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Petr Tomiczek



Obsah
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3.2 Křivkové integrály 2. druhu . . . . . . . . . . . . . . . . . . . . . 6
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1 Vektorový a afinńı prostor

Př́ıklad 1 : Dokažte, že ve vektorovém prostoru (V,+, ·) existuje ke každému
u ∈ V právě jeden inverzńı prvek û .
Řešeńı: Necht’ û1, û2 jsou dva inverzńı prvky k u, pak

û1 = û1 + o = û1 + (u+ û2) = (û1 + u) + û2 = o+ û2 = û2 .

Teorie

Necht’ (V,+, ·) je vektorový prostor, pak

2. ve V existuje právě jeden neutrálńı (nulový) prvek o.

3. jestliže u, v, w ∈ V a u+ v = u+ w, pak v = w.

4. plat́ı (−1) ·u = (−u), tedy opačný prvek dostaneme vynásobeńım p̊uvodńıho
prvku č́ıslem −1.

5. jestliže u+ v = w, pak u = w + (−v).

6. jestliže a · u = o, pak u = o nebo a = 0.

Necht’ (V,+, ·) je vektorový prostor se skalárńım součinem (·, ·), pak

7. dokažte, že (u, av + bw) = ā(u, v) + b̄(u,w) ∀u, v, w ∈ V, ], ∀ a, b ∈ R.

8. ukažte, kdy nastane rovnost ve Schwarzově nerovnosti.

9. ověřte vlastnosti normy dané předpisem ∥u∥ =
√

(u, u).

10. Dokažte, že velikost plochy rovnoběžńıka určeného dvěma vektory je rovna
velikosti vektorového součinu těchto vektor̊u.

Př́ıklad 11 : V E3 máme dány př́ımky

p1 : x = 2− 1t
y = −1 + 3t
z = 2t

p2 : x = 2 + 1s
y = −1 + 3s
z = −2s

a bod A[3, 8,−2],

který lež́ı v rovině př́ımek p1, p2 . Určete obsah rovnoběžńıka daného bodem A
a př́ımkami p1, p2 .
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Řešeńı: Řešeńım soustavy

2− 1t+ 1s = 3
−1 + 3t+ 3s = 8

2t− 2s = −2

dostaneme t = 1, s = 2, tedy vektory u⃗ = (−1, 3, 2), v⃗ = (2, 6,−4) tvoř́ı strany
hledaného rovnoběžńıka. Jeho obsah se rovná ∥u⃗×v⃗ ∥ = ∥(−24, 0,−12)∥ = 12

√
5 .

12. Máme př́ımky p1 : A[1,−3, 2]+ t(−1, 2, 1), p2 : A[1,−3, 2]+ s(1, 2,−1) a bod
B[1, 1, 2]. Určete plochu rovnoběžńıka určeného př́ımkami p1, p2 a bodem B.

[4
√
2]

2 Křivky

Př́ıklad 13 : Rozhodněte, zda křivka parametrizovaná pomoćı vektorové funkce
r⃗ = (2t3 + 3t2 − 12t, t4 − 4t, 0) , t ∈ [−2, 2] je regulárńı.
Řešeńı: Pro normu derivace vektorové funkce dostaneme

∥r⃗ ′∥ =
√
(6t2 + 6t− 12)2 + (4t3 − 4)2 =

√
(t− 1)2[36(t+ 2)2 + 16(t2 + t+ 1)2] .

Odtud pro t = 1 je ∥r⃗ ′∥ = 0 a daná křivka tud́ıž neńı regulárńı.
Teorie

Př́ıklad 14 : Vypoč́ıtejte délku křivky r⃗(t) = (t, arcsin t, 14 ln
1−t
1+t) , t ∈ [0, 12 ] a na-

jděte tečnu v bodě B[
√
2
2 , π4 ,

1
4 ln

2−
√
2

2+
√
2
] .

Řešeńı: Pro délku d křivky plat́ı

d =

1
2∫

0

√
1 +

1

1− t2
+

1

16

4

(1− t2)2
dt =

1
2∫

0

2(1− t2) + 1

2(1− t2)
dt =

1

2
+

1

4
ln 3 .

Tečna má tvar: y⃗(τ) = [
√
2
2 , π4 ,

1
4 ln

2−
√
2

2+
√
2
] + (1,

√
2,−1)τ , τ ∈ R .

15. Popǐste parametricky úsečku spojuj́ıćı body A[1, 5, 2] a B[3, 2, 6] .

16. Rozhodněte, zda obrazem vektorové funkce r⃗ (t) = (1, t2, t2), t ∈ [−2, 2] je
regulárńı jednoduchá křivka.

17. Popǐste rozd́ıl mezi křivkami r⃗1 (t)=(cos t , sin t , 0) a r⃗2 (t)=(sin t , cos t , 0)
pro t∈ [0 , 2π] .
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18. Najděte parametrické vyjádřeńı křivky dané rovnicemi x2 + 2y2 − 1 = 0 ,
z − 1 = 0 , popǐste jej́ı vlastnosti a nakreslete ji.

19. Najděte parametrické vyjádřeńı křivky dané rovnicemi x2 + y2 − 1 = 0 ,
x+ y+ z−2 = 0. Najděte tečnu této křivky, která procháźı bodem B[1, 1, 0].

20. Spoč́ıtejte délku jednoho závitu šroubovice dané vektorovou funkci r⃗ (t) =
(cos t, sin t, 2t) . Pro t=π/2 určete tečnu k této šroubovici.

3 Křivkové integrály

3.1 Křivkové integrály 1. druhu

Př́ıklad 21 : Vypoč́ıtejte křivkový integrál
∫
K

ds
x+y , kde K je úsečka AB

a A[0, 2], B[3, 0].
Teorie

Řešeńı: Parametrické vyjádřeńı úsečkyAB je: [x, y] = A+t(B−A), po souřadnićıch
x = 0 + 3t, y = 2− 2t, t ∈ [0, 1]. Tud́ıž∫

K

ds

x+ y
=

1∫
0

√
32 + (−2)2

3t+ 2− 2t
dt =

√
13 [ ln |t+ 2| ]10 =

√
13 ln

3

2
.

22. Vypoč́ıtejte křivkový integrál ∫
K

f(r⃗) ds ,

kde f(r⃗) = z, K je kuželová šroubovice (t cos t, t sin t, t) , t ∈ [0, 1] .
[13(

√
33 −

√
23)]

23. f(r⃗ )= 1
x−y a K je úsečka spojuj́ıćı body A[0,−2, 0], B[4, 0, 0] .

[Parametrické
vyjádřeńı úsečky AB je: x = 0 + 4t, y = −2 + 2t, z = 0 + 0t, t ∈ [0, 1].

Tud́ıž
∫
K

ds
x−y =

1∫
0

√
42+22+02

4t+2−2t dt =
√
20
2 [ ln |1 + t| ]10 =

√
5 ln 2 .]

24. f(r⃗ )=x+y a K je obvod trojúhelńıka s vrcholyA[0, 1, 0], B[2, 1, 0], C[0, 3, 0] .
[8 + 6

√
2]

25. f(r⃗ )=x2 a K je graf funkce y = lnx na intervalu [1, 2] .

26. f(r⃗ )=
√

x2 + y2 a K je dána rovnićı x2 + y2 = 2x .
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3.2 Křivkové integrály 2. druhu

Př́ıklad 27 : Vypoč́ıtejte křivkový integrál∫
K+

y2 dx− x2 dy

x2 + y2
,

Teorie

kde K+ je orientovaná polovina kružnice lež́ıćı v polorovině dané nerovnost́ı x ≥ 0,
se středem v počátku, s počátečńım bodem A[0,−ϱ] a koncovým bodem B[0, ϱ],
ϱ > 0 . Parametrizaćı x(t) = ϱ cos t , y(t) = ϱ sin t , t ∈ [−π

2 ,
π
2 ] dostaneme

π
2∫

−π
2

ϱ3 cos3 t+ ϱ3 sin3 t

ϱ2 cos2 t+ ϱ2 sin2 t
dt = ϱ

π
2∫

−π
2

[(1− sin2 t) cos t+ (1− cos2 t) sin t] dt =
4ϱ

3
.

28. Vypoč́ıtejte práci, která se vykoná v silovém poli v⃗1 = (2xy, x2), popř́ıpadě
v⃗2=(xy, y−x) při přemı́stěńı hmotného bodu z mı́sta A[0, 0] do mı́sta B[1, 1]
po křivce K+ dané vztahy: a) y = x, b)y = x2, c) x = y2, d) lomená čára
ACB s bodem C[1, 0], e) kratš́ı oblouk kružnice x2 + (y − 1)2 = 1 .

[ ad v⃗1 : všechny výsledky se rovnaj́ı 1 ]
[ ad v⃗2 : a)

1
3 , b)

1
12 , c)

17
30 , d) −

1
2 , e) 1−

1
3 −

π
4 ]

Vypoč́ıtejte

29.
∫
K+

(y2 − z2) dx+ 2yz dy − x2 dz,

kde K+ je křivka daná rovnicemi x = t, y = t2, z = t3, t ∈ [0, 1] .

30.
∫
K+

(x2 − 2xy) dx+ (y2 − 2xy) dy,

kde K+ je křivka daná grafem funkce y = x2, x ∈ [−1, 1] .

31.
∫
K+

(y2 + z) dx+ xy dy + (x+ y + yz) dz,

kde K+ je křivka daná rovnicemi x = 3 cos t, y = 3 sin t, z = t, t ∈ [0, π] .
[ 12 ]

32.
∫
K+

(2− y) dx+ x dy,

kde K+ je křivka daná rovnicemi x = t−sin t, y = 1−cos t, z = 0, t ∈ [0, 2π] .
[−2π ]

6



3.3 Greenova věta

Př́ıklad 33 : Užit́ım Greenovy věty vypočtěte křivkový integrál∮
K+

(x+ y) dx− (x− y) dy ,

kde K+ je kladně orientovaná elipsa x2

4 + y2

9 = 1 .
Teorie

Řešeńı: V Greenově větě
∫∫
Ω

(
∂f2
∂x − ∂f1

∂y

)
dxdy =

∮
∂Ω+

f1 dx + f2 dy polož́ıme

f1 = x+ y , f2 = −x+ y, pak ∂f1
∂y = 1 a ∂f2

∂x = −1 . Tedy∫
K+

(x+ y) dx− (x− y) dy =

∫∫
Ω

(−1− 1) dxdy .

Převedeme dvojný integrál přes Ω do zobecněných polárńıch souřadnic

x = 2 r cosφ,
y = 3 r sinφ, r > 0 , 0 ≤ φ < 2π .

Pro Jakobián této transformace dostaneme

Jf =

(
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

)
=

(
2 cosφ −2 r sinφ
3 sinφ 3 r cosφ

)
; |det Jf |= |6 r|=6 r .

Tud́ıž∫
K

(x+ y) dx− (x− y) dy =

∫∫
Ω

−2 dxdy =

2π∫
0

1∫
0

−2 · 6 r drdφ = −12π .

Př́ıklad 34 : Ověřte Greenovu větu při výpočtu integrálu
∮

∂Ω+

x dx+
√
x dy, kde

Ω = {[x, y] ∈ R2 : x ≤ 2y ≤ 2
√
x}.

Řešeńı: V Greenově větě
∫∫
Ω

(
∂f2
∂x − ∂f1

∂y

)
dxdy =

∮
∂Ω+

f1 dx + f2 dy polož́ıme

f1 = x , f2 =
√
x, pak ∂f1

∂y = 0 a ∂f2
∂x = 1

2
√
x
. Pro x = 2

√
x ⇒ x = 0, x = 4, tedy

∫
∂Ω+

x dx+
√
x dy =

4∫
0

√
x∫

x
2

1

2
√
x
dydx =

4∫
0

1

2
√
x

(√
x− x

2

)
dx = 2− 1

6

[
x

3
2

]4
0
=

2

3
.

Křivkový integrál rozděĺıme na dva x ∈ [0, 4], y = x
2 ; x ∈ [4, 0], y =

√
x.

∮
∂Ω+

x dx+
√
x dy =

4∫
0

x dx+
√
x
1

2
dx+

0∫
4

x dx+
√
x

1

2
√
x
dx =

1

2

4∫
0

[
√
x−1] dx =

2

3
.
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4 Operátory skalárńıch a vektorových poĺı

Př́ıklad 35 : Vypoč́ıtejte gradient funkce f(x, y, z)=3x2y−y3z2 v bodě A[1, 2, 1].

Řešeńı: Pro jednotlivé parciálńı derivace plat́ı ∂f
∂x = 6xy , ∂f

∂y = 3x2 − 3y2z2 ,
∂f
∂z = −2y3z . Po dosazeńı bodu A dostaneme ∇f(A) = (12,−9,−16) .

Teorie

36. Vypoč́ıtejte gradient funkce f = ln ∥r⃗ ∥, jestliže r⃗ = (x, y, z) .
[∇f = r⃗

∥r⃗ ∥2 ]

37. Najděte rovnici tečné roviny ke grafu funkce f dané implicitně rovnićı 2xz2−
3xy − 4x = 7 v bodě A[1,−1, 2] .

[ 7(x− 1)− 3(y + 1) + 8(z − 2) = 0 ]

38. Vypoč́ıtejte divergenci vektorové funkce v⃗ = (x2z,−2y2z2, xy2z) v bodě
A[1,−1, 1] . [ 7 ]

39. Necht’ f = 2x3y2z4, vypoč́ıtejte div grad f (neboli ∇ · ∇f) .
[ 12xy2z4 + 4x3z4 + 24x3y2z2 ]

40. Dokažte, že ∇·
(

r⃗
∥r⃗ ∥3
)
= 0 .

[∇·(∥r⃗ ∥−3r⃗ ) = (∇·∥r⃗ ∥−3)·r⃗+ (∥r⃗ ∥−3)∇·r⃗ = −3∥r⃗ ∥−5 r⃗·r⃗+3∥r⃗ ∥−3 = 0 ]

41. Vypoč́ıtejte rotaci vektorové funkce v⃗=(xz3,−2x2yz, 2yz4) v boděA[1,−1, 1].
[ (0, 3, 4) ]

42. Vypoč́ıtejte rotaci vektorové funkce v⃗ = r⃗f(∥r⃗ ∥), kde f je diferencovatelná
funkce a r⃗ = (x, y, z). [ (0, 0, 0) ]

5 Plochy

Př́ıklad 43 : Vypoč́ıtejte plošný obsah grafu funkce f(x, y) = x2

2a+
y2

2b na množině

dané nerovnost́ı x2

a2 +
y2

b2 ≤ c2 , a > 0, b > 0, c > 0 .

Řešeńı: Pro plošný obsah P grafu funkce f plat́ı

P =

∫∫
Sxy

√
1 +

(∂f
∂x

)2
+
(∂f
∂y

)2
dxdy =

∫∫
Sxy

√
1 +

(x
a

)2
+
(y
b

)2
dxdy .
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Parametrizaćı elipsy dostaneme x = aϱ cos t , y = bϱ sin t , t ∈ [0, 2π], ϱ ∈ [0, c]
a Jakobián zobrazeńı Φ : (ϱ, t) 7→ (x, y) je |det JΦ| = abϱ . Tedy

P =

2π∫
0

c∫
0

√
1 + ϱ2 abϱ dϱ dt =

2

3
πab(

√
(1 + c)3 − 1).

Teorie

44. Vypoč́ıtejte plošný obsah části povrchu koule dané rovnićı x2+y2+z2 = R2 ,
která lež́ı uvnitř válcové plochy x2 + y2 = Rx , R > 0 .

[R2(π − 2) ]

6 Plošné integrály, Gausova věta, Stokesova věta

6.1 Plošné integrály 1.druhu

Př́ıklad 45 : Vypoč́ıtejte plošný integrál 1. druhu
∫∫
S

√
x2 + y2 dS , kde S je

povrch koule s poloměrem ϱ a středem v počátku souřadnicového systému.

Řešeńı: Přechodem ke sférickým souřadnićım x = ϱ cosu cos v, y = ϱ sinu cos v,
z = ϱ sin v, u ∈ [0, 2π), v ∈ (−π

2 ,
π
2 ), dS = ϱ2 cos v dudv dostaneme∫∫

S

√
x2 + y2 dS =

2π∫
0

π
2∫

−π
2

√
ϱ2 cos2 u cos2 v + ϱ2 sin2 u cos2 v ϱ2 cos v dvdu = π2ϱ3.

Teorie

Př́ıklad 46 : Vypoč́ıtejte integrál∫∫
S

[x2y2 + x2z2 + y2z2] dS ,

kde S je část kuželové plochy z2 = x2 + y2, z ≥ 0 ohraničená válcovou plochou
x2 + y2 = 4x .

Řešeńı: Pr̊umětem plochy S do roviny xy je kruh Sxy ((x − 2)2 + y2 = 4). Pro

diferenciál plochy dS plat́ı dS =
√
1 + z2x + z2y dSxy =

√
2(x2+y2)
x2+y2 dSxy =

√
2 dSxy .

Tedy ∫∫
S

x2y2 + x2z2 + y2z2 dS =
√
2

∫∫
Sxy

[x2y2 + (x2 + y2)2] dSxy .
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Přechodem k polárńım souřadnićım x = ϱ cos t, y = ϱ sin t dostaneme t ∈ [−π
2 ,

π
2 ],

0 ≤ ϱ ≤ 4 cos t a

√
2

∫∫
Sxy

[x2y2 + (x2 + y2)2] dSxy =
√
2

π
2∫

−π
2

4 cos t∫
0

(ϱ4 cos2 t sin2 t+ ϱ4) ϱ dϱdt = .

√
2
46

6

π
2∫

−π
2

cos6 t(cos2 t sin2 t+ 1) dϱdt =
√
2
46

6

87π

256
=

348π
√
2

3
.

Př́ıklad 47 : Vypoč́ıtejte integrál

I =

∫∫
S

dS√
ϱ2 − z2

,

kde S je plášt’ válce s poloměrem ϱ, s podstavou v rovině xy a výškou k, 0 < k < ϱ .

Řešeńı: Přechodem k cylindrickým souřadnićım r⃗ : x = ϱ cosu, y = ϱ sinu,
z = v, u ∈ [0, 2π], v ∈ [0, k] dostaneme

I =

k∫
0

2π∫
0

∥r⃗u × r⃗v∥ dudv√
ϱ2 − v2

=

k∫
0

2π∫
0

ϱ√
ϱ2 − v2

dudv = 2πϱ
[
arcsin v

ϱ

]k
0
= 2πϱ arcsin k

ϱ .

Př́ıklad 48 : Vypoč́ıtejte integrál

I =

∫∫
S

|y| dS ,

kde S je část povrchu paraboloidu z = x2 + y2, z ≤ 9 .

Řešeńı: Přechodem k polárńım souřadnićım naparametrizujeme povrch parabo-
loidu r⃗ : x = u cos v, y = u sin v, z = u2, u ∈ [0, 3], v ∈ [0, 2π] dostaneme
dS = ∥ru × rv∥ dudv =

√
1 + 4u2 dudv a

I =

2π∫
0

3∫
0

|u sin v|
√
1 + 4u2 dudv =

1

3
(
√
373 − 1).
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6.2 Plošné integrály 2.druhu

Př́ıklad 49 : Vypoč́ıtejte integrál∫∫
S+

x3 dydz + y3 dxdz + 3z dxdy ,

kde S je vněǰśı strana části rotačńıho paraboloidu z = 1−x2−y2, která je omezená
rovinou z = 0.

Řešeńı: Úlohu lze rozložit na výpočet tř́ı integrál̊u přes pr̊uměty plochy S do
odpov́ıdaj́ıćıch rovin yz, xz a xy .

Při pr̊umětu do roviny yz plat́ı x =
√

(1− y2 − z)3, pokud vněǰśı normálový
vektor n⃗ má prvńı souřadnici n1 > 0 , a zároveň x = −

√
(1− y2 − z)3, pokud

n1 < 0 . Tedy

Ix =
∫∫
S+

x3 dydz = 2
∫∫
Syz

√
(1− y2 − z)3 dydz = 2

1∫
−1

1−y2∫
0

(1− y2 − z)
3
2 dzdy

= −4
5

1∫
−1

[(1− y2 − z)
5
2 ]1−y2

0 dy = 4
5

1∫
−1

(1− y2)
5
2 dy =

[
y = sin t
dy = cos t

]
= 4

5

π
2∫

−π
2

cos5 t cos t dt = 1
10

π
2∫

−π
2

(1 + cos 2t)3 dt = 1
10

(
π + 3

2π
)
= π

4 .

Při pr̊umětu do roviny xz dostaneme stejnou úlohu jako v předchoźım kroku
(stač́ı zaměnit proměnné x a y , neboli Iy =

π
4 .

Při pr̊umětu do roviny xy budeme integrovat přes pr̊umět Sxy, kterým je kruh
daný nerovnost́ı x2 + y2 ≤ 1 a přechodem k polárńım dostaneme

Iz =
∫∫
S+

3z dxdy = 3
∫∫
S+
xy

1− x2 − y2 dxdy =

[
x = ϱ cos t, ϱ ∈ [0, 1]
y = ϱ sin t, t ∈ [0, 2π]

]
= 3

2π∫
0

1∫
0

(1− ϱ2) ϱ dϱdt =

[
u = 1− ϱ2

du = −2ϱ dϱ

]
= −3π

0∫
1

u du = 3π
2 .

Zadaný integrál má tedy hodnotu I = π
4 +

π
4 +

3π
2 = 2π .

Teorie

Př́ıklad 50 : Vypoč́ıtejte tok vektorového pole v⃗ = (4x,−2y2, z2) povrchem válce
daného rovnicemi x2 + y2 = 4, z = 0, z = 3 .
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Řešeńı: Pro tok T plat́ı

T =

∫∫
S+

v⃗ n⃗ dS ,

kde n⃗ je vněǰśı normálový vektor k povrchu válce. Úlohu lze rozložit na výpočet
tř́ı integrálu přes podstavy a plášt’ válce.

Vněǰśı normálový vektor k podstavě v rovině z = 0 je n⃗ = (0, 0,−1) a pro
prvńı integrál plat́ı

I1 =

∫∫
S+

(4x,−2y2, z2) (0, 0,−1) dS =

∫∫
Sxy

−z2 dxdy = 0 .

Vněǰśı normálový vektor k podstavě v rovině z = 3 je n⃗ = (0, 0, 1) a pro druhý
integrál plat́ı

I2 =

∫∫
S+

(4x,−2y2, z2) (0, 0, 1) dS =

∫∫
Sxy

z2 dxdy = 32π22 = 36π .

Vněǰśı normálový vektor k plášti válce źıskáme po parametrizaci r⃗ : x = 2 cosu,
y = 2 sinu, z = v, u ∈ [0, 2π], v ∈ [0, 3], potom tečné vektory maj́ı tvar r⃗u =
(−2 sinu, 2 cosu, 0), r⃗v = (0, 0, 1) a normálový vektor n⃗ = (cosu, sinu, 0) . Pro
třet́ı integrál tedy plat́ı

I3 =

∫∫
S+

(4x,−2y2, z2) (cosu, sinu, 0) dS =

2π∫
0

3∫
0

[8 cos2u− 8 sin3u] 2 dvdu = 48π .

Zadaný integrál má tedy hodnotu I = 0 + 36π + 48π = 84π .

Př́ıklad 51 : Vypoč́ıtejte integrál I =
∫∫
S+

v⃗ n⃗ dS, jestliže v⃗ = (x, y, z) a plocha

S je parametrizována funkćı r⃗(u, v) = (u cos v, u sin v, cv), [u, v] ∈ [a, b] × [0, 2π] ,
0 < a < b, c > 0 .
Řešeńı: Pro výpočet využijeme rovnost

∫∫
S+

v⃗ n⃗ dS =
∫∫
Ω

v⃗ (r⃗u × r⃗v) du dv . Plat́ı

r⃗u=(cos v, sin v, 0), r⃗v=(−u sin v, u cos v, c) a r⃗u × r⃗v=(c sin v,−c cos v, u). Tedy

I=

b∫
a

2π∫
0

(u cos v, u sin v, cv) (c sin v,−c cos v, u) du dv=

b∫
a

2π∫
0

c v u du dv=(b2−a2)cπ2.

12



6.3 Gaussova věta

Př́ıklad 52 : Pomoćı Gaussovy věty vypoč́ıtejte integrál

I =

∫∫
S+

x3 dydz + y3 dxdz + z3 dxdy ,

kde S je povrch koule o poloměru R se středem v počátku souřadnicové soustavy.

Řešeńı: Použijeme Gaussovu větu ve tvaru
∫∫
S+

v⃗ n⃗ dS =
∫∫∫
V

div v⃗ dV pro funkci

v⃗ = (x3, y3, z3) . Potom div v⃗ = 3(x2 + y2 + z2) a přechodem ke sférickým
souřadnićım x= ϱ cosu cos v, y = ϱ sinu cos v, z = ϱ sin v, u ∈ [0, 2π), v ∈ (−π

2 ,
π
2 ),

ϱ ∈ [0, R] , dV = ϱ2 cos v dudvdϱ dostaneme

I =

∫∫∫
V

3(x2 + y2 + z2) dV = 3

R∫
0

π
2∫

−π
2

2π∫
0

ϱ2 ϱ2 cos v dϱdvdu =
12πR5

5
.

Pokud poč́ıtáme dvojný integrál druhého druhu př́ımo, pak opět přechodem ke
sférickým souřadnićım (nyńı ϱ = R) dostaneme∫∫

S+

x3 dydz + y3 dxdz + z3 dxdy =

∫∫
S+

(x3, y3, z3) n⃗ dS =

π
2∫

−π
2

2π∫
0

(cos3u cos3v, sin3u cos3v, sin3v) · (cosu cos v, sinu cos v, sin v)R5 cos v dvdu =

π
2∫

−π
2

2π∫
0

(cos4u cos4v + sin4u cos4v + sin4v) ·R5 cos v dvdu =

R5
( π

2∫
−π

2

2π∫
0

((1 + cos 2u

2

)2
+
(1− cos 2u

2

)2)
cos5v dvdu+

π
2∫

−π
2

2π∫
0

sin4v · cos v dvdu
)
=

R5
( π

2∫
−π

2

(1− sin2v)2 cos v dv

2π∫
0

(1
2
+

1 + cos 4u

4

)
du+

[t5
5

]1
−1

2π
)
=

12πR5

5
.

Teorie
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Př́ıklad 53 : Vypoč́ıtejte integrál I =
∫∫
S+

xz dydz + x2y dxdz + y2z dxdy , kde

plocha S je vněǰśı strana povrchu tělesa daného nerovnostmi x ≥ 0, y ≥ 0, 0 ≤
z ≤ x2 + y2, x2 + y2 ≤ 4.

Řešeńı: Použijeme Gaussovu větu ve tvaru
∫∫
S

v⃗ n⃗ dS =
∫∫∫
V

div v⃗ dV, neboli

v⃗ = (xz, x2y, y2z), div v⃗ = z + x2 + y2 a přechod k polárńım souřadnićım
x = ϱ cos t, y = ϱ sin t, t ∈ [0, π2 ], ϱ ∈ [0, 2]. Tedy

I =

∫∫∫
V

z + x2 + y2 dV =

∫∫
Sxy

x2+y2∫
0

z + x2 + y2 dzdxdy =

2∫
0

π
2∫

0

3

2
ϱ4 ϱ dtdϱ = 8π .

Př́ıklad 54 : Vypočtěte objem tělesa vymezeného plochou x = (b+a cos v) cosu,
y = (b + a cos v) sinu, z = a sin v, u ∈ [0, 2π], v ∈ [0, 2π], 0 < a ≤ b a rovinami
x = 0, z = 0 .

Řešeńı: Z Gaussovy věty plyne pro objem tělesa meas (V ) = 1
3

∫∫
S+

(x, y, z) n⃗ dS.

Spoč́ıtáme jednotkový vektor vněǰśı normály n⃗ = r⃗u×r⃗v
∥r⃗u×r⃗v∥ , tedy

n⃗ =
(−(b+ a cos v) sinu, (b+ a cos v) cosu, 0)× a(− sin v cosu,− sin v sinu, cos v)

a∥((b+ a cos v) cosu cos v, (b+ a cos v) sinu cos v, (b+ a cos v) sin v)∥

=
((b+ a cos v) cosu cos v, (b+ a cos v) sinu cos v, (b+ a cos v) sin v)

(b+ a cos v)
.

Zároveň plat́ı dS = ∥r⃗u × r⃗v∥ dudv. Po dosazeńı dostaneme meas (V ) =

1

3

2π∫
0

2π∫
0

((b+ a cos v) cosu, (b+ a cos v) sinu, a sin v)
·a((b+ a cos v) cosu cos v, (b+ a cos v) sinu cos v, (b+ a cos v) sin v)

dudv=

a

3

2π∫
0

2π∫
0

((b+a cos v)2 cos v+(b+a cos v) a sin2 v) dudv=
a

3

2π∫
0

2π∫
0

(b+a cos v)(b+a) dudv.

Tedy meas (V ) = 4
3ab(b+ a)π2.

6.4 Stokesova věta

Př́ıklad 55 : Pomoćı Stokesovy věty vypočtěte integrál I=
∮
K+

(y−z, z−x, x−y) dr⃗,

kde křivka K+ je dána rovnicemi x2 + y2 = a2, x
a +

z
b = 1 , a > 0, b > 0 .
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Teorie

Př́ıklad 56 : Vypoč́ıtejte práci vektorového pole v⃗ = (x + y, 2x − z, y + z)
po uzavřené křivce K, která je tvořena obvodem trojúhelńıka A[2, 0, 0], B[0, 3, 0],
C[0, 0, 6] . Orientace pohybu je dána pořad́ım vrchol̊u trojúhelńıka.

Řešeńı: K výpočtu použijeme Stokesovu větu ve tvaru
∮

∂S+

v⃗ τ⃗ ds =
∫∫
S+

rot v⃗ n⃗ dS .

Plat́ı rot v⃗ = (2, 0, 1) a n⃗ =
−−→
AB×

−→
AC

∥
−−→
AB×

−→
AC∥

= 6(3,2,1)

6
√
14

. Tedy

I =

∫∫
S

(2, 0, 1) · (3, 2, 1)√
14

dS =
7√
14

meas (S) =
7√
14

∥
−→
AB ×

−→
AC∥

2
= 21 .

7 Nezávislost na cestě

Př́ıklad 57 : Určete č́ıslo a tak, aby integrál
∫
K

dx+ady
x+3y byl nezávislý na cestě na

množině Ω dané nerovnost́ı x+ 3y > 0.

Řešeńı: Hledáme funkci f = f(x, y) takovou, aby grad f = ( 1
x+3y ,

a
x+3y), neboli

∂f
∂x = 1

x+3y ,
∂f
∂y = a

x+3y . Po integrováńı dostaneme f(x, y) = ln |x + 3y| + C(y) a
f(x, y) = a

3 ln |x+ 3y|+ C(x). Odtud plyne a = 3 .

Teorie

Př́ıklad 58 : Najděte vektorové pole, jehož potenciál je f(x, y) = 5
√

x2 + y2

a vypoč́ıtejte práci tohoto pole po křivkách a) z bodu A[3, 4] do bodu B[−2, 0]
b) z bodu A[3, 4] do bodu B[

√
21, 2] .

Řešeńı: Pro hledané vektorové pole v⃗ plat́ı v⃗ = grad f = (5 x√
x2+y2

, 5 y√
x2+y2

)

a pro jeho práci W plat́ı W = f(B) − f(A), tedy a) W = |5 · 2 − 5 · 5| = 15 ,
b) W = |5 · 5− 5 · 5| = 0 .

Př́ıklad 59 : Spoč́ıtejte křivkový integrál I =
∫
K+

(x+y) dx+(x−y) dy , po úsečce

K spojuj́ıćı bod A[0, 1] a bod B[2, 2] . Potom ověřte, že integrovaná vektorová
funkce je potenciálńı a na základě této informace opět spoč́ıtejte daný integrál.
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Řešeńı: Parametrizujeme úsečku K: x = 0 + 2t, y = 1 + t , t ∈ [0, 1] , potom

I =

∫
K+

(x+ y) dx+ (x− y) dy =

1∫
0

[(2t+ 1 + t) · 2 + 2t− 1− t] dt =
9

2
.

Aby vektorová funkce v⃗ = (x + y, x − y) byla potenciálńı, muśı platit ∂v2
∂x = ∂v1

∂y ,
což je splněno (1 = 1). Najdeme tedy potenciál f , pro který plat́ı f(x, y) =∫
x + y dx = x2

2 + yx + C(y) a zároveň f(x, y) =
∫
x − y dy = yx − y2

2 + C(x) .

Tud́ıž f(x, y) = x2+2xy−y2

2 a pro daný integrál plat́ı

I =

∫
K+

(x+ y) dx+ (x− y) dy = f(B)− f(A) =
22 + 8− 22

2
− −12

2
=

9

2
.
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8 Tenzory

8.1 Sdružené báze

Př́ıklad 60 : Najděte kontravariantńı a kovariantńı souřadnice vektoru v⃗ = (1, 2),

jestliže zobrazeńı Φ : q⃗ → r⃗ je dáno rovnicemi
r1 = 2q1 − q2

r2 = 3q1 + q2 . Teorie

Řešeńı: Vektory křivočaré (kontravariantńı) báze jsou definované předpisem

⃗̂ei = ∂r⃗
∂qi , i = 1, 2, 3 a tvoř́ı sloupce Jacobiovy matice JΦ =

( 2 −1
3 1

)
, tedy

⃗̂e1 = (2, 3) , ⃗̂e2 = (−1, 1) .

Vektory sdružené (kovariantńı) báze jsou definované předpisem ⃗̂e i = ∇qi ,

i = 1, 2, 3 a tvoř́ı řádky inverzńı Jacobiovy matice JΦ−1 =

( 1
5

1
5

−3
5

2
5

)
, odtud

⃗̂e 1 = (15 ,
1
5) ,

⃗̂e 2 = (−3
5 ,

2
5) .

Pro kontravariantńı souřadnice v̂ 1, v̂ 2 vektoru v⃗ plat́ı v⃗ = v̂ 1⃗ê1 + v̂ 2⃗ê2, neboli
(1, 2) = v̂ 1(2, 3) + v̂ 2(−1, 1). Odtud dostaneme v̂ 1 = 3

5 , v̂
2 = 1

5 .

Rychleji můžeme źıskat kontravariantńı souřadnice pomoćı vztahu v̂ i = ∂qi

∂rj v
j ,

i = 1, 2 , tedy v̂ 1 = 1
5 1 +

1
5 2 = 3

5 a v̂ 2 = −3
5 1 +

2
5 2 = 1

5 .

Pro kovariantńı souřadnice v̂1, v̂2 vektoru v⃗ plat́ı v⃗ = v̂1⃗ê
1 + v̂2⃗ê

2 , neboli
(1, 2) = v̂1(

1
5 ,

1
5) + v̂2(−3

5 ,
2
5) , tedy v̂1 = 8 , v̂2 = 1 .

Nebo dostaneme kovariantńı souřadnice ze vztahu v̂i = ∂rj

∂qi v
j , i = 1, 2 , odtud

v̂1 = 2 · 1 + 3 · 2 = 8 a v̂2 = −1 · 1 + 1 · 2 = 1 .

Př́ıklad 61 : Uvažujte transformaci Φ, vektor v⃗ z předchoźıho př́ıkladu. Najděte
prvky gij, g

ij fundamentálńı matice G, k ńı inverzńı G−1 a ověřte pro vektor v⃗
vlastnost sńıžeńı a zvýšeńı indexu při přechodu od kontravariantńıch souřadnic
ke kovariantńım a naopak.

Řešeńı: Pro prvky fundamentálńı matice plat́ı gij = ⃗̂ei⃗êj, pro prvky inverzńı

matice plat́ı gij = ⃗̂e i⃗ê j, tedy
g11=(2, 3) · (2, 3)=13 , g12=(2, 3) · (−1, 1)=1 , g21=1 , g22 = (−1, 1) · (−1, 1)=2 .
Podobně
g11=(15 ,

1
5)·(

1
5 ,

1
5)=

2
25 , g

12=(15 ,
1
5)·(−

3
5 ,

2
5)=

−1
25 , g

21= 1
25 , g

22=(−3
5 ,

2
5)·(−

3
5 ,

2
5)=

13
25 .

Dále máme ověřit sńıžeńı indexu v̂j = gjiv̂
i a zvýšeńı indexu v̂ i = gij v̂j .

Neboli pro sńıžeńı indexu 8 = 13 · 35 + 1 · 15 , 1 = 1 · 35 + 2 · 15 a pro zvýšeńı indexu
3
5 =

2
25 · 8 +

−1
25 · 1 , 1

5 =
−1
25 · 8 + 13

25 · 1 , vše plat́ı.
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