OCR
results.
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1 Introduction

A significant number of historical documents are already digitized and stored in
archival databases and portals. A crucial task consists in making such documents
easily accessible to historians, archival researchers, and to the general public for
information retrieval and knowledge extraction. First, the document images are
converted into plain text using optical character recognition (OCR) eventually
handwritten text recognition (HTR).

Several OCR methods and tools have been proposed, however, to the best of
our knowledge, none of them provides a complex functionality for free and it is
complicated to adjust and train by standard users.

Therefore, the main contribution of this work consists in the proposition of
a novel web framework for historical document image manipulation and analysis
which is freely available for non commercial purposes at http://ocr-corpus.kiv.
zcu.cz/. It provides a set of sophisticated functions for processing document im-
ages with the main focus on OCR of printed materials. This framework is widely
applicable for various types of users. For a programmer /researcher, it opens pos-
sibilities for improvement of the presented modules. The framework also allows to
simplify the work of annotators by predicting almost perfect outputs. Last but not
least, for historians and other archival workers, the framework offers a simple way
of uploading a new set of images and, in the sequel, they can review the results.
The main motivation though remains a fast and efficient information retrieval.

The web application is written in Django, which allows us to create a pipeline of
individual python scripts (modules). The modules can run separately and Django
represents the role of a sandbox that connects the user interface with the results
of desired modules. Modules are stored in app/libs folder and Django per se is
responsible for running a relevant set of scripts and displaying results using HTML.

The proposed HDPA framework contains functional units that facilitate three
main tasks. The first unit handles image pre-processing and segmentation. The
second one provides tools for creation of data (ground truth) for OCR model
training. The last functional unit is the OCR engine. The main strength of the
framework lies in its extensibility. Our goal is to facilitate an easy integration of
new modules. This way, the users can easily customize the framework for their
specific needs.

We focus on processing of printed historical German newspapers from the end
of the nineteenth century printed in the Fraktur script. The newspaper pages
have a variable layout and the scans usually suffer from several quality issues
such as noise, skew, warped lines and even missed character parts. The above
mentioned aspects make the document analysis including OCR of such documents
very challenging.

The framework currently provides the user with two basic pre-processing mod-
ules, namely “Image Binarizer” and “Page Deskewer”. The goal of the binarization
process is to remove noise and to increase the contrast between foreground and
background pixels. It is also a prerequisite for some subsequent tasks. Page deskew-
ing ensures that the page is upright and the text lines are horizontal. The user
can easily integrate custom specific modules that can be chained with the existing
ones.

The training data creator is useful when we desire to train a new OCR model.
This functional unit contains utilities that allow the user to prepare a synthetic



HDPA: Historical Document Processing and Analysis Framework 3

dataset containing generated sentences from a requested domain and era. Such
data allow the network to learn a specific language model that can improve the
resulting accuracy. We also provide tools that serve for the creation of a set of
single letter images cropped from real data. From such images, we can compose
sentences that are very similar to the real ones. These hybrid data (we call it
hybrid according to [23]) can be used for an initial training of the OCR model.
Another way of creating synthetic data is the usage of a text image generating
tool (generated synthetic data).

Similarly as in [23] we use a two-stage training of the model: 1) Training on
large synthetic data which helps to learn basic glyph shapes and also the above
mentioned language model; 2) Fine-tuning on a small amount of real text lines
which ensures that the model can learn some specific aspects of the real data that
cannot be mimicked in the synthetic lines.

To allow creation of ground truths for real data, we also provide a tool for
annotating the line images produced by the second functional unit. It incorporates
an OCR model that suggests the transcription and the user can correct the errors
if necessary.

Commonly, neural networks that process whole text lines are utilized for OCR.
Recurrent neural networks (RNN) are usually used for this task [5]. A great ben-
efit of the RNN-based approaches is that a character segmentation is not nec-
essary. Some approaches also combine RNNs and convolutional neural networks
(CNN) [30,26]. In such approaches, the CNN [18] serves as a feature extractor for
the recurrent layers. It helps mainly in cases when the data are not well aligned
and contain noise. Our system is also based on these principles and uses a CNN for
feature extraction and a bidirectional LSTM recurrent neural network for recog-
nition.

The main contribution of this paper is possible to summarize as follows:

– Proposition and development of a novel easily extendable framework for his-
torical document analysis and processing;

– Providing a tool for annotation of the line images for OCR training;
– Integration of state-of-the-art methods into this framework;
– Provision of all source codes and developed corpus for non commercial pur-

poses.

The rest of the paper is organized as follows. The next section summarizes
the main tools and methods for image ground truth creation as well as modern
OCR methods and systems. Section 3 presents the architecture of the proposed
framework including three functional units composed of eight modules. Sections 4–
6 detail the individual units, image pre-processing and segmentation, training data
creator and OCR engine. Section 7 shows the experiments conducted using the
data from the Porta fontium portal. The last section concludes the paper and
proposes some further directions.

2 Related Work

Transkribus [19,32] is a complex tool developed within the READ (Recognition
and Enrichment of Archival Documents) project1 at the University of Innsbruck

1 https://read.transkribus.eu/about/
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dealing with automated recognition, transcription, and searching of historical doc-
uments. It offers a number of tools for automated processing of historical docu-
ments, such as handwritten text recognition (HTR), layout analysis, document
understanding, writer identification or optical character recognition (OCR). For
the OCR, Transkribus utilizes ABBYY Finereader engine 112. A drawback is the
necessity to upload a document to the server to be able to process it. Furthermore,
to the best of our knowledge, Transkribus has no support for creating any kind of
synthetic data.

With the need to master the role of semantic segmentation, fully convolutional
neural (FCN) networks have been evolved, characterized primarily by an image to
image architecture. Such a network takes an image as an input and outputs another
image. This kind of architecture can be considered as a function of pixels that
transforms an input set of pixels to the output one. In a nutshell, every output pixel
has a label with the information which part of the image it represents. By deploying
this idea to the document analysis system, we get a relatively simple approach to
classify layout (i.e. every pixel represents either background or foreground – text).
The most popular representative of such an FCN is U-Net [27] and its derivatives
that are focused on text line detection in documents – e.g. ARU-Net [14]. ARU-
Net labels pixels belonging to one of several classes (e.g. baseline, separator etc.)
Text line segmentation of historical Arabic documents with a classification of text
blocks was presented by Zahour et al. [34]. Although their approach does not
utilize a neural network, it achieves interesting results.

Methods and tools for image ground truth creation are absolutely necessary for
the acquisition of training data to be able to use the FCN for segmentation. Van
Beusekom et al. [33] proposed an interesting method for automated ground truth
generation which detects a robust and accurate alignment of a scanned image and
corresponding electronic document. It involves printing of an electronic document
and scanning it again. Ground truths are created on pixel level and the algorithm
is evaluated on the UW3 dataset. The estimated ground truths are compared with
the real ones and the authors show that the resulting accuracy is less than one
pixel difference.

A powerful tool that can be used for this task is Aletheia [8]. It can auto-
matically detect objects on four levels: regions, text lines, words and glyphs. The
outlines of the objects can be adjusted by users who also specify the segmenta-
tion of words to single glyphs. The ground truths are stored in the PAGE XML
format [24]. Ground truth creation is not the only feature of Aletheia though. It
offers a number of automated and semi-automated annotation tools. It is worth
noting that the pro version with a complete document analysis system is not free.
In our opinion it is also less flexible and there is no possibility to add a custom
module.

Another tool which is used for semi-automatic document image analysis is
GraphManuscribble [10]. A user-centered segmentation method is utilized in this
tool. A sparse representation of the document structure is automatically captured
by the graphs and it can be further edited and approved by the user.

TrueViz [16] is a tool for ground truth creation and visualization. This applica-
tion is freely available for research purposes. It allows multi-lingual text processing
and the output format is XML.

2 https://www.abbyy.com/



HDPA: Historical Document Processing and Analysis Framework 5

Many other specific tools and systems have been proposed as for instance
for Arabic synthetic data generation and OCR [22] or for Rusian artificial OCR
dataset generation [6]. However their the functionality is limited to some particular
task and therefore, general usage is not possible. The impact of synthetic data
generation is also presented in several studies [9].

Nowadays OCR systems are trained with line images and corresponding ground
truth text (labels). Such a label represents a text sequence that is depicted in the
line image, but it does not express which part of the image exactly is mapped to
the concrete letter of the ground truth label.

Labelling unsegmented sequences can be realized by using connectionist tem-
poral classification (CTC) loss [11]. It gives a probability distribution over all
possible label sequences conditioned on the input sequence. The network uses an
objective function that maximizes the probabilities of correct labelling, which is
differentiable and thus standard backpropagation can be used. This approach was
first used for automatic speech recognition, however, it can be directly applied for
text recognition as proposed in [13].

There are many examples of well-performing OCR systems that utilize a CNN
and/or an RNN. Breuel et al. [5] propose an efficient OCR system based on the
LSTM model which is a part of the open-source OCRopus system [4]. The method
utilizes a bidirectional LSTM network in combination with a text line normaliza-
tion, where a dictionary of connected component shapes associated with baseline
and x-height information is computed on external annotated data. The baseline
and x-height lines are mapped into two straight lines using spline interpolation.
The system is applied on printed English and Fraktur texts, where it obtains 0.6 %
character error rate (CER) on English data and varies from 0.16 % to 0.82 % on
German Fraktur depending on the quality of the scans.

An approach combining CNN and RNN is proposed in [26]. The system utilizes
a CNN for feature extraction and an LSTM is then used for sequence modelling.
The model is evaluated on handwritten and printed data where such a model
performs well for both data types. This work also presents a weighted finite state
transducer (WFST) that supplies a language model to the decoding procedure.

3 Framework Overview

The framework has a modular architecture which is depicted in Figure 1. It is
composed of eight modules (M1 – M8 ) that can interact with each other. The
modules are encapsulated in three functional units (U1 – U3). Every module can
be used separately in order to create another image processing system. First, we
briefly introduce each functional unit in this section and then we describe them in
detail in the following sections. The framework and also our OCR dataset can be
downloaded from http://ocr-corpus.kiv.zcu.cz/.

3.1 Functional Unit U1 – Image Pre-processing and Segmentation

The first functional unit U1 deals with image pre-processing and segmentation.
The pre-processing includes important image transformations and corrections nec-
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Fig. 1: Architecture of the HDPA framework

essary for a successful layout analysis and segmentation. The goal of this module
is to prepare line images that can be fed to the OCR engine for text recognition.

This functional unit comprises four modules. The first module M1 converts the
document image (color or gray-scale) into a binary representation. Unfortunately,
a significant amount of the scanned pages is not horizontally aligned, which would
negatively influence the segmentation and consequently also decrease the OCR
accuracy. Therefore, the following module M2 performs page deskewing.

Modules M3 and M4 are devoted to the segmentation. We perform the seg-
mentation in two steps. First, we detect and extract text blocks (M3) within the
straightened page and determine the reading order of the blocks. Then it is sig-
nificantly easier to detect and extract text lines (M4). The output of this module
is a list of extracted line images which will be used by the other two functional
units.

3.2 Functional Unit U2 – Training Data Creator

The functional unit U2 is used for the creation of training data for the OCR model
and it is composed of three modules. In order to train an OCR engine, we need
text line images with corresponding labels (ground truths). We can obtain such
data in two ways: synthetic data generation and annotation of real extracted line
images.

This framework allows creating two types of synthetic data. The first one,
called hybrid, is created by putting together images of single characters (cropped
from real document images) according to some meaningful text. We first segment
a text line image into individual characters (module M5) to prepare several image
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representations for each character. Then, according to a relevant historical text,
we create text line images by concatenating the respective character images (M6).

The last module M7 belonging to this functional unit is used to create annota-
tions (ground truths) for real line images. Initially, if no OCR model is available,
it is just a simple annotation tool with GUI that allows the user to fill in the
text rendered in the image. After annotating an initial set of line images, it is
possible to train an OCR model and deploy it to the module. The module thus
gets the ability to predict the text contained in the line image and suggests the
transcription to the user who can correct it if necessary.

3.3 Functional Unit U3 – OCR Engine

This unit is the OCR engine itself. The engine utilizes a line-based approach that
processes images of extracted text lines and outputs the estimated text sequence.
We build on the combination of a CNN that is used as a feature extractor and an
RNN which translates the sequence of image frames into a sequence of characters.
In combination with the CTC loss, it can be trained to predict the text contained
in the line images. The module M8 handles both the training and recognition
phases of the engine.

4 Image Pre-processing and Segmentation

M1 - Image Binarizer

Image binarization can be considered as a pixel labelling problem [1]. It is defined
as a function f which maps the pixel intensities of the input image I to values 0
or 1 into the binary output image. The simplest form of the function f is a global
thresholding defined as follows:

f(I) =

{
1 if I(x, y) >= T

0 if I(x, y) < T
(1)

where T is the threshold value and x and y are the pixel coordinates. More
sophisticated approaches use various variants of global or local thresholding.

Our binarization module employs the adaptive thresholding method proposed
by Sauvola [28]. The method first classifies the image contents into several classes
and then it applies two approaches for determining a threshold for each pixel. The
approaches are combined to obtain the final result.

M2 - Page Deskewer

When a digitized document is scanned imperfectly and text lines are not horizon-
tally aligned, the segmentation and the OCR becomes less accurate. The goal of
this module is to find the document skew angle and rotate the image correspond-
ingly. We have implemented a basic method based on horizontal projection profiles
(HP) [25]. It rotates the image by different angles in a range θmin to θmax and
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maximizes a criterion function calculated from the projection profile values. HP
of an image I is defined as:

HP (y) =

w−1∑
x=0

I(x, y) (2)

where w is the width of the input image.
The criterion function for a particular angle is defined as follows:

c(θ) =

h−1∑
y=1

(HP (y) −HP (y − 1))2 (3)

where h is the height of the image.
The skew angle of the document is the angle θ∗ that maximizes the function

c(θ).

θ∗ = arg max
θ

c(θ) (4)

We have chosen this method because of its simplicity and efficiency.
The output of modules M1 and M2 is depicted in Figure 2.

(a) Input page (b) Binarized and rotated page

Fig. 2: Output of the pre-processing modules

M3 - Text Block Extractor

The goal of this module is to detect and extract text blocks. For this task, we have
utilized the well-known fully convolutional network U-Net [27]. Although U-Net
has been developed for semantic segmentation of medical images, it is possible
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to apply this architecture to a different segmentation task such as text block
extraction.

The FCN networks are composed of encoder and decoder parts. The encoder
comprises a set of convolutional and pooling layers. In the decoder part, deconvolu-
tions are used to upsamle the image to the original size. The convolution operation
is defined as:

(f ∗ h)[m,n] =
∑
j

∑
k

h[j, k]f [m− j, n− k] (5)

where f is the input image and h is the convolutional kernel. Indices m and n
are concerned with the image matrices while j and k are the kernel indices.

We have trained the U-Net in two phases with slightly different training data.
The first training dataset used for initial parameter settings was the Europeana
Newspapers Project Dataset [7]. It is a set of historical newspapers created with
the goal to provide all the challenges related to the historical document image
processing task. The dataset contains more than 500 newspaper pages associated
with ground truths containing full transcribed text, layout information and reading
order. From this set we have selected a subset of 95 pages mostly written in German
with varying layouts to address our real annotated dataset.

Within the second phase, we have utilized a dataset created from documents
provided by the Porta fontium3 project which aims at digitizing archival docu-
ments from the Czech-Bavarian border area. We have created an OCR and page
layout analysis dataset from one selected newspaper, namely “Ascher Zeitung”,
printed in the second half of the nineteenth century. The dataset contains 25 pages.
We have selected a representative set of pages with all types of layouts occurring
in this newspaper.

Neither of these datasets have the appropriate ground truth in the form of the
image mask (see Figure 5) which is necessary for U-Net training. The mask is a
binary image, where the value 1 (white colour) represents a pixel that is within
the text area and the value 0 (black colour) is a pixel beyond these areas. Properly
trained U-Net should provide us with a predicted image mask similar to the ground
truth image. Figures 3 and 4 show the U-Net architecture and the scheme of the
learning process.

An example of the output mask provided by the trained U-Net is depicted
in Figure 6. We can easily determine bounding boxes by a connected components
analysis and render it to the original image (see Figure 7). Ideally, the model should
exclude archive stamps and other irrelevant text or other elements. Unfortunately,
it is very difficult to eliminate such a noise.

M4 - Line Extractor

Although it is possible to extract text lines directly from the page image (see [14], [21]
or [17]), we deploy a text line segmenter on smaller units i.e. text blocks. This works
better than a line-segmentation applied on the full page because the text block
detection already removes non-text regions.

3 http://www.portafontium.cz/
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For the line detection, we use ARU-Net, a deep neural network presented by
Gruning et al. [14]. It was designed to detect baselines (line upon which the let-
ters sit) in handwritten historical documents. ARU-Net extends the U-Net and it
should provide a better line detection in pages with variable font size. It includes
also an attention mechanism [3] which allows the ARU-Net to focus on image con-
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Fig. 5: Europeana image and its ground truth

Fig. 6: Visualised text region mask predicted by U-net

tent at different positions and scales [14]. As in the previous segmentation method,
ground truths are represented as binary masks (Figure 8).

To obtain an image of a text line, we first need to determine the size of the
font. We utilize an algorithm based on a projection profile of a region above the
detected baseline. According to the profile we can approximately compute the x-
height of the font. Then, adding the height of ascenders and descenders plus some
margin, we can crop the line image. In some cases, also parts of neighboring lines
are present in the line image. Therefore, we also apply a post-processing step,
based on connected component analysis, that erases such parts of letters from
surrounding lines.

A visualization of the line extractor together with text block extractor is shown
in Figure 9.

5 Training Data Creator

The second functional unit deals with the training data creation. Its main purpose
is to provide text line images and appropriate ground truth labels for the OCR
engine.
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Fig. 7: Visualised output from Text Block Extractor

Fig. 8: Text block and its ground truth

This unit can be divided into two data acquisition methods: synthetic data
creation and annotation of real data. First, we present the Character Segmenter
module which is an important part of synthetic data preparation process.

M5 - Character Segmenter

This module is used for segmenting images of text lines into individual character
images. This task can be achieved by finding character separator positions. The
algorithm is based on projection profiles. The input image is first inverted and
thresholded. Then we calculate the vertical projection profile of the image. This
process is illustrated in Figure 10.

The white peaks indicate presence of characters. Values lower than a speci-
fied threshold are considered to be gaps separating the characters. The proposed
segmentation of the above example is shown in Figure 11.

This example shows several segmentation errors that occur typically in letters
m, n or u. Another issue is the presence of ligatures that are impossible to split
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Fig. 9: Visualised output from Line Extractor

Fig. 10: Original text line and its vertical projection profile.

Fig. 11: Proposed segmentation of an example line image

using the projection profile method (ch, tz and ck). This was also a reason why
we chose a line-based OCR approach in the first place.

The GUI allows manual correction of incorrectly segmented characters. The
tool has options for merging or splitting incorrect segmentations. It is also possible
to shift character borders. Extracted individual character images can be stored
and used for further synthetic data creation. The output of this module is thus
an annotated line image and optionally a list of pictures of individual letters (see
Figure 12).

Creation of a ground truth label for the image is possible by typing appropriate
letters on the keyboard. Since we work with old German documents, we provide
buttons for some special German characters (e.g. ß) to speed up the annotation
process. The Character Segmenter tool is depicted in Figure 13. It is worth not-
ing that this tool is meant to be standalone and thus it is not part of the web
framework.
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Fig. 12: Annotation and character segmentation

Fig. 13: Character Segmenter tool

M6 - Line Generator

Synthetic line generation can be seen as an opposite process to the annotation.
The process of generation is depicted in Figure 14.

To generate synthetic line images, we need to provide a text source and the way
of rendering the text line image. We chose to use the simplest way of rendering such
images by concatenating images of individual characters as depicted in Figure 15.

Fig. 14: Creating an image of a text line as a composition of character images
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Fig. 15: Two examples of synthetic line images

M7 - Line Annotator

Similar to the case of the Character Segmenter (module M5), a text line image
from the previous functional unit enters this module. The output is the text se-
quence (ground truth label) of the text line image. It allows the user to open a
selected image of a text line. The user then simply transcribes the text into the
appropriate text box. Once a trained OCR model is available (trained for example
on synthetic data or subsequently fine-tuned on a small set of real images), we
can load it into the tool and use it for prediction. The model predicts the text
of the line image and suggests the transcription to the user who can correct the
prediction if necessary (see Figure 16).

Fig. 16: Line annotator GUI

We briefly summarize the datasets used for the OCR training (module M8)
and also for training of the U-Net (module M3).

Synthetic Dataset

Our synthetic dataset contains 25 000 line images and its only purpose is to train
the OCR engine. The texts used for rendering synthetic images are based on old
German documents to ensure that the language corresponds to the one used in
the processed documents.

Porta Fontium Dataset

The real annotated Porta fontium dataset is used not only for training the OCR
engine but also for training of the U-net model used for text block segmentation. It
consists of 25 pages but only 10 pages are completely transcribed. All of them are
accompanied by ground truths containing layout information and reading order
stored in the PAGE format [24].
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We divided the 10 fully transcribed pages into train, test and validation parts
and we used it for OCR training. The remaining 15 pages are used for training the
U-Net used for text block segmentation (see module M3 Text Block Extractor).

6 OCR Engine

The last functional unit contains only one module M8, the OCR recognizer. Our
OCR engine utilizes a combination of a convolutional and a recurrent neural net-
work. The CNN is used for feature extraction while the RNN is used for recognition
itself. The architecture is a simplified version of the network proposed in [30]. Fol-
lowing Graves et al. [12] we use a bidirectional LSTM [15] architecture with CTC
loss function [11].

The LSTM unit contains a memory part and three so called gates, namely
input gate (i), output gate (o) and forget gate (f). The equations for the LSTM
unit are as follows:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)

(6)

Sigmoid function (σg) represents an activation function of each gate. Each gate
has its own weight matrix(Wf , Wi, Wo) and biases (bf , bi, bo). The matrix U in
each gate represents the recurrent connection between the previous and the current
steps. The current input (at timestamp t) is xt and ht−1 is the previous output
(at timestamp t− 1). The fourth equation describes a cell state at timestamp t (◦
is the Hadamard product). The output at timestamp t (ht) is defined by the last
equation where σh is the tanh function.

The input of our network are binarized line images. We resize the images so
that their height is 40 pixels. The width is set to the maximum image width
occurring in the training set. We keep the aspect ratio of the images and pad the
rest of the image with white space.

The CNN creates feature vectors which are subsequently fed into the bidirec-
tional LSTM. The output of the Bi-LSTM layer is passed to a set of dense layers
followed by the softmax activation function. It represents a probability distribution
of characters per each time frame.

The last part of the classifier is a transcription layer which decodes the pre-
dictions for each frame into an output sequence. To be able to distinguish each
individual character, the blank-symbol (-) is present. It is also necessary to de-
duplicate the sequences of the same symbols. The architecture of the classifier is
depicted in Figure 17.

Our network has two convolutional layers with 40 kernels of size 3× 3. Each of
them is followed by a max-pooling layer. The output of the convolutional layers is
reshaped and connected to a fully-connected layer with 128 neurons and servers
as input for the recurrent layers. We utilize two bidirectional LSTM layers with
256 units. We use ReLU [29] activation function after each layer.
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Fig. 17: Architecture of the OCR engine [23]

6.1 Classifier Training

# pages # lines # words # chars

Train 7 955 7653 50 426
Val 1 138 1084 6 669
Test 2 275 2163 13 828

Table 1: Statistics of the Porta fontium dataset

The model is trained in two phases. For the first phase, we used synthetic
data (25 000 line images) for the initial training. The model is then fine-tuned on
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text line images from the Porta fontium dataset, please refer to Table 1 for the
statistics.

The model is trained using stochastic gradient descent (SGD) algorithm. The
initial learning rate is set to 0.001. We applied early stopping based on the be-
haviour of the validation CTC loss.

Figure 18 shows the progress of training on synthetic data for 25 epochs. One
page from the Porta fontium dataset is used for validation. The curves indicate
that training the model longer than for 5 epochs is not beneficial.
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Fig. 18: Training progress on synthetic data

To fine-tune the model, we took the initially pre-trained model and continue
the training for additional 100 epochs with real annotated line images from the
Porta fontium dataset.

Figure 19 depicts training loss, validation loss, and CER for this fine-tuning.
In the next section, we present experiments and the evaluation of methods

used within the framework.

7 Experiments

The goal of this section is to present and discuss experiments and results of the
framework. We first present the segmentation experiments and then we compare
our OCR results with other existing tools (Tesseract [31] and Transkribus [19,32]).

7.1 Segmentation

For segmentation, our test data consist of 10 pages from the Porta fontium dataset.
We evaluated masks predicted by U-Net comparing it with ground truth binary
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Fig. 19: Progress of the additional training on real data

masks (see Figure 20). The leftmost image (a) shows the ground truth of the page
(for details see module M3). The middle image (b) shows the predicted mask from
trained U-Net. The image on the right (c), shows visual evaluation and comparison
of both masks. The green colour represents correctly assigned pixels (each green
pixel is correctly predicted as a part of a text region - true positives). The red
colour indicates that the model predicted this pixel to be part of a text region,
but it is not (false positives). Finally, the blue (turquoise) coloured pixels are pixels
that should be considered as part of a text region but the model omitted them
(false negatives).

Averaged segmentation results (see Table 2) are computed and visualized us-
ing DIVA layout evaluator [2]. The results indicate that this step performs well
obtaining an F1-score of more than 97%.

Exact match F1 score Jaccard index Hamming score

97.67 97.67 95.50 97.67

Table 2: Results of text block segmentation in percent

7.2 OCR

7.2.1 Evaluation Metrics

For presenting the OCR results, we use the following evaluation metrics. Firstly, we
present the average accuracy (Avg ACC) results. In our case, the average accuracy
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(a) Page 980 Ground Truth
Mask

(b) Page 980 Predicted
Mask

(c) Evaluation

Fig. 20: Visualisation of text blocks recognition by U-Net

indicates how many text line images were recognized correctly from all text line
images:

Avg ACC =
c

n
(7)

where c is the number of correctly recognized text lines and n is the number
of the text lines in the test dataset.

We further measure how many corrections in the text line must be done by
the user to obtain the correct output. This metric is reported by Levenshtein edit
distance (ED) [20], which also indicates the number of insertions, deletions and
substitutions:

Avg ED =
1

n

n∑
i=1

ED(pr, gt)i (8)

n refers to the number of total text lines in test dataset (pr is the predicted
output and gt is the ground truth).

We report also character error rate (CER):

Avg CER =
1

n

n∑
i=1

Si +Di + Ii
N

(9)

where S refers to the number of substitutions, D is the number of deletions
and I is the number of insertions in each text line (i) from test dataset, N is the
number of characters in each text line and n is the number of total test lines.

The last reported metric is word error rate (WER) which is computed analog-
ically as CER, however the characters are replaced by words.

7.2.2 Results

Table 3 summarizes the five-fold cross-validation results on 10 pages and also pro-
vides a comparison with other OCR engines. The results show that the presented
system outperforms three other models: two by Tesseract (Tess – deu frak, Tess –
Fraktur) and one provided by Transkribus.
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Table 3: Results of the OCR systems on 10 annotated pages

CRNN Tess – deu frak Tess – Fraktur Transkribus

Avg ACC 0.488 0.221 0.217 0.398
Avg ED 1.137 2.518 2.152 1.230
Avg WER 0.118 0.191 0.187 0.120
Avg CER 0.024 0.053 0.045 0.027

8 Conclusion and Future Work

In this work, we presented HDPA, a platform that provides a set of tools that facil-
itate the analysis and processing of historical document images. It was developed
as a web framework based on Python and Django. Our main goal was to provide
a basic functionality for the whole pipeline of document image processing. The
system thus allows pre-processing, layout analysis, segmentation and finally the
transcription of the text content. Another important part comprises utilities for
training data preparation which are necessary if an OCR model is to be trained.

The framework can be easily extended. Our intent was to allow the users to
implement their own modules for some specific needs and integrate them into
the framework. We also performed a basic evaluation of the methods used for
particular tasks. The results show that the set of tools can help the user to build a
complete OCR system from scratch. Moreover, such a system performs better than
available state-of-the-art OCR engines which is mainly due to the customization
for the given historical document images.

Future development of the framework will head towards building an extension
that will allow applying natural language processing methods on the transcribed
data, which will bring tools such as named entity recognition, classification and
intelligent full-text search in the documents. Another possible direction for future
work is incorporating also methods for handwritten documents.
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