1. (omezenost, monoténie posloupnosti)

Vypoctéte prvnich pét ¢lentt danych posloupnosti a rozhodnéte o jejich omezenosti a monoténnosti.
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2. (limity posloupnosti)
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Stanovte sup{ay,}, inf{a,}, max{a,}, min{a,} a lim a, danych posloupnosti.
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3. (fady funkci) Rozhodnéte o konvergenci téchto fad
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(h) Z(_l)nn(ziil) , urcete soucet této Fady.
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5. (limity funkef) Spocitejte ndsledujici limity.
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4. (zdkladni vlastnosti funkcei) Najdéte defini¢ni obor, rozhodnéte o sudosti, lichosti, omezenosti funkce f.
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. (nespojitost) Stanovte body a druh nespojitosti funkei.
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(derivace) Spocitejte derivace nasledujicich funkei.
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(Tayloruv rozvoj) Spocitejte Tayloruv polynom T5 v bodé zp = 0 a urcete zbytek Taylorova polynomu

nasledujicich funkei.
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7. (monoténnost) Stanovte oblasti monoténnosti, staciondrni body a extrémy funkce f.
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8. (kfivost)

Urcete intervaly konvexnosti, konkavnosti, inflexni te¢ny a asymptoty funkce f.
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9. (Zakladni primitivn{ funkce)
Najdéte primitivn{ funkei k funkei f.
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Najdéte primitivn{ funkei k funkei f.
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11. (urcity integral) Vypocitejte
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