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1 Vektorovy a afinni prostor

Priklad 1: Dokazte, ze ve vektorovém prostoru (V,+,-) existuje ke kazdému
u € V pravé jeden inverzni prvek .
Resend: Necht Uy, Uy jsou dva inverzni prvky k u, pak

Teorie
Necht (V,+,-) je vektorovy prostor, pak
2. ve V existuje pravé jeden neutralni (nulovy) prvek o.
3. jestlize u,v,w €V au+v =u+ w, pak v = w.

4. plati (—1)-u = (—u), tedy opaény prvek dostaneme vynasobenim puvodniho
prvku ¢islem —1.

5. jestlize u + v = w, pak u = w + (—v).
6. jestlize a - u = o, pak ©u = 0 nebo a = 0.
Necht (V,+,-) je vektorovy prostor se skaldarnim soucinem (-, -), pak
7. dokazte, ze (u,av + bw) = a(u,v) + b(u,w) Yu,v,w € V,], Va,b € R.
8. ukazte, kdy nastane rovnost ve Schwarzové nerovnosti.

9. ovéfte vlastnosti normy dané predpisem ||u|| = /(u, u).

10. Dokazte, ze velikost plochy rovnobéznika uréeného dvéma vektory je rovna
velikosti vektorového soucinu téchto vektoru.

Priklad 11: V E3 mame dany primky

pr: x=2—1t P x=2+41s
y=—1+3t y=—-1+3s abod A[3,8,-2],
2 =2t z = —2s

ktery lezi v roviné piimek pi, po. Urcete obsah rovnobéznika daného bodem A
a primkami pq, po .



Reseni: Resenim soustavy

2—1t+1s= 3
—14+3t+3s= 8
2t — 2s = —2

dostaneme t = 1, s = 2, tedy vektory @ = (—1,3,2), ¥ = (2,6, —4) tvoii strany
hledaného rovnobéznika. Jeho obsah se rovna ||@x 7| = ||(—24,0, —12)|| = 12v/5.

12. Méame piimky py : A[1,—3,2] +¢(—1,2,1), po : A[1,—-3,2]+s(1,2,—1) a bod
B([1,1,2]. Urcete plochu rovnobéznika uréeného piimkami pi, p» a bodem B.

[4v2]
2 Krivky
Priklad 15: Rozhodnéte, zda kiivka parametrizovana pomoci vektorové funkce

7= (263 + 3t — 12t,t* — 4¢,0) , t € [-2,2] je reguldrni.
Reseni: Pro normu derivace vektorové funkce dostaneme

71| = /(612 4+ 6t — 12)2 + (43 — 4)2 = \/(t — 1)2[36(t + 2)2 + 16(t2 + t + 1)2].

Odtud pro t =1 je ||7’]| = 0 a dané kiivka tudiz neni regulérni.
Teorie

Priklad 1/ : Vypoél'tejte délku kiivky 7(t) = (t,arcsint, ;In{74), t € [0, 5] a na-

jdéte tetnu v bodé B[¥2 2z 2 2+\[]
Resend: Pro délku d kiivky plati

%
1 1 4 2(1—t?) +1 1 1
— 1 - dt= dt = =+ ~1In3.
/\/ T T ey / 21— 12) > ™
0

Tecna mé tvar: (1) = [¥2,Z, 1 1n 2+f] (1,v/2,-1)7, T €R.

15. Popiste parametricky tsecku spojujici body A[l1,5,2] a B[3,2,6].

16. Rozhodnéte, zda obrazem vektorové funkce 7(t) = (1,t2,t?), t € [-2,2] je
regularni jednoducha kiivka.

17. Popiste rozdil mezi kiivkami 77 (t)=(cost, sint, 0) a 75 (t)=(sint, cost, 0)
pro te|0,2n].

W



18. Najdéte parametrické vyjadieni kiivky dané rovnicemi z? + 23> —1 = 0,
z — 1 =0, popiste jeji vlastnosti a nakreslete ji.

19. Najdéte parametrické vyjadieni kiivky dané rovnicemi 2% +¢y?> —1 = 0,
r+y+z—2 = 0. Najdéte tecnu této kiivky, kterd prochéazi bodem BI[1,1,0].

20. Spocitejte délku jednoho zavitu Sroubovice dané vektorovou funkei 7 (t) =
(cost, sint, 2t). Pro t=7/2 urcete te¢nu k této sroubovici.

3 Krivkové integraly
3.1 Krivkové integraly 1. druhu

Priklad 21:  Vypocitejte kiivkovy integral [ xd—fy, kde K je usecka AB
K

Teorie

a A[0,2], B[3,0].

Resend: Parametrické vyjadieni tsecky AB je: [x,y] = A+t(B—A), po soufadnicich
r=0+3t y=2-—2t, t€]0,1]. Tudiz

[T 3
/ "t — V13 [In|t +2|]y= V13 In=.
:1:+y 2

3t+2—2t

22. Vypocitejte kiivkovy integral

/f(f’) ds
K

kde f(7) = z, K je kuzelova sroubovice (tcost,tsint,t), t € [0,1].
|

1
3
23. f(F):x%y a K je tusecka spojujici body A[0, —2,0], B[4,0,0].
[Parametrické
vyjadieni ﬁseéky ABje: v =0+4t, y=—-2+2t, 2 =0+0¢t, t € [0,1].

Tudfzgfy = f VIR gy = 20 [n[1 4 ¢]]) = v/5 In2 ]

4t+2-2¢

24. f(F)=z+y a K jeobvod trojihelnika s vrcholy A[0, 1,0], B[2,1,0], C[0, 3,0].
8 + 62

)=x2> a K je graf funkce y = Inz na intervalu [1, 2] .

=l

25. f(
26. f(7)=+/22+y? a K je déna rovnici 22 + ¢* = 2z.
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3.2 Krivkové integraly 2. druhu

Priklad 27: Vypocitejte kiivkovy integral

/yzda:—:r:Qdy
2?2 +yr

K+ Teorie

kde I je orientovand polovina kruznice lezici v poloroviné dané nerovnosti z > 0,

se stfedem v pocatku, s poc¢atecnim bodem A[0, —g] a koncovym bodem B0, o],
o > 0. Parametrizaci x(t) = ocost, y(t) = psint, t € [-7F, 7] dostaneme

-7

28.

s

2
/ 03 cosP t + p3sin’t

/ 4
dt = Q/[(l —sin®t) cost + (1 — cos®t)sint] dt = e

02 cos?t + p?sin’t 3

2

Vypotéitejte préaci, kterd se vykona v silovém poli ] = (2zy, 2?), poptipadé
Uy = (zy, y —x) pii premisténi hmotného bodu z mista A[0, 0] do mista B[1, 1]
po kiivee KT dané vztahy: a) y = z, b)y = 2%, ¢) z = y?, d) lomena ¢éra
ACB s bodem (1, 0], e) kratsf oblouk kruznice 2 + (y — 1) = 1.

[ad 7 : vSechny vysledky se rovnaji 1]

[ad @ a) 5, D) 5. ¢) 5, d) —5.€) L =5 —7F |

Vypocitejte

29.

30.

31.

32.

[ (y* = 2% dx + 2yz dy — 2* dz,
K+

kde KT je kiivka dana rovnicemi o =t, y =t 2 =13 ¢t € [0,1].

[ (2% = 2zy) d + (y* — 2xy) dy,

K+

kde KT je kiivka dana grafem funkce y = 2%, x € [—1,1].

’Cj;(y2 +z2)dr + zydy + (x + y + yz) dz,

kde Kt je kiivka dand rovnicemi x = 3cost, y = 3sint, z =t, t € [0, 7].

[12]
[(2—y)dx + xdy,
K+
kde It je kiivka dand rovnicemi x = t—sint, y = 1—cost, z =0, t € [0, 27].
[—2n]



3.3 Greenova véta

Priklad 33 : Uzitim Greenovy véty vypoctéte kiivkovy integral

f(wy) dr— (¢ —y) dy,

K+ Teorie
kde K* je kladné orientovana elipsa - - y =1.

Reseni: V Greenové vété ff(% — %) dedy = ¢ fi dx + fo dy polozime
Q Nt

fi=xz+y, fo=—x+y, pak afl 1aaf2 —1. Tedy

/(x—l—y)daz— dy—// —1—1) dxdy.

Ct+
Prevedeme dvojny integral pres €2 do zobecnenych polarnich souradnic

T = 271 Ccos,
y=3rsinp, r>0, 0< <27,

Pro Jakobian této transformace dostaneme

% —f;’”” 2cosp —2rsinp
Je=| o |=| 54 3 ; |det Jp|=|67]=
o Do sin ¢ 7 COS

Tudiz or 1
/(x—l—y)dx— x—y dy—// dedy://—2'6rdrdg0:—127r.
0 0

Priklad 34 : Ovéfte Greenovu vétu pii vypoctu integrdlu ¢ xdx + /x dy, kde
o0+

Q= {[z,y] e R?: z <2y < 2\/z}.

Reseni: V Greenové vété ff(% — 8—fl) dedy = ¢ fi de + fo dy polozime

o0+
fi=x, fo =+/x, pak afl—Oa%—ﬁE Pro x = 2y/x = = 0,2 = 4, tedy
vz 4
1 1 11 374 2
d dy = | [—= dyde = ——)d:2——[2] =z
/x:Hﬁy//m/zyx /2xx2x 6L" 1o~ 3
o0+ 0 0

Kiivkovy integral rozdélime na dva x € [0,4],y = 3; = € [4,0],y = /=.

4 0

]{xdw+\/5dy:/xdx+\/5%dx+/xdx+\/_—dx— /[\/‘

oa+ 0 4
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Operatory skalarnich a vektorovych poli

Priklad 35 : Vypocitejte gradient funkce f(z,y,2)=3x%y—y32% v bodé A[l,2,1].

Reseni: Pro jednotlivé parcidlni derivace plati % = 6xy, gf = 322 — 3y?2?

of _
0z

36.

37.

38.
39.
40.
41.

42.

5]

Priklad 43 : Vypomteﬁe plogny obsah grafu funkce f(x,y) =

dané

Rese

= —21°2. Po dosazen{ bodu A dostaneme V f(A) = (12,9, —16).

Teorie

Vypocitejte gradient funkce f = In||7||, jestlize 7= (z,y, z) .

[Vf - |77F||2 ]

Najdéte rovnici teéné roviny ke grafu funkce f dané implicitné rovnici 2z2% —
3ry —4x =7 v bodé A[l,—1,2].

[T(x—1)—3@y+1)+8(z—2)=0]

Vypocitejte divergenci vektorové funkce @ = (22z, —2y%2% xy?*2) v bodé
All,-1,1]. [7]

Necht f = 223?24, vypoécitejte divgrad f (neboli V-V f).
[122y22" + 42321 + 24a3y%2? ]

Dokazte, ze V- (

") =0.

171l

[V-(I71757) = (Vo 1F 1 72) 7+ (1P 79) Ve = =317 (|72 7+ 3|7~ = 0]

Vypoéitejte rotaci vektorové funkce o= (123, —22%yz, 2yz*) v bodé A[1, —1, 1].

[(0,3,4)]

Vypocitejte rotaci vektorové funkce v = 7f(||7’||), kde f je diferencovatelna

funkce a 7= (z,y, 2). [(0,0,0)]
Plochy

y?
2a + o5 a mnozineé

nerovnosti —2—|—y <c, a>0,b>0c>0.

ni: Pro plosny obsah P grafu funkce f plati

I\ G G s ] o G




Parametrizaci elipsy dostaneme x = apcost, y = bosint, t € [0,27],0 € [0, |
a Jakobian zobrazeni ® : (p,t) — (x,y) je |det Jg| = abo. Tedy

2 ¢

://\/1—|—92abgdgdt:%ﬂab(\/(l—l—c)?’—l)-
0 0

Teorie

44. Vypocitejte plosny obsah ¢asti povrchu koule dané rovnici z? 41>+ 22 = R?,
kters lezi uvnitf valcové plochy 2? +y?> = Rz, R > 0.
[R*(m —2)]

6 Plosné integraly, Gausova véta, Stokesova véta
6.1 Plosné integraly 1.druhu

Priklad 45:  Vypocitejte plosny integrdl 1. druhu [[ /2% +y? dS, kde S je
s
povrch koule s polomérem p a stredem v pocatku souradnicového systému.

Reseni: Prechodem ke sférickym soufadnicim x = pcosucosv, y = psinucosv,

z=psinv, u e [0,2n), v € (-3, %), dS = ¢?cosvdudv dostaneme

27‘(2

// Va2 +y?dS = //\/Q cos? 1 cos? v 4 o2 sin® u cos? v o? cosv dvdu = 720,
g

Teorie

Priklad 46 : Vypocitejte integral

//[x2y2 + 222 + 2% dS
s

kde S je ¢ast kuzelové plochy 22 = z? + y?, z > 0 ohrani¢end valcovou plochou
2+ =4z,

Reseni: Priumétem plochy S do roviny zy je kruh Sey ((x —2)* +y* = 4). Pro

diferencial plochy dS plati dS = /1 + 22 + 22 dSzy = 1/ x;jyy dSyy = \/—dey

Tedy
//:L‘y + 2222 4+ y?2h dS = \/_//[xy + (2% 4+ y*)?] dS,, -




Piechodem k poldrnim soufadnicim & = pcost, y = psint dostaneme t € [—3, 7],
0 < o< 4cost a

2 4cost

\/_//xy—i—x—i—y)]dey \/_// (0% cos®tsint + o*) o dodt =

46 87mr 348 71+/2

t( t t+ 1) dodt = =
\/_ /cos cos’tsint + 1) do 6 G 3

m\:\

Priklad 47: Vypocitejte integral

s
[
s ez
kde S je plast vélce s polomérem p, s podstavou v roviné zy a vyskou k,0 < k < 0.

Resent: Piechodem k cylindrickym soufadnicim 7 : x = pcosu, y = psinu,
z=w, u € [0,2n], v € [0, k] dostaneme

k 27 k 27
I :/ |70 X 7 || dudv B

Priklad 48: Vypocitejte integral

I://\mds,
S

kde S je ¢ast povrchu paraboloidu z = 2% +y?, 2 < 9.

= 2mparcsin % :

dudv = ZWQ[arcsin g}s

00

Reseni: Prechodem k polarnim souradnicim naparametrizujeme povrch parabo-
loidu 7 : 2 = ucosv, y = usinv, z = u?, u € [0,3],v € [0,27] dostaneme

dS = ||ry X ry|| dudv = V1 + 4u? dudv a

2m 3
1
]://|usinvh/1—|—4u2 dudv:§(v373—1).
00
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6.2 Plosné integraly 2.druhu

Priklad 49 : Vypocitejte integral

// 23 dydz + v dedz + 3z dady,

kde S je vnéjsi strana ¢asti rotaéniho paraboloidu z = 1—2%—12, kter4 je omezen4
rovinou z = 0.

Resend: Ulohu lze rozlozit na vypocet tii integralu pres pruméty plochy S do
odpovidajicich rovin yz,zz a zy.

Pfi primétu do roviny yz platf z = /(1 — y? — 2)3, pokud vngjs{ normalovy
vektor @ m4d prvni soufadnici n; > 0, a zaroveit * = —/(1 — y% — 2)3, pokud
ny < 0. Tedy

1 1—92

I, = ff:z:?’dydz—fo\/ — 2 —z3dydz—2f f (1—y%—2)2 dzdy

1 _ 1 =sint
= -1 [[1-9y*-2) ydy—%f dy—[d ]
—1 -1

Y = Cost

L

5 _
cos®tcost dt = i

— iy

i (14 cos2t)® dt = 55 (m+3m) ==

\
w3 %wm

INIE

Pti prumeétu do roviny xz dostaneme stejnou tlohu jako v predchozim kroku
(staci zaménit proménné x a y, neboli I, = 7.

P1i prumétu do roviny zy budeme integrovat pies prumét S, kterym je kruh
dany nerovnosti 22 + y?> < 1 a piechodem k poldrnim dostaneme

r = pcost, o€ [0,1]

Sity
or 1 2 0
— _ o2 _ju=1l-o — _ 3
_3{{(1 Q)ngdt_[du:—QQdQ]— 37rlfudu 5 -

.. , ’ o T 3m __
Zadany integral ma tedy hodnotu I = 7 + 7 + 5 = 27.

Teorie

Priklad 50: Vypocitejte tok vektorového pole @ = (4x, —2y?, 2?) povrchem vélce
daného rovnicemi 22 + 4> =4, 2 =0, 2 = 3.

11



Reseni: Pro tok T plati
- / / 7ii ds,
S+

kde 7 je vnéjsi normalovy vektor k povrchu valce. Ulohu lze rozlozit na vypocet
tif integrdlu pres podstavy a plast valce.

Vnéjsi normalovy vektor k podstavé v roviné z = 0 je 7 = (0,0,—1) a pro
prvni integral plati

I = // —2y?, 22 (,O,—l)dS://—z2dxdy:O.
Sy

Vnéjsi normalovy vektor k podstavé v roviné z = 3 je 7 = (0,0,1) a pro druhy
integral plati

I, = // —21%,2%)(0,0,1) dS = //z drdy = 3°72% = 367 .

ly

Vnéjsi normalovy vektor k plasti valce ziskdme po parametrizaci 7 : x = 2 cos u,
y = 2sinu, z = v, u € [0,27], v € [0,3], potom teéné vektory maji tvar 7, =
(—2sinu, 2cosu, 0), 7, = (0, 0, 1) a normalovy vektor 7 = (cosu,sinu,0). Pro
treti integral tedy plati

2 3
Is = //(41', —24%, 2%) (cos u, sinu, 0) dS ://[8 cos*u — 8sin®u] 2 dvdu = 487 .
S+ 00
Zadany integral ma tedy hodnotu I = 0 + 367 + 487 = 84~ .
Priklad 51: Vypocitejte integral I = [[ U7 dS, jestlize ¥ = (z,y,2) a plocha

S+
S je parametrizovana funkci 7(u,v) = (ucosv, usinv, cv), [u,v| € [a,b] x [0,27],

O<a<b c>0.
Regent: Pro vypocet vyuzijeme rovnost [[ 07 dS = [[U(7, x 7,) dudv. Plati
S+ Q

Tw=(cosv,sinwv,0), 7,=(—usinv,ucosv,c) a 7, X 7, =(csinv, —ccosv, u). Tedy

b 2w b 27w

]://(ucosv,usinv,cv) (csinwv, —ccosv,u) du dv://cvu du dv=(b*—a*)cr?.

a 0 a 0

12



6.3 Gaussova véta

Priklad 52:  Pomoci Gaussovy véty vypocitejte integral

I = //:1:3 dydz + vy* dedz + 2% dxdy

kde S je povrch koule o poloméru R se stiredem v poc¢atku souradnicové soustavy.

Resent: Pouzijeme Gaussovu vétu ve tvaru [[vidS = [[[dividV pro funkei
1%

S+
7 = (23,943, 2%). Potom div? = 3(z* + y? + 2?) a piechodem ke sférickym
soufadnicim x = gcosucosv,y = gsinucosv, z = gsinv, u € [0,27), v € (=3, §),

0€[0,R], dV = ¢ cosv dudvdo dostaneme

- [ dv_gof

Pokud pocitame dvojny integral druhého druhu piimo, pak opét prechodem ke
sférickym soutadnicim (nyni o = R) dostaneme

// 23 dydz + v dedz + 22 dedy = //(xg,y3, )i dS =
S+ S+

2T

127 R
/Q2 0% cosv dodvdu = T .
0

5

wb\ \m\:\

5 27
//(cos3u cos®v, sin*u cos®v, sin®v) - (cos u cos v, sin u cos v, sin v) R cos v dvdu =
—70
% 27
//(cos4u cosv 4 sinu cos’v 4 sinv) - R® cosv dvdu =
2 2 2
1—|—C082u 1 — cos 2u
+ T cos’v dvdu + sinv - cosv dvdu ) =
—% 0 -3 0

us

2T

1 1 4 £9q1 127 RS
/(1 — sinv)? cos v dv/<§+$) du + [3}_1270 = 7; ,

0

%
/N

Teorie
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Priklad 53: Vypocitejte integrdl I = [[zz dydz + x*y daxdz + y*z dzdy, kde
+

plocha S je vnéjsi strana povrchu télesa daného nerovnostmi x > 0, y > 0, 0 <
z< a4yt a? +y? < A4

Reseni: Pouzijeme Gaussovu vétu ve tvaru [[ o7 dS = [[[dive dV, neboli

S 1%

7 = (xz, 2%y, y?2), divi = 2z + 2*> + y* a pfechod k poldrnim soufadnicim
x = pcost, y = osint, t € [0, 7], 0 € [0,2]. Tedy

2492 2 5
I:///z+x2+y2dV:/// z+a:2+y2dzda:dy://gg4gdtdQ:87r.
v Sey 0 0 0

Priklad 54 :  Vypoctéte objem télesa vymezeného plochou = = (b+a cosv) cos u,
y = (b+acosv)sinu, z = asinv, u € [0,27],v € [0,27], 0 < a < b a rovinami
r=0,2=0.

Reseni: Z Gaussovy véty plyne pro objem télesa meas (V) = % [[(z,y,2) 7 dS.
S+

~/1 7 . ’ vev/ z - Fuxﬁ)
Spocitame jednotkovy vektor vnéjsi normély n = AT tedy

(—(b+ acosv)sinu, (b+ acosv)cosu,0) X a(—sinv cos u, — sin v sin u, cos v)

"= al|((b+ acoswv) cosucosv, (b+ acosv)sinucosv, (b+ acosv)sinv)|

((b+ acoswv)cosucosv, (b+ acosv)sinucosv, (b+ acosv)sinv)
(b+ acosv) '

Zaroven plati dS = ||, X 7| dudv. Po dosazeni dostaneme meas (V') =

2m2m
// ((b+ acosv)cosu, (b+ acosv)sinu,asinv)

(b+ acosv)cosucosv, (b+ acosv)sinucosv, (b+ acosv)sinv) dudv=

2m 2T 2w 2w

%//((b+acosv)2 cos v+ (b+acosv) asin’®v) dudvzg//(bJracosv)(bJra) dudv.
Tedy meas (V) = 3ab(b + a)m

6.4 Stokesova véta

Priklad 55: Pomoci Stokesovy véty vypoctéte integrdl I = ¢ (y—z, z—z, x—y) dF,
K+
kde kiivka Kt je ddna rovnicemi 22 + 3? = a2, 24+2=1,a>0,0>0.

14



Teorie

Priklad 56 : Vypocitejte praci vektorového pole v = (z + y,2x — z,y + 2)
po uzaviené kiivce I, kterd je tvorena obvodem trojihelnika A[2,0,0], B[O, 3, 0],
C'[0,0,6] . Orientace pohybu je ddna poradim vrcholu trojihelnika.

Reseni: K vypoétu pouzijeme Stokesovu vétu ve tvaru § 77 ds = [[rot o' dS..
95+ S+

o - ABxAC _ 6(321)
Plati rot v = (2,0,1) a n = ||B§E|| = 5717 - Tedy

B B2 T 7 |ABxAC|
Ié/(Q,O,l) ds = eas (5) = =21.

V14 V14 V14 2

7 Nezavislost na cesté

Priklad 57:  Urcete ¢islo a tak, aby integrél [ % byl nezavisly na cesté na
K

mnoziné {2 dané nerovnosti = + 3y > 0.

Resend: Hleddme funkci f = f(x,y) takovou, aby grad f = <:c423y’ xfgy), neboli
of _ _1 of _ _a

Jr = 713, 9y = w13, - Do integrovéni dostaneme f(z,y) = In|z + 3y| + C(y) a

f(z,y) = §In|z + 3y[ + C(x). Odtud plyne a = 3.

Teorie

Priklad 58 : Najdéte vektorové pole, jehoz potencidl je f(x,y) = 5y/x? + y?
a vypocitejte praci tohoto pole po kiivkach a) z bodu A[3,4] do bodu B[-2, 0]
b) z bodu A[3,4] do bodu B[v/21,2].

Resend: Pro hledané vektorové pole @ plati ¥ = grad f = (

z y
g V2 ty? g \/m2+y2)
a pro jeho praci W plati W = f(B) — f(A), tedy a) W =1]5-2—-5-5| = 15,
bYW =15-5—-5-5=0.

Priklad 59 : Spocitejte kiivkovy integrdl I = [ (z+y) de+(x—y) dy, po Usecce

K+
IC spojujici bod A[0,1] a bod B[2,2]. Potom ovéite, ze integrovana vektorova

funkce je potencialni a na zakladé této informace opét spocitejte dany integral.
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Resend: Parametrizujeme tisecku K: 2 =0+ 2t, y = 1+t, t € [0,1], potom

1
I = /(x+y)d:c+ T —y /2t+1+t 242t —1—t]dt ==
K+ 0

Aby vektorova funkce v = (x + y,x — y) byla potencidlni, musi platit % = %—”yl

coz je splnéno (1 = 1). Najdeme tedy potencidl f, pro ktery plati f(z,y) =
fx+yd:1:— 5 +yr+ C(y) a zdroven f(z,y) = fx—ydyzyx—y;%—C(x).

Tudiz f(x,y) = % a pro dany integral plati

2 92 12
I= [@epdot @y dy=7B) - f4) = 5= - - =0,

K+
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8 Tenzory
8.1 Sdruzené baze

Priklad 60: Najdéte kontravariantni a kovariantni souradnice vektoru v = (1, 2),

. , L oot = 2¢ — ¢
jestlize zobrazeni ® : ¢ — 7 je dano rovnicemi 1. 9 .
re = 3q¢ +q°. Teorie

Reseni:  Vektory kiivocaré (kontravariantni) béze jsou definované predpisem

2 —1
1 = 1,2,3 a tvori sloupce Jacobiovy matice Jp = (3 1 ), tedy

—

o — or
Z_aqia

6 =1(2,3),6=(-11).
Vektory sdruzené (kovariantni) bdze jsou definované predpisem €’ = V¢,

®

) , odtud

1 = 1,2,3 a tvori fadky inverzni Jacobiovy matice Jp-1 = <

ol Gt
Ul Ol

F - (.= 1D,

Pro kontravariantni soutadnice 31,92 vektoru @ plati @ = '€, + 0 26y, neboli
(1,2) =v1(2,3) + 0%(—1,1). Odtud dostaneme ol=2 02=1
Rychleji muzeme ziskat kontravarlantnl souradnlce pomoci vztahu ¢ = gﬁ; 7,
i:1,2,tedy61:%1—|—%2:—av 1—|— 2 = )

Pro kovariantni soufadnice vy, 0y Vektoru v platl 7 = 5! + 5he?, neboli
(1,2) =01(3,3) + 02(—2, %), tedy 03 =8, 0y = 1. |
Nebo dostaneme kovariantni soufadnice ze vztahu v; = g;z v, i = 1,2, odtud

n=2-143-2=8awm=—-1-1+1-2=1.

Priklad 61: Uvazujte transformaci ®, vektor v’ z ptedchoziho piikladu. Najdéte
prvky g¢ij, g fundamentdln{ matice G, k nf inverzn{ G~! a ovéite pro vektor v/
vlastnost snizeni a zvysSeni indexu pfi prechodu od kontravariantnich soutradnic

ke kovariantnim a naopak.

Reseni: Pro prvky fundamentdlni matice plati gij = é_iéj, pro prvky inverzni
matice plati g = eie, tedy

g11=(2,3)-(2,3)=13, g12=(2,3) - (-1, 1)=1, gs1 =1, goo = (—1,1) - (—=1,1)=2.
Podobné

11 (1 1y (1 1y_2 12 /1 1 3 2y_ -1 21_ 1 22/ 3 2 3 2y_ 13

g _(573)'(575)_%7 g _(575)'(_575) 257 g — 95 g _(_373) (_5 5) 25 °
Déle mame ovérit snizeni indexu v; = gﬂv a zvySeni indexu 0’ = ¢Y7; .

Neboli pro snizeni indexu 8 = 13 3 c+1-2, 1=1- % +2- % a pro zvyseni indexu

3 2, =1, 1

=58+ % 1,5— 8—|— 1 Vseplatl
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